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A simple algorithm for constructing the canonical form of Hamiltonian systems of evolution 
equations with constant coefficient Hamiltonian differential operators is given. The result of the 
construction is equivalent to the canonical system derived using Dirac's theory of constraints 
from the corresponding degenerate Lagrangian. 

I. INTRODUCTION 

In the classical theory of Hamiltonian systems, great 
emphasis is placed on the introduction of canonical coordi­
nates-the positions and conjugate momenta of classical 
mechanics. I Canonical coordinates serve to simplify many 
of the equations and transformations required in the study of 
finite-dimensional Hamiltonian systems. Most quantization 
procedures require that the Hamiltonian system be in ca­
nonical form before proceeding. Hamiltonian perturbation 
theories are much easier to develop in canonical coordi­
nates.2•

3 However, in recent years there has been a renewed 
interest in Hamiltonian systems in noncanonical coordi­
nates. The principle motivation has been the development of 
an infinite-dimensional theory of Hamiltonian systems of 
evolution equations in which the role of the skew-symmetric 
symplectic matrix J is played by a skew-adjoint Hamiltonian 
differential operator, and the Hamiltonian function is re­
placed by a Hamiltonian functional. 4,5 Applications to sta­
bility questions in fluid mechanics and plasma physics6 and 
also to completely integrable (soliton) equations7

,8 have 
been just a few of the important consequences of this general 
theory. A significant open problem in this theory is the Dar­
boux problem of whether one can always determine suitable 
canonical coordinates for such a Hamiltonian system. In this 
paper, a general result of this type for constant coefficient 
Hamiltonian differential operators is proved, along with 
some extensions of the result to more general field-depen­
dent Hamiltonian operators. 

In the case of finite-dimensional Hamiltonian systems, 
Darboux' theorem guarantees that canonical coordinates 
can always be found, provided that the Poisson bracket has 
constant rank.9 For maximal rank (symplectic) Poisson 
brackets, the proof of Weinstein 10 is especially appealing in 
that it readily extends to certain infinite-dimensional situa­
tions. There are two main steps in Weinstein's proof: first the 
Hamiltonian operator is reduced to a constant operator by a 
clever change of variables; second, one shows that any con­
stant-coefficient skew-adjoint operator can be placed into 
canonical form. In this light, the present paper can be viewed 
as an implementation of the second part of Weinstein's proof 
in the case of constant-coefficient skew-adjoint differential 
operators. The first part of the proof is far more difficult, 
and, unfortunately, the infinite-dimensional version of Dar­
boux' theorem due to Weinstein does not appear to be appli­
cable to the Hamiltonian differential operators of interest. 

The problem is that Weinstein requires some form of Banach 
manifold structure to effect his proof, but for differential 
operators that depend on the dependent variables it is not at 
all obvious how to impose such a structure. Even if one could 
mimic Weinstein's proof, the resulting changes of variable 
would be horribly nonlocal, and therefore be of limited use. 
Thus the question of whether Darboux' theorem is valid for 
Hamiltonian differential operators remains an important 
open problem. Only in special cases, including first- and 
third-order scalar operators, and some first-order matrix op­
erators is the answer known. II

,26 (Results of Dubrovin and 
Novikov l2 indicate that Darboux' theorem may not hold for 
matrix operators involving more than one independent vari­
able, but they only consider a limited class of changes of 
variable, so the general Darboux problem remains unan­
swered.) 

The underlying motivation of this paper can be found in 
the recent applications of Dirac's theory of constraints by 
Nutku to produce canonical forms of a number of Hamilto­
nian systems of evolution equations of physical interest, in­
cluding the equations of shallow water waves and gas dy­
namics13 and the Korteweg-de Vries equation. 14 In the 
finite-dimensional theory of the calculus of variations, for 
nondegenerate Lagrangians the passage from the Euler-La­
grange equations to the corresponding canonical form of 
Hamilton's equations is classical. I Dirac's theory of con­
straints was designed to handle degenerate Lagrangians and 
produce canonical Hamiltonian systems, which, when sub­
jected to the appropriate constraints, reduce to the original 
Euler-Lagrange equations. 15 In Nutku's applications of this 
theory, one begins with a Hamiltonian system of evolution 
equations, whose Poisson bracket is not in canonical form. 
The next step is to replace the original Hamiltonian system 
of evolution equations by an equivalent system of Euler­
Lagrange equations; this appears to require that the Hamil­
tonian operator be constant coefficient. The resulting La­
grangian function is inevitably degenerate, so to construct a 
corresponding canonical Hamiltonian system one is re­
quired to invoke the Dirac machinery. The details of the 
construction can be found in Refs. 13 and 14. 

