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BiHamiltonian systems were first defined in the fundamental paper of
Magri, [5], which deduced the integrability of many soliton equations from
the fact that they could be written in Hamiltonian form in two distinct
ways. More recently, the classical completely integrable Hamiltonian sys-
tems of ordinary differential equations, such as the Toda lattice and rigid
body, have been shown to be biHamiltonian systems. (However, recent re-
sults of Brouzet, [1], and extended by Fernandes, [3], indicate that there
are global, topological obstructions to the existence of a biHamiltonian
structure for a general completely integrable Hamiltonian system.) The
connection between biHamiltonian structures and R-matrices, [10], which
provide solutions to the classical Yang-Baxter equation, has given addi-
tional impetus to their study.

Magri’s Theorem demonstrates the existence of an infinite hierarchy
of commuting Hamiltonians and flows, provided that the two Hamiltonian
structures are compatible, in a sense to be defined below. Therefore, any
biHamiltonian system of ordinary differential equations will be completely
integrable, as long as a sufficient number of the integrals are functionally
independent. Explicit, a priori conditions guaranteeing the independence
of the integrals are not so evident, and one method of elucidating such
conditions is to determine the possible canonical forms for biHamiltonian
systems. In [11], Turiel gave a complete classification of “generic” compat-
ible non-degenerate biHamiltonian structures — a “double Darboux The-
orem”. In [8], this classification was used to find the associated canonical
forms for such biHamiltonian systems, and their complete integrability,
or lack thereof. The integrability depends on the algebraic structure of
the biHamiltonian structure. The main result is that any biHamiltonian
system associated with a nondegenerate biHamiltonian structure, each of
whose eigenvalues appear in just one irreducible substructure, is necessar-
ily completely integrable; in all other cases, there do exist “non-integrable”
biHamiltonian systems. (See below for the precise terminology.)

In this brief survey, I will review these results on the canonical forms for
compatible, nondegenerate complex-analytic biHamiltonian systems. De-
tails of these results, as well as some preliminary extensions to the classi-
fication of incompatible biHamiltonian structures, can be found in the au-
thor’s paper [8]. The main outstanding problem in this area is to determine
similar canonical forms for degenerate (and compatible) biHamiltonian sys-
tems. Unfortunately, Turiel’s approach, which is fundamentally tied to the



covariant differential form framework for symplectic structures, does not
appear to readily generalize, since degenerate Poisson structures can only
be readily expressed in the contravariant language of bi-vector fields, [7].

A system of differential equations is called biHamiltonian if it can be
written in Hamiltonian form in two distinct ways:

dx
i J,VH, = J,VH,. (1)

Here J, (), Jy(x) are Hamiltonian operators, not constant multiples of each
other, determining Poisson brackets: {F,G}, = VFTJ (z)VG. The bi-
Hamiltonian structure detemined by J,, J, is compatible if the sum J; + J,
is also Hamiltonian. The biHamiltonian structure is nondegenerate if the
first Hamiltonian operator J; is nonsingular.

Theorem. Suppose J,,J, determine a nondegenerate, compatible bi-
Hamiltonian structure. For any associated biHamiltonian system (1), there
exists a hierarchy of Hamiltonian functions Hy, H,, H,, ..., all in involu-
tion with respect to either Poisson bracket, {Hj, H.}, = 0, and generating
mutually commuting biHamiltonian flows

dx
prie JVH,, = J,VH,_,. (2)

We classify biHamiltonian structures pointwise according to the alge-
braic invariants of the skew-symmetric matrix pencil AJ, (z) + pJy(z) at
each z. According to the Weierstrass theory, c¢f. [2], the complete system
of algebraic invariants of a non-degenerate matrix pencil consists of the
eigenvalues, the elementary divisors, and the Segre characteristic. (Degen-
erate pairs of skew-symmetric matrices are handled by the more detailed
Kronecker theory.) A pencil is called elementary if it has just one complex
eigenvalue, and irreducible if it has Segre characteristic [(nn)], analogous
to a single Jordan block. Every non-degenerate complex matrix pencil can,
algebraically, be decomposed into a direct sum of irreducible matrix pen-
cils. (For simplicity, we restrict our attention to complex-analytic systems,
although the real case offers little additional difficulty.) The algebraic in-
variants of a biHamiltonian structure are invariant under the flow of any
associated biHamiltonian system. A biHamiltonian structure is generic on
a domain M if it has constant Segre characteristic, and the number of
functionally independent eigenvalues does not change on M.

Theorem. Fuvery generic non-degenerate, compatible biHamiltonian
structure can be locally expressed as a Cartesian product of elementary
biHamiltonian structures. Every associated biHamiltonian system decom-
poses into independent subsystems corresponding to the elementary sub-
structures, each of which consists of an autonomous Hamiltonian system



whose dimension is twice the number of irreducible sub-structures for the
given eigenvalue, coupled with a sequence of linear, non-autonomous Hamil-
tonian systems. In particular, the biHamiltonian system is completely in-
tegrable if and only if there is just one irreducible sub-structure for each
etgenvalue.

