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1. Introduction

In Gardner, Green, Kruskal and Miura's pioneering study of the
remarkable properties of the Korteweg-de Vries (KAV) equation, the
original proof of the existence of infinitely many conservation laws was
based on a one-parameter family of transformations due to Gardner, general-
 1zing a transformation of Miura between solutions of the KAV and modified
KdV equations, [22]. Chen, [3], showed how the Gardner transformation could
be combined with an obvious discrete symmetry of the modified Kdv equation
to rederive the Bicklund transformations for the KdV equation originally due
to Wahlquist and Estabrook, [27]. In the same paper, Chen introduced a
general method for constructing Gardner-like transformations and consequently
Bécklund transformations for other "completely integrable" evolution
equations associated with the AKNS scheme of inverse scattering, [1]. 1In
essence, Chen's method consists of the introduction of projective coordinates
for the associated AKNS scattering problem, followed by a somewhat ad hoc
change of coordinates made so as to "'simplify'" the resulting equations.
The disfinguishing feature of Chen's transformations was that they were
ﬁonlinear trénsformations, involving derivatives of the dependent variable,
between two different evolution equations. The present paper grew out of an
attempt to understand Chen's change of coordinates from a group theoretic
standpoint. The term "deformation" for all of these generalizations of the
Gardner transformation was introduced by Kupershmidt, [18], since in all
examples a parameter | can be introduced so that the deformation reduces
to the identity when 1, =0

The appropriate framework in which to place the present results is the
reinterpretation of the Wahlquist-Estabrook prolongation structure for an
evolution equation, [28], in terms of a flat connection on a principal bundle.
(See Kobayshi;Nomizu, [13], or Sternberg, [26], for the necessary differential

‘

geometric concepts.) This view point was originally put forth




by Hermann, [10], [11l], and, implicitly, by Corones, [4]. In this paper,
1t will be shown that each system of evolutioﬁ equations with decomposable
prolongation structure (as defined below) has a nontrivial deformation.

The corresponding modified equations arise‘naturally in terms of "additive
subgroup coordinates." In this fashion, Chen's method finds its group-
theoretic interpretation, and the above changes of coordinates no longer
seem mysterious - they are just those that change the projective coordinate
into the additive subgroup coofdinate. Backlund transfofmations, as before,
arise from discrete symmetries of the modified equations, or, as in Fordy's
recent preprint, [5], automorphisms of an associated Lie algebra. Not

all systems with nontrivial deformations, though, possess Backlund
transformations.

In section two, the connection / principal bundle formulation of
prolongation structures is presented in a form amenable to our construétion.
Fach evolutionary system with nontrivial prolongation can be interpreted
as the integrability conditions for a connection in a principal bundle
with Lie group G. For systems in one space and one time variable, x and 1T,
respectively, the base manifold is two dimensional with coordinates x,t

A connection is then described by a pair of differential operators (vector
fields)

L=DX+5(u)+eQ) ,
' (1.1)

M=Dt+§(u,?\) s

where DX ) Dt are (total) derivatives, A the spectral parameter (s) ,
and B , ¢ and B, maps into the Lie algebra g of G . The connection

ig flat (integrable) if the Zakharov-Shabat, [30], equatibns




[LaM] =0 <l'2)

hold. This provides a prolongation structure for a system of evolution
equations provided the integrabilitylconditions (1.2) are equivalent to

the given system.

' The prolongation structure is decomposable if there is a direct sum
decompogition g=Q+& , where K , § are subalgebras, such that

AB(u)eg%, e(n) €p for all wu,\n . Reinterpret the scattering problem
Lr =0

as a differential equation on the Lie group G (rather than using a
representation of G) so that I'(x,4)€G . For [ near the identity,

we can "separate variables'

F=®Y)

with @ €K , Y€H , where K,H are the Lie subgroups associated with
& , & respectively. The aformentioned additive subgroup coordinates are

found by setting
®=exp(6) , OER

The assumption of decomposability ensures that 6 satisfies a system of
differential equations involving only 6, u, A , and these provide the
spatial half of the deformation equations. The temporal half is found by

performing a similar decomposition on the system MI'=0 . Elimination

of u between these two halves results in the modified evolubionary systen,
bearing the same relation to the original system that the modified KdV

equation bears to the KAV equation. This constitutes our group-theoretic



generallzation of Chen's constrﬁction, which is ﬁow entirely systematic
and natural.