However, given the fact that one begins with a (nonca­
nonical) Hamiltonian system, the entire procedure seems to 
be a bit roundabout, and it would be useful to have a direct 
method of constructing canonical Hamiltonian systems 
from more general Hamiltonian evolution equations. In this 
paper a simple constructive procedure for effecting this 
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transformation to canonical coordinates is presented. The 
only restriction is that the original Hamiltonian differential 
operator does not depend on the field variables or their de­
rivatives; typically the operator will be a constant-coeffi­
cient, skew-adjoint differential operator, but explicit depen­
dence on the spatial variables is also allowed. The method is 
illustrated with a number of examples, including elementary 
derivations of Nutku's Hamiltonians for gas dynamics and 
the Korteweg-de Vries equation. More general Hamiltonian 
operators are less easy to deal with directly. At present, the 
only recourse is to first determine a transformation that will 
place the operator in constant-coefficient form, and then ap­
ply the method described here. 

II. HAMILTONIAN OPERATORS 

For the basic theory of Hamiltonian systems of evolu­
tion equations, we refer the reader to the works of Gel'fand 
and Dorfman,4 and the author. 5,16 We let x = (XI,oo.,Xp ) de­
note the spatial variables, and u = (u I, ... ,uq 

) the field vari­
ables (dependent variables), so each ua is a function of 
x\oo.,xP and the time t. We will be concerned with autono­
mous systems of evolution equations 

u,=K(u], 

in which K(u] = (KI (u ],oo.,Kq (u]) is a q-tuple of dWeren­
rial junctions, where the square brackets indicate that each 
Ka is a function of x, u, and finitely many partial derivatives 
of each ua with respect to XI,oo.,Xp. A system of evolution 
equations is said to be Hamiltonian if it can be written in the 
form 

(1) 

HereJ>1"(u] = fH(u] dx is the Hamiltonian functional, and 
the Hamiltonian function H(u] depends on x, u, and the 
derivatives of the u's with respect to the x's; 
Eu = (EI,.oo,Eq) denotes the Euler operator or variational 
derivative with respect to u. The Hamiltonian operator ~ is 
a qxq matrix differential operator, which may depend on 
both x, u, and derivatives of u (but not on t), and is required 
to be (formally) skew-adjoint relative to theL 2-inner prod­
uct (J,g) = ffg dx = f~ja.~ dx, so 

~*= -~, 

where * denotes the formal L 2 adjoint of a differential opera­
tor. 16 In addition, ~ must satisfy a nonlinear "Jacobi condi­
tion" that the corresponding Poisson bracket 

{&',22} = J Eu (P)·~Eu (Q) dx, 

&' = J P (u] dx, 22 = J Q [u] dx, 

satisfies the Jacobi identity.4,5.16 In the special case that ~ is 
a field-independent skew-adjoint differential operator, 
meaning that the coefficients of ~ do not depend on u or its 
derivatives (but may dependonx), the Jacobi conditions are 
automatically satisfied; for more general field-dependent op­
erators, there is a nontrivial computation to be effected to 
determine whether or not it is genuinely Hamiltonian. 