When an eigenvalue is constant, the elementary sub-structure decom-
poses into a Cartesian product of irreducible sub-structures; however, this
decomposition does not hold in the case of non-constant eigenvalues. We
will now present the details of the Turiel classification and the structure of
associated biHamiltonian systems.

Without loss of generality, we may assume that neither 0 nor oo is
an eigenvalue, so that the biHamiltonian structure is determined by two
compatible symplectic Hamiltonian operators. (Otherwise, replace J;, J,
by two other linearly independent members of the corresponding pencil.)
Darboux’ theorem, [7; Theorem 6.22], implies that we can write the first
Hamiltonian operator in canonical form

Jl:(—OI é) (3)

relative to canonically conjugate coordinates x = (p, q). Therefore, only the
canonical form of the second Hamiltonian operator needs to be explicitly
indicated.

Given a Hamiltonian pair J;, J,, any associated biHamiltonian system
must be a solution to the linear system of partial differential equations

VH, = MVH,, M=J""J,, (4)

where M is the transpose of the recursion operator, [7]. We remark here
that the simple system of differential equations (4), which arises in a sur-
prising number of different contexts, is not well understood, except when
the matrix M is constant, in which case the general solution can be found
in [4]. In the present case, the solutions all have a similar pattern. On any
convex open subdomain, the two Hamiltonians H,, H, are expressed as a
sum of “basic” Hamiltonians Hék),Hl(k)7 which are individually solutions
to (4):

H(z)=H"@)+ H @) +...+ H"(2), i=0,1

3

Moreover, each basic pair Hék), H l(k), can be most simply expressed in terms

of the derivatives with respect to a parameter s evaluated at s = 0 of
a single arbitrary analytic function F(&,(z,s),...,&,,(z,s)) depending on
certain parameterized variables {;(z,s). We can therefore summarize the
general classification results in this convenient form.

I) Irreducible, Constant Eigenvalue Pairs.



Canonical coordinates:

(p7Q):(pOapla"'7pn7q07q17"'7qn)7 TLZO

Second Hamiltonian operator:

g 0 A+ U
2=\ -a-vuT 0 )

Here AI 4+ U denotes an irreducible (n + 1) x (n 4+ 1) Jordan block matrix
with eigenvalue .

Parametrized variables:
w(s) = Potsp+s Pyt H8"D,,  w(s) = 4, 54,1570, ot 5" 4.

Basic Hamiltonians:

19w = + L Rr .6+ ko (). ()

== — m(s), ™ — m(s), ™

0 X Osk "k ’ s=0 dsk—1 K 7 s=0
! 1 o*

Hl( )(I):X@Fk(W(S),W(S))SZO, 0<k<n.

The Hamiltonians are polynomials in the “minor variables” p,,...,p,,

Qo> ---+4,_1, whose coefficients are certain derivatives of the arbitrary

smooth functions Fj(py,q,) of the remaining two “major variables” p,
q,,- This implies, cf. [8], that any biHamiltonian system corresponding to
an irreducible, constant eigenvalue biHamiltonian structure is completely
integrable, since it can be reduced to a single two-dimensional (planar) au-
tonomous Hamiltonian system for the major variables, with Hamiltonian
nlF, (pg, q,). (Curiously, the major variables are not canonically conjugate
for any of the Hamiltonian structures in the pencil determined by J; and
J,.) The time evolution of the minor variables is then determined by suc-
cessively solving a sequence of forced planar, linear Hamiltonian systems in
the variables py,, q,,_-

II. Elementary, Constant Eigenvalue Pairs.

Canonical coordinates:

(p7q): (p17"'7pm7q17"'7qm)7

p= e ph), = (g dl)s



Second Hamiltonian operator:
AL+ U,

A+ U,

L= -y ’

A -UT

where Al + U, denotes an irreducible (n, + 1) x (n; + 1) Jordan block as
above.

Parametrized variables:
w(s) = ph + spl + $°ph + -+ s™pl,
wl(s) = qf” + sqfh__l + S2qf”_2 4+ 4 S"iqé.
We define

78 (s) = (x(s),...,7™(s)),  @F(s) = (@w(s),..., @™ (s)),

where m,, denotes the number of indices n; with n; > k, i.e., the number
of irreducible sub-structures of dimension > 2k + 2; in particular m, = m.

Basic Hamiltonians:

(k) Lo ®) (g). k)

Hy ' (2) = 5 5 Fi(m (), @™ (s)) 0+

S =
8k71
+k = F (™ (s), @ (s)) o 0<k<mn,
1 o

B =5 g BEO@=0@) .