The well known AKNS examples associated with SL(2,1R) , along with
a couple of novel equations, are reworked using our methods in section 5.
This inecludes a derivation of the most general form of the deformation
equations for evolution equations having SL(2,R) prolongation structures.
An application to the three Wavé interaction equations, [12], whose
prolongation structure involveé SL(3,R) , is presented in the final
section. The main object is the construction of a new type of deformation
equation.

Unfortunately, not all examples of evolutionary systems known to
possess deformétions and / or Backlund transformations can be assimilated
into the present framework. The mo$ notable ommissions are the sybems
agsoclated with higher order Lax operators whose modifications were found
by Kupershmidt and Wilson, [19}, and the generalized Klein-Gordon equations
modelled on Toda lattices for semisimple Lie algebras, [15], or, more
generally, Kac-Moody algebras, [2], discussed by Mikhailov, Olshanetsky and
Perelomov, [21], Fordy and Gibbons, [6], [7] and Sattinger, [25]. The key
difference is that the deformations now involve higher order derivatives.
This is presumably reflected in some nilpotent generalization of our
decomposability assumption on the prolongation, but a complete explanation
must await a future publication.

For simplicity, we work entirely in the real domain, although general-
izations to complex equations and groups are readily apparent. All Lie

groups are assumed to be connected, and all manifolds, bundles, etc. to

be smooth.



2. Prolongation Structures

Let = ; Z—-Y be a smooth fiber bundle with g-~dimensional fiber over
a p-dimensional base manifold X . TLet JKZ—aY be the corresponding k=jet
bundle. A system of %k th = order differential equations for sections of
7 is defined by a subbundle (or, more generally, subvariety) ACIJKZ , the
solutions of which are local sections u:Y -7 with jkuc:A

According to Hermann, [11],a Wahlquist-Estabrook prolongation structure
for the system A can be formulated as follows. Let % : PoX bea
principal bundle with structure group G and Lie algebra g - A connection
on P, [13], [26], is a p-dimensional "horizontal' differential system

Hco TP transversal to the tangent spaces to the fibers and invariant under

the induced action'of right multiplication of G on P . The corresponding

connection form is a g-valued one form ® on P defined via projection of
TP onto the tangent space to the fiber along H . Thus o 1is a section

of the bundle.
T™*P ® gp —P

which is invariant under the induced action of G . (Here gP-*P is
the bundle obtained by identifying g as the space of right-invariant

vector fields on G .) The curvature of the connection form o is the

g-valued two-form, (i.e. section of AT*P ® gP)

2= D= dw + % [w,w]

The cdnnection is flat if Q =0 , the curvature vanighes. This is equivalent
to the integrability of the horizontal differential system H via Frobenius

theorem and the formula, [ 131,

o(lv,wl) =20 (vAw), (2.1)



- valid for horizontal vector fields v,w: P-H

Let A Dbe an r-dimensional manifold. In practick A=TR , and the
coordinate )\ is the spectral parameter appearing in the scattering
problem for a completely integrable system.