Since we will be using changes of variables, it is essential 
that we determine how they affect objects like Euler opera-
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tors and Hamiltonian operators. The changes of variables to 
be considered here are of the form u = Q [ v], where 
Q[v] = (QI (v ],oo.,Qq [v]) is a q-tuple of differential func­
tions, depending on the variables x, v = (vI,oo.,vq ) and de­
rivatives of v with respect to x. Let DQ denote the Frechet 
derivative of Q with repect to v, which is the qxq matrix 
differential operator defined by the formula 

DQ(W)=~I Q[v+€w], w=(wI,oo.,wq). 
d€ E=O 

Alternatively, note that if u = Q [v], then 

u, =DQ [v,] . (2) 

Let D 0 denote the (formal) L 2 adjoint of D Q • 

Proposition 1: Let u = Q[v] be a change of variables. 
Then the variational derivatives with respect to u and v are 
related by the formula 

Ev =DO·Eu . (3) 

Proposition2:Letu, = ~.Eu (H) be a Hamiltonian sys­
tem with Hamiltonian operator ~. Let u = Q[v] be a 
change of variables. Then the corresponding Hamiltonian 
operator g; in the v variables is related to that in the u vari­
ables by the formula 

DQ.g;.D o = ~ . (4) 

The corresponding Hamiltonian system in the v variables is 

v, = g;.Ev(H), 

in which we take the variational derivative of H with respect 
to v. 

These results are special cases of an even more general 
theorem on how Euler operators and Hamiltonian operators 
behave under changes in both the independent and depen­
dent variables. 1l,I7 Note that (4) follows easily from (2) and 
(3) . 

Example 3: Suppose u (x,t) is scalar valued, xElR, and let 
ep(x,t) be a potential function for u, so the change of vari­
ables is 

u = Q [ep ] = epx . 

The corresponding Frechet derivative is easily seen to be 
DQ = Dx, with adjoint D 0 = - Dx. Therefore, by (3), 

E<p (H) = - DxEu (H) , (5) 

for any differential function H. 
Similarly, if ~ is any Hamiltonian operator in the u 

variables, then the corresponding Hamiltonian operator in 
the v variables g; is related by the formula 

Dx·g;·( -Dx) = ~. 

For example, consider the Harry Dym equation7 

u,=D!(U- t/2 ), (6) 

which is in Hamiltonian form ( 1) with Hamiltonian opera­
tor 

~=D~ , 
and Hamiltonian function 

H= 2{ii. 

Ifwe introduce a potential function epx = u, then the corre­
sponding potential form of (6) is the equation 
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(7) 

(Here, and elsewhere, we set the integration constants to 0 
when introducing a potential function.) The Hamiltonian 
for (7) isjust 

H=H=2{rj;, 

and the Hamiltonian operator is g = - D x' since D! 
= D x • ( - D x H - D x ). Indeed, (7) is the same as the evo­

lution equation 

({Jt = g .E", (H) , 

as the reader can check. 

III. THE GARDNER HAMILTONIAN OPERATOR 

In order to simply illustrate the main ideas of the paper, 
we begin by discussing the elementary Hamiltonian operator 
!!fl = Dx, originally found by Gardner in connection with 
the Korteweg-de Vries equation. 18 Thus we are looking at a 
single evolution equation of the form 

Ut = Dx·Eu (H) , (8) 

in which 7zP = S H[ u] dx is the corresponding Hamiltonian 
functional. We first show that any such Hamiltonian system 
can always be derived from a Lagrangian variational prob­
lem. 19 

Proposition 4: Let Ut = Dx .Eu (H) be a Hamiltonian 
evolution equation relative to the Hamiltonian operator Dx. 
Let ((J(x,t) be the potential of u(x,t), so ({Jx = u. Then the 
Hamiltonian evolution equation is equivalent to the Euler­
Lagrange equation for the variational problem 
!f = S L [({J] dx with Lagrangian 

L [({J] = ({Jx({Jt - 2H [({Jx] . (9) 

Proof: Formula (5) immediately implies that the Euler­
Lagrange equation for !f is 

E",(L) = -2rpxt -2E",(H) = -2{ut -DxEu(H)} =0, 

which coincides with a multiple of the original Hamiltonian 
system (8). 