S =

As in the irreducible case, the Hamiltonians are polynomials in the mi-
nor variables pj—, qfh_f j»J =1, whose coefficients are certain derivatives of
arbitrary functions of the major variables pj,q’. Thus, such a biHamil-
tonian system reduces to an autonomous (2m)-dimensional Hamiltonian
system in the major variables, coupled with a sequence of linear non-
autonomous Hamiltonian systems in the appropriate minor variables p,
qflifk, n; > k> 1.

ITI. Irreducible, Non-constant Eigenvalue Pairs.

Canonical coordinates:

(p7Q):(pOapla"'7pn7q07q17"'7qn)7 TLZO



Second Hamiltonian operator:

= (_P&)T P(%)_l) :

where P(p) denotes the (n+ 1) x (n + 1) banded upper triangular matrix

Po P1 Do e Py
Po P1 Do
P.(p) = P(p) = Po P . (5)
by Py
Py

Here p,, is the eigenvalue. The explicit formula for the Hamiltonian operator
J, in terms of pg,...,p, is quite complicated. However, remarkably, the
inverse matrix Jy ! is also Hamiltonian, and, in fact, isomorphic to the
Hamiltonian structure determined by J,; see [8] for an explicit change of
variables mapping the one Hamiltonian structure to the other.

Parametrized variables:
w(s) = potspy+5° Pyt F5"p,,  @(8) = €, 515G, ot F5" 4.
Basic Hamiltonians:

Héfl) = E(po), H1(71) = h(py), where E'(s) = sh(s),

k

@) = g el R0 =)} . 0<k<n-1,
k

@) = o 7 @Fn(s) )

Here 7'(s) is the derivative of = with respect to s.

In this case, the eigenvalue is a constant, hence p, is a first integral.
Once its value is fixed, the other minor variable g,, is determined by solving
a single autonomous ordinary differential equation. The remaining minor
variables py,...,p,,qy;---,4,_; satisfy a sequence of forced, linear planar
Hamiltonian systems.

IV. Elementary, Non-constant Eigenvalue Pairs.

Canonical coordinates:

(p7Q):(p05p15'"apmaq07q17"'7qm)7 m225
P’ = (Pl P,)s q =(q1,--q,) 1<i<m,



where ny > ny > ... >n, > 1.

Second Hamiltonian operator:

J2_<_A0 13(1))1),

Plp)™™ 0
where
Do Pt N p? pm
Pnlfl(p) 0 0
P(p) = :
anflfl(ﬁmil) O
anfl(ﬁm)

Here p' = (py,p},...,ph,_1), and the P, _’s are as given in (5). Again
Do is the eigenvalue. Note that this particular biHamiltonian structure is
pointwise algebraically reducible, but cannot be decoupled using canonical
transformations.

Parametrized variables:
7 (s) = phtspi+-+s"iph . @'(s) =qh, +sqh, Mgl P> 1

We further define

Let

M(k) (S) = (Nl(s)v e pE (8)7 o®) (8) = (Ul (8)7 ce, (8))7

where m,, denotes the number of indices n, with n, > k.
The Lagrange inversion formula, [6], implies that the latter two
parametrized variables have the alternative expansions

n;—1
S [
wils) = nz:% (n+1)!  dt [(Ci(t))"“] L:o’ (©)
e L)

01(5) = q;i + IZ

n=0
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where (*(s) = (7°(s) —py)/s. The expansions (6) can be expressed in terms
of the remarkable nonlinear series differential operator

D=D"':e":D=14+> =D '"D, D= uw=u(t), (7)
n=1

s d
n! dt’
with s replaced by s¢!(s). In (7), the colons denote normal ordering of
the non-commuting operators D and u, which is analogous to the so-called
“Wick ordering” in quantum mechanics. The operator D has the surprising
property that it commutes with any analytic function ®(u), i.e., D®(u) =
®(Du). See [9] for details and applications of this operator in combinatorics,
orthogonal polynomials and new higher order derivative identities.

Basic Hamiltonians:

Hy U =hp).  H{V=h(p),  where  I/(s) = sh(s),

k 7T1

1) = 5z {500 G B 0.9 0.0 0.0V}
k 7.‘_1

196 = 5z { G BEORI@. 0006}

where 0 < k < n; — 1. In general, such biHamiltonian systems reduce to
the integration of a (2m — 2)-dimensional autonomous Hamiltonian system
for the coordinates pi, qf”, i =1,...,m, followed by a sequence of forced
linear Hamiltonian systems. The eigenvalue p, is constant, and the final
coordinate g, is determined by quadrature. Actually, the initial Hamilto-
nian system can be reduced in order to 2m — 3 since it only involves the
homogeneous ratios of momenta r* = pi /p}, i > 2, as can be seen from the
second formula (6) for y’.
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