Definition 2.1 A (P,A)-prolongation structure for the system of

differential equations AC sz is defined by a bundle map

Bt J_qZX A~ T*P ® g

sﬁch that

i) (Horizontality)

For any section u : Y-Z , any 2 GA'€B<jk—lu , \) defines a connection
form on P

ii) (Integrability) Let
. 14 7 *
DB JkaAw»U/\QT P® ap
be the induced map giving the curvatbure of the connection. . Then
-1
(og)" 0} =4 ,

where O 1s the zero section of /\ET*P ® g . In other words, for any

P
gsection u : ¥-7Z , any A €A , the induced connection B(jk_lu , A) is
flat if and only if u is a solution to the system of differential equations

defined by A

To see tha‘t the above definition is consistent' with Corones' construction,
[k], 1et Y _CY. be a coordinate chart with coordinates y'= (yl,. . ,y'p) so that
PIYO ~ Yo'><G , the identification depending on the choice of a local section
of P over Yo . Since the comnnection is G-invariant, it suffices to

describe 1t on Yox{e} » € being the identity of G . TFor any p = (y,e) EP’YO )



* *
note that Tﬁ)tﬁ Try‘® a s T*ﬁ)r: T*Yy ®gq , g being the duvual of q

At each | the horizontal subspace H = is spanned by vectors of
p

the form

Va.’p:bi,y + ai(y)’ i=1, sP
where bi==b/byl , qi(y? €g . The corresponding connection form at

*

P € (T*Yy,@ g ) ® g - is thus given by

o = L-3% ady , (2.2)

p i=1
*

where 1L is the identity element of g ® g~ Hom(g , g) . The connection

is flat if and only if the commutation relations
= =8. - L+ . i,9= e 2.
O=lvw; »vil=vg0, -pa; +la , o], 1,5=1,...,p (2.3)

hold for each yEYO

If Z|Y =Y XU, where U= R? has coordinates. u=(ul,..,ud)

- then a k-th order system of differential equations
j.u) =0 (2.4)
has a prolongation structure if and only if there are functions

Bi( ék_lu’)")eg s i=l,...,1’1 Y

such that the corresponding connection form
w=1- % pdy* 4 (2.5)

is flat whenever u satisfies the system (2.&). In other words,

the commutation r&lations

Dj;sisnisf[si,ﬁj],-i,a‘=1,-..,p (2.6)



are equivalent to the system (2.4). (dere D, denotes the total derivative
with respect to yi .) These are Corones' generalizations of the standard
Wahlquist-Estabrook prolongation equations.

In practice, however, interesting examples where the above scheme
yields important results have thus far only been found when the base manifold

Y is two dimensional. (The Kadontsev-Petviashvili / two dimensional

- Korteweg-de Vries equation, while possessing a Lax equation of Zakharov -

Shabat type, [16], [30] does not appear to fit into a finite-dimensional form

as above.) Thus let Y=XXT , X=1R with "spatial coordinate x and
T=R with "temporal" coordinate t+ . In this case, the integrability
relations assume the more familiar Zakharov-Shabat form

D p-DF=[pF] . (2.7)

If we write L=Dx‘+B s P=-§ » we recover the Lax representation

Lt=[P,L] (2.7")

vfor the system (2.4). This can be written even more succinctly as
[L:M] =0 > (2'7”)

where M=Dt+§
In mostcases of interest to date, B and B only depend on the

spatial derivatives u . Moreover, the Lax operator separates:

m)

L=Dx,+5(u( )+e(d)

where u(m) denotes the spatial derivatives of u of orders <m

The system (2.7) thus assuines quasi-evolutionary form

pp(al™) =, 5,ul)




Here we restrict our attention to linear Lax operators, so S(um)

is a linear isomorphism from the vector space of m-th order derivatives of

u qm , to g . In this case, we get evolution equations of the form
ot 1
Q—ml&:K(x,t,u(k)) . (2.8)
otodx 7

(For the Korteweg-de Vries equation and its generalizations m=0 , whereas for
the sine-Gordon and related equations m=1 .).