We now apply Dirac's theory of constraints to the La­
grangian (9) as explained in Nutku. 13,14 The Lagrangian is 
degenerate, and the first constraint should be determined by 

aL 
C1 = 1T - -- = 1T - ({Jx = 1T - U = 0 , 

a({Jt 

in which 1T will be the canonical momentum dual to ({J. As 
shown by Nutku, this constraint is second class in the ter­
minology of Dirac, and so to derive the further constraints 
we need to investigate the canonical Poisson brackets of the 
constraint with the Hamiltonian. 

In the version of the Dirac theory used by Nutku, the 
Lagrangian is required to only depend on first-order deriva­
tives of the potential ({J. This is equivalent to the fact that the 
Hamiltonian H = H(x,u) depends only on x and u, and not 
any derivatives of u, so that the Hamiltonian system (8) is a 
simple nonlinear wave equation 

ut = [Hu (x,u)]x = Hxu (x,u) + Huu (x,u),ux . 

The corresponding potential form is the equation 

({Jt = Hu (x,({Jx) . 
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The Lagrangian (9) for this equation is 

L = ({Jx({Jt - 2H(x,({Jx) . 

Therefore, provided there are no further constraints coming 
from the Poisson brackets of the constraint with the Hamil­
tonian, the total Hamiltonian has the form 

H * = 2H(x,({Jx) + A( 1T - ({Jx) , 

where the multiplier A. remains to be determined. [In the 
notation of Ref. 13, the free part of the Hamiltonian has been 
determined as 

Ho = ({Jt 1T - L = ({Jt 1T - ({Jx({Jt + 2H(x,({Jx) = 2H(x,({Jx ).] 

Using the canonical Poisson bracket relations l4 

{({J(X),1T(X')} = 8(x - x') , 

8 being the Dirac delta function, we find 

{cl(X),C1(x')} = - 28'(x -x'). 

Therefore 

{c1 (x),H *(x')} = 2 [Hu (x',({Jx (x'») - A. ] ·8'(x - x') , 

from which we see that A. = Hu (x,({Jx) is required in order to 
make the Poisson bracket vanish. Thus the total Hamilto­
nian is 

H * [({J,1T] = 1T.Hu (x,({Jx) + 2H(x,({Jx) - Hu (x,({Jx ) '({Jx . 
( 10) 

The canonical equations corresponding to H *, which are 

({Jt = E1r [H *] = Hu (x,({Jx ) , 

1Tt = - E", [H*] 

= Dx {( 1T - ({Jx )Huu (x,({Jx ) + Hu (x,({Jx)} , 

are easily seen to reduce to the original wave equation when 
subjected to the constraint 1T = u. 

The goal now is to generalize this construction to Ham­
iltonian functions which depend on higher-order derivatives 
of the field variable u. Rather than try to follow through the 
complete derivation using the Dirac theory, as in Ref. 14, we 
proceed directly to the general result. In order to state it, we 
need to introduce the multiplication operator 

a a a 
N=u-+ux --+uxx --+''', 

au aux auxx 

whose action on differential functions is to multiply each 
term by its algebraic degree in u and its derivatives. For 
example, 

N(uxx + xu2ux + us) = Uxx + 3xu2ux + Sus. 

Theorem 5: Let U t = Dx .Eu (H) be a Hamiltonian sys­
tem with Hamiltonian operator D x • Then the corresponding 
canonical Hamiltonian system has total Hamiltonian 

H*[1T,({J] = 1T.Eu (H) + (2 - N)H, (11) 

in which ({J is the potential for u, 1T the corresponding mo­
mentum, and u is to be replaced by ({Jx on the right-hand side 
of ( 11 ). The corresponding canonical Hamiltonian system 
for H * takes the form 

((Jt=E1r (H*), 1Tt = -E",(H*) , (12) 

and, when subjected to the constraint 1T = U = ({Jx, is equiva­
lent to the original Hamiltonian system. 
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For example, in the case that B = B(x,u) just depends 
on u, then (11) reduces to the formula (10) derived using 
the Dirac theory. 

Proof: It suffices to check that when 1T = u, the pair of 
evolution equations in (12) reduce to the original evolution 
equation (8). The first one is easy, sinceE". (B*) = Eu (B), 
and so wejust derive the potential form ~t = Eu (B) of the 
original equation. For the second, we require a lemma of 
Olver and Shakiban.20 

Lemma 6: Let u (x) be real valued, and let L [u] be any 
differential function. Then 

(13) 

[Indeed, if P is a differential polynomial, then the condition 
Eu (u·P) = (N + I)P is both necessary and sufficient that 
P = Eu (L) be the Euler-Lagrange expression for some La­
grangian L. ] 

Corollary 7: Let u(x) and 1T(X) be real-valued func­
tions, and L [u] any differential function depending only on 
u and its derivatives. Then 

Eu(1T·Eu(L»)I".=u =N[Eu(L)] =Eu«N-l)L). 
(14) 

Proof: The second equality is clear since the Euler opera­
tor Eu reduces the algebraic degree of a differential function 
by 1. To prove the first, we use the well-known formula for 
the Euler operator 

00 a 
Eu = L (-Dx)n._, 

n = 0 aUn 

where Un = an u/axn. Therefore 

{ 
aEu (L)} 

Eu(u·Eu (L») = Eu (L) + ~ ( - Dx)n U· aU
n 

. 

On the other hand, since the restriction to 1T = U commutes 
with the operation of total differentiation Dx (but not with 
the partial derivatives a faun ), the left-hand side of (14) 
equals 

The equivalence of (14) and (13) is now clear. 
Returning to the proof of the theorem, we only need 

compute 

E",(B*) =E",{1T.Eu(B) + (2-N)B} 

= - Dx .Eu {1T.Eu (B) + (2 - N)H}' 

cf. (5), and restrict to 1T = u. According to ( 14), this equals 

E", (B*) I".=u = - Dx·Eu {(N - I)B + (2 - N)B} 

= - Dx·Eu (B) , 

which explains the factor (2 - N) in the formula (11) for 
the total Hamiltonian. Therefore, when restricted to the con­
straint 1T = u, the second evolution equation in (12) be­
comes 

Ut = -E",(H*)I".=u = Dx·Eu (B) , 
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which is the same as the original Hamiltonian system! This 
completes the proof. 

Example 8: Consider the evolution equation 

(15) 

which is a combination of the Korteweg-de Vries and modi­
fied Korteweg-de Vries equations. This is in Hamiltonian 
form (8), with Hamiltonian 

B = 1 u2 _ lu2 + 1 u3 + 1 u4 
2 2 x li n' 

Note that 

Eu (B) = u + U xx + ~ u2 + j u3 
, 

while 

(N - 2)B = i u3 + i u4 
• 

Therefore the total Hamiltonian (11) is 

B* = 1T(U + Uxx + ~ u2 + j u3
) - i u3 

- i u4 

= 1T( ~x + ~xxx + !~; + j~! ) - i~! - t~! . 
The corresponding canonical Hamiltonian system is 

~t =E".(H*) =~x +~xxx +!~; +j~!, 

1Tt = -E",(H*) =1Tx +1Txxx +1Tx~x +1T~xx (16) 

+ 1Tx~; + 21T~x~xx - ~x~xx - ~ ;~xx . 

The first is just the potential form of the original equation 
( 15 ); restricting to 1T = ~ x = u, the second reduces to (15) 
identically. Thus we are justified in labeling (16) as the ca­
nonical form of the modified Korteweg-de Vries equation 
( 15). If the last term in ( 15) does not appear, we are back to 
the Korteweg-de Vries equation as treated by Nutku. 14 

IV. CANONICAL FORMS AND FACTORIZATIONS OF 
HAMILTONIAN OPERATORS 

Theorem 5 readily generalizes to systems of evolution 
equations which are in field-independent Hamiltonian form 

u, = ~.E(H) , (17) 

in which the Hamiltonian H depends on x = (x1, ... ,xP), 
u = (u1, ... ,uq

), and the derivatives of the u's with respect to 
the x's. The corresponding Lagrangian form of such a sys­
tem is written in terms of the "potential" ¢ = (¢l, ... ,~), 
satisfying ~ ¢ = u. The Lagrangian function is 

L [¢] = (~¢).¢, - 2H, 

in which ~ ¢ is to be substituted for u in B. Using the change 
of variables formula (3), which is 

E", (H) = ~*.Eu (H) = - ~ ·Eu (B) 

(the second equality following from the skew-adjointness of 
~ ), we easily check that the Euler-Lagrange equations 
E", (L) = 0 for L are the same as the Hamiltonian system 
(17). 