If u(x,t) is a solution of this evolution equation, then for each
A€ A the corresponding connection is flat in P~YXG . Thus for each
po;=(xojto,go) €P there is a section § of P passing through Pe

p
o
whose tangent space at each point is spanned by the vector fields

L(u) =d, +B(uy(x,t)) +e(r)
(2.9)

(k-1

M(w) =g, +B = x,0),0)

(Sp is global since Y is simply connected.) Realizing Sp as the graph
) o

of a function I' : Y=G , the corresponding scattering equations are given

by

FX:F(B(um)-fe(x))F==o , (2.10)

rt+805k4J,MF=O - | (2.11)
Since these equations hold on G , they can be realized as matrix ordinary
differential equations by any convenient faithful representation p;GwaGL(n)
of G . The first equation (210 realizes (I') 'as the fundamental
matrix of eigenfunctions for the first order matrix equation with potentials

p(B(um)) and eigenvalues (spectral parameters) p(e(r)) . Similarly, the



second equation (211) governs the time evolution of the eigenfunctions.

In this form, the nonlinear evolution equation appears as the integrability
condition for these two matrix equations. Its solution is amenable to an
inverse scattering analysis of (210 along the lines of Ablowitz, Kaup,
Newell and Segur, [1], for G=SL(2,R) and Kaup, [12], for G=SL(3,R)

We will not pursue this direction here.

The equations (2.10-11) can also be interpreted on the Lie algebra

level, so that, for iﬁstance, (2,10) becomes
-1
rl +8(u ) +e(d) =0,

-]
where T .T" " €g . Suppose I'(x,t) lies in the image of exp gCG , so

we can write
F(Xat):=exP<Y(X:t))

for some smooth function vy ;Y-ag . (As long as the initial values of T
lie in exp(g) this is possible for (x,t) in a small enough subdomain

of Y .).

Lemma 2.2 Suppdse P(x)==exp(y(x)) » where Yy : R —-g 1s smooth. Then

gg ; Ffl-=@(adfy(x)). %g ,

. where

o(t) = (eF-1) /t

Proof In a matrix representation,

n
F:Z ly 'Y )
n=0 *'
hence
o l 1’1—1 s n—.—l
Pe= T2, 2 yly 4
¥ o=t j=0 %




Moreover, I~ =exp(-y) , hence
GO £ Lt R RSt B
Fxf =X “nlm! oy X
n=1 m=0 rE =0
o k  ktl i
- -1) Iy KT
% » [3 GOy
k=0 =0 i=j+1 1T (k+1-1)! %
- , _
foeo (EFL)! 5=0 J x
e 1
=2 et v vy
k=0
= o(ad vy,

where we have used the power series for ¢ and an elementary identity for
binomial coefficients. (It is easily checked that all the above series

converge absolutely for all ‘y L)

Therefore the scattering equations can be recast into the equivalent Lie

algebraic form

@(adky(x,t)) %% -FB(um)-+e(x)==o ,
(2.12)

(u(k—l)

o(ad y(x,t)) %% +B ,4) =0

The use of this transformation will become apparent in the following section.
Analysis of the Jordan form of ad y shows that w(ad y) is invertible
provided ad y has no complex eigenvalues of the form 2nxi for n a
non-zero integer. Thus for nice initial data v(0,0) the ordinary
differential equations (2.12) will be regular for (x,t) small, but in

general have singular points when ad(y) has an eigenvalue of this form.




These are precisely the points where T =exp v passes out of the range

of the exponential map:

Proposition 2.3 Let GO——-exp(g):G . Then Goﬂch):{expyf

p(ad y) is not invertible}

Proof
Let €psea€y be a basis for g , so each dgg is coordinatized
by Ol=Oéle1+ oo+ a” e, - By smoothness g=exp (,Y) lkes on the boundary

bGO if and only if the tangents to the curves exp alt) , ~e<t<e ,
04(0) =y , corresponding to curves in' g passing through v , do not span

the tangent space TGg , since otherwise g would lie in the interior of

G, - In other words, there is a linear relation among tangent vectors
n
by Ci—Qi[eXp(X]’ag =0
i=1 oo Y

Multiplying by g—l and using lemma 2.2,
olad a)c =0

for c=2x ey 1J= 0 . This proves the proposition.
Thus the "infinitesimal" scattering equations (2.12) have a singularity,
i.e. either [y(x,t)| - » or det [ad o(v(x,t))]~0 as (x’t)—’(xo’to)
if and only if I‘(x,t)dbGo as (x,t)—*(xo,to) . (Note that I'(x,t)
is defined globally.) Nevertheless, the solutions of (2.12) are globally

defined for many examples of interest.