As it turns out, for each possiblejactorzZation, 

~=~1'~2' (18) 

of the differential operator ~ into the product of two differ­
ential operators ~ 1 and ~ 2' there is a corresponding ca­
nonical Hamiltonian system that reduces to (17). Either ~ 1 

or ~ 2 can be the identity operator, in which case the other 

Peter J. Olver 2498 

Downloaded 28 Oct 2010 to 128.101.152.160. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



one coincides with ~ , but this is not the only possible choice 
in (18). Once a factorization has been chosen, we define 
canonically conjugate "positions" rp = (rp I, ... ,rpq) and mo­
menta 1T = (1TI , ... , ~ ) by the equations 

~ Irp = U, ~!1T = U , 

where ~! is the adjoint of g 2' Thus, the choice of g I and 
g 2 might be determined on physical grounds as to which 
variables might reasonably be labeled "position" or "mo­
mentum"; however, from a mathematical point of view, any 
choice of ~ I and ~ 2 satisfying (18) is allowable. 

We also need the general mUltiplication operator 
a anua 

N = L u~ --, u~ =. ., 
au~ ax" .. , ax'· 

the sum being over all a = 1, ... ,q and all multi-indices 
J = (jl, ... ,jn ), n;;;.O, 1 <,jv <p, corresponding to all possible 
derivatives of the u's. The effect of Nis, as before, to multiply 
a monomial by its algebraic degree in the u's and their de­
rivatives. With this definition, Lemma 6 has an immediate 
generalization due to Shakiban.21 In this case, formula (13) 

still holds, with u.Eu (H)=~ua .Ea (H). 
Theorem 9: Consider a Hamiltonian system of evolution 

equations Ut = g·E(H), in which the Hamiltonian opera­
tor ~ is a skew-adjoint q X q matrix differential operator, 
whose coefficients do not depend on u or their derivatives. 
Let ~ = ~ I'~ 2 be any factorization of ~ as a product of 
two differential operators. Define canonically conjugate 
variables rp and 1T by the equations ~ Irp = U, g!1T = u. De­
fine the total Hamiltonian 

H*[rp,1T] = (P})!1T).Eu(H) + (2-N)H, (19) 

in which one substitutes ~ Irp for u wherever it occurs on the 
right-hand side of (19). Then the original Hamiltonian sys­
tem is equivalent to the canonical Hamiltonian system 

rpt =Err(H*), 1Tt = -E'I'(H*), 

when subjected to the constraints 

P}) Irp = U = ~!1T. 

(20) 

(21) 

Proof: The first canonical equation is easy; we find it has 
the form 

rpt = Err (H *) = g 2Eu (H) , 

evaluated at u = g Irp. Applying the operator ~ I to both 
sides of this equation, we recover the original Hamiltonian 
system since ~ = ~ I'P}) 2' For the second canonical sys­
tem, we require the identity 

Eu {(~!1T).Eu (H) }Iu = .'P!rr = Eu [(N - 1)H] , 

which follows from formula (13) (in the general case) just 
as ( 14) did before. Therefore, evaluating the canonical equa­
tion 

1Tt = - E", (H*) = - E'I' {(~!1T).Eu (H) + (2 - N)H} 

on the constraint u = g !1T, we find, using (3), 

1Tt = - gr·Eu [(N -l)H + (2 -N)H] 

- gr·Eu(H). 

Finally applying g! to this system, we recover 

Ut =~!·gr·Eu(H) = -g*.Eu(H) =g.Eu(H), 
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since ~ is skew-adjoint. Thus the second canonical equa­
tion, when evaluated on the constraints, is equivalent to the 
original Hamiltonian system, and Theorem 9 is proven. 

Example J 0: Consider the equations of gas dynamics for 
a polytropic gas 

Ut +uux +vr- 2vx =0, 

Vt + uVx + vUx = 0 , 

the case r = 2 also covering the equations of shallow water 
wave motion. J3 These are in Hamiltonian form 

(U) (Eu (H») 
v t = ~ Ev(H) 

=(;x D;)(_!U2_(;~V1)-lvr_I)' 
with Hamiltonian function 

H[u,v] = -!u2v-{r(r-l)}-lvr. 

Let rpx = u, f/!x = v be the corresponding potentials, with 
1T = v,p = u, the canonically conjugate momenta. The read­
er can see that this corresponds to the factorization (18) in 
which g I =Dx, and g2 = (? b). Note that 

(2 - N)H = 1. u2v + r - 2 vr. 
2 r(r-1) 

Therefore, according to (19), the corresponding canonical 
total Hamiltonian is 

H*[rp,f/!,1T,p] = - {J.. u2 + 1 Vr- I }1T - uvp 
2 (r - 1) 

1 2 r- 2 +-u v+ vr 
2 r(r - 1) 

{
I 2 1 .I.r - I} .1. 

=- Trpx+(r_1)'f'X 1T-rpx'f'xP 

1 2 r- 2 r 
+ Trpxf/!x + r(r-l) f/!x· 

This is the same as that derived by Nutku,13 but the deriva­
tion here is far more straightforward. The Hamiltonian sys­
tem 

u, =Err(H*), Vt =Ep(H*), 

1Tt = -Eu(H*), p,= -Ev(H*), 

when SUbjected to the constraints 

rpx =p=u, f/!x =1T=V, 

is easily seen to be equivalent to the original system. 
There are, of course, other possible factorizations of the 

Hamiltonian operator g, and these lead to different canoni­
cal total Hamiltonians. For example, if we choose g I to be 
the identity operator, while g 2 = ~, then the velocities u,v 
are the canonical "positions," while the conjugate momenta 
1T,p are related by 1Tx = - v, Px = - u. In this case for­
mula (19) gives the total Hamiltonian as 

H*[rp,f/!,1T,p] = - UV1T _ {J.. u2 + 1 vr-I}p 
2 (r-l) 

1 2 r- 2 +-u v+ vr , 
2 r(r-l) 
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and the gas dynamic equations are equivalent to the canoni­
cal system 

UI =E1r CH*), VI =EpCH*), 

1TI = - Eu CH*), PI = - Ev CH*) , 

when subject to the constraints 1Tx = - v, Px = - u, as 
can be easily checked. 

This last remark indicates that there are other possible 
canonical formulations of the Korteweg-de Vries example 
C 15) above. The procedure of example 8 amounts to choos­
ing the factorization (18) with ~ 2 the identity operator. If, 
on the other hand, we were to choose ~ 1 to be the identity, 
then we would have canonically conjugate variables u and 1T, 
with 1Tx = - u, and total Hamiltonian 

H * = 1T (u + u xx + ~ u2 + j u3
) - ~ u3 

- ~ u4 
• 

While simpler than the Hamiltonian found above, this is not 
the version prescribed by the Dirac theory. It is, however, 
related to the Dirac Hamiltonian by a canonical transforma­
tion. 

Example 11: For a higher-order example, consider the 
Harry Dym equation 

u
l 
=D~(U-1/2), (22) 

which is in Hamiltonian form (17) with 

~ = D ~, H = 2fo . 
If we choose ~I=D;, ~2=Dx' so that f{Jxx=u, 
1T x = - u are conjugate variables, then the total Hamilto-
nian is 

H * = - 1Txf{J x~ 1/2 + 3f{J ~2 , 

with the canonical system (20) equivalent to the Harry Dym 
equation when subjected to the constraints f{Jxx = U, 

1Tx = - u. 
Alternatively, we can choose ~ 1 to be the identity, so U 

and 1T are conjugate, where 1T xxx = - u, in which case 

is the total Hamiltonian. Other factorizations are also possi­
ble. 

V. FIELD-DEPENDENT HAMILTONIAN OPERATORS 

If the Hamiltonian operator depends explicitly on the 
dependent variables u, or their derivatives, then the above 
theory does not appear to be directly applicable. Indeed, a 
significant outstanding problem in the subject is whether 
some version of Darboux' theorem is true for all Hamilto­
nian differential operators, i.e., given a Hamiltonian differ­
entialoperator, is it always possible to find canonical coordi­
nates? The only case that has been completely answered to 
date is the case of first-order scalar differential operators in 
one independent variable. 11 In this case, provided one ad­
mits differential substitutions,22 which change both the inde­
pendent and dependent variables in the problem, one can 
always reduce such an operator to constant coefficient form, 
and hence, using the methods of this paper, to canonical 
form. The proof, however, is constructive, and does not ap­
pear to easily generalize to either higher-order or matrix op-
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erators, so the general "Darboux problem" for differential 
operators remains open. See, also, Ref. 26. 

If one can reduce a Hamiltonian operator to constant 
coefficient form using some change of variables, then the 
methods discussed above are applicable, and canonical co­
ordinates can always be found. In the case ofbi-Hamiltonian 
systems,4.7 or even multi-Hamiltonian systems,23.24 this 
opens up the possibility of several different systems of ca­
nonical variables, which are not related to each other by ca­
nonical transformations. The implications of this phenome­
non for quantization theory or perturbation theory remain 
to be developed. Here we just present a few examples to illus­
trate the main ideas. 

Example 12: The Harry Dym equation (22) has a sec­
ond Hamiltonian structure,7 with first-order Hamiltonian 
operator 

fii = 2uDx + Ux , 

and Hamiltonian function 

H = i U- 5/ 2.U; . 

Using the results in Ref. 11, or by direct inspection, we see 
that the transformation 

u =! v2 

transforms fii into the constant-coefficient operator Dx; in­
deed 

DQ.Dx·D~ = v.Dx·v = v2Dx + vVx = 2uDx + Ux = fii . 
In terms of v, 

H- - 2- 1/ 2 -3 2 
- V Vx ' 

and 

Ev (H) = ,J2 ( - v- 3vxx + 1 v-4v;) . 

Therefore, using Theorem 9, the canonical total Hamilto­
nian is 

H * [f{J,1T] =,J2 {1T( - f{J x- 3f{Jxxx + 1f{J x- 4f{J;x ) 

+ 1 f{J x-3f{J;x} ' 

where f{Jx = V, 1T = V are the canonically conjugate variables. 
The reader can check that the canonical Hamiltonian system 
(20) for H *, when subjected to the constraints u = ! f{J; 
= ~ r, coincides with the Harry Dym equation (22). Thus 

we have constructed a second, inequivalent, canonical form 
for this equation. 

Example 13: As a final example, consider the 
Korteweg-de Vries equation 

The first Hamiltonian structure was considered in example 
8. There is also a second Hamiltonian structure,7 with Ham­
iltonian operator 

and Hamiltonian function 
- 2 H=!u. 

According to Kupershmidt and Wilson,8 the second Hamil­
tonian operator for the Korteweg-de Vries equation can be 
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put into constant-coefficient form D x by the Miura transfor­
mation25 

1 2 U = Vx -l) V , 

which has the effect of transforming the Korteweg-de Vries 
equation into the modified Korteweg-de Vries equation 

Indeed, 

DQ.Dx·D~ = (Dx -jv).Dx ·( -Dx -jv) 

-D! - nvx -~v2)Dx - nvxx -~vvx) 

= - D! - ~ uDx - j Ux = - f1; . 

Thus, using ( 19), we obtain the canonical total Hamiltonian 

H*[cp,1T] = 11' (CPxxx -rsCP!) +~cp!, 
where CPx = 11' = v. In this case, we obtain a second canonical 
representation of the Korteweg-de Vries equation corre­
sponding to the canonical Hamiltonian system for H * sub­
ject to the constraints26 

u = CPxx -! cP; = 1Tx -! r . 
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