3. Deformations

Consider an evolution equation of the form (2.8) with prolongation

gtructure defined by the operators

L=D +B(w t+e(d) ,
(3.1)

‘u(k— 1)

M=Dt+6( 97\) s

where Um=bm u/px" , and B, B , & lie in the Lie algebra ¢ of the
prolongation group G . To implement our construction of deformations
we make the following assumption on the Lax operator L

The Lie algebra Q decomposes as a direct sum of two subalgebras

(not necessarily ideals)
g=/+H - (3.2)
Furthermore, we require the maps B , ¢ in (3.1) to split:

B(um)ea ,4 | e(h) €9

for all v\ - The following lemma due to Harish—Chandfa, [8], provides
a mechanism for "separating variables" in this situation.

Lemma 3.1 Given a decomposition of ¢ , (3.2), let K,H be the
analytic subgroups of G corresponding to the Lie algebras 8,9 respectively.
Then the map y(k,h) =kh , k€K , h¢H, is regular from KxH into G

Let G* be the image of |, in G . Modulo the covering group of
K><H-»G*-, each géEG* can be uniquely written és a product g?=kh
In many important cases G*==G 7is simply connected and the representation
is unique.

If r(x,t) , the solution of the scattering equations (2.10-11),

*
lies in G , it factors



F(X,t) =®<X,t) \Y(Xat) s (33)

with @ €K , Y€H . Substituting (3.3) into the scattering equation

X X ‘m ) )

This can be separated using the direct sum decomposition (3.2) of g
Assuming ®€EKO , the image of exp:8-K , so ®==e9 s, the linear transformation

Ad ® can be written in block matrix Fformat

Ad @ = R(0) 8(6) (3.4)

where R(6)=Ad @ | &, 8(6) : p-8 and T(8) : $-9 are linear maps.

Using lemma 2.2, (3.3) separates as
o(ad 9)9X+S(9)¢ +B(um) =0 ,

T(e)h+e(pr) =0

where m::yxw’lg;@ . Eliminating ¢ leads to the transformation
o(ad 0)6, - 8(0)T(-0)e(r) +8(u ) =0, - (3.5)
between u and 6 .. Equivalently.
_ ' 1
p(ad 6)6, +R(6)8(-6)c (1) +B(u ) =0, (3.5")
since

Ad @ o R(-g) -ggigS(‘e)T(-e)

Since B 1is a linear isomorphism by assumption, (3.5) can be solved for u



QmC:F(Q’Qx’X) . (3.6)

Similarly, writing the operator M as

N R VI (3.7)

M=Dt+’y A) +8

where Y:‘QA¥XAHR’ 6:J£JZXA~@,(QJl)rwwwstotMetwmmal
counterpart to (3.5):

olaa 0o, +r(0)8(-0)e(u ™ ) +yw® P o0 L (3.8)

We will refer to (3.5,8) as the deformation equationg. In the special case

m=0 , the derivatives of u in (3.8) can be substituted for according to

(3.6), leading to the modified equation

p(ad e)et;+R(e)s(-9)a(F/k'1\(e,ex,x),x)-Fy(F(k‘l)(e,exdx),x)==O'(3.9)

More generally, the modified equation for 6 will be integfo-differential.
If the subgroup @ is abelian, R(6) and ¢(ad 6) are both identity

maps, so the modified equation (3.9) is a genuine evolution equation for
6(x,t) . More generally, singularities will occur when '@(ad g) is

no longer invertible. The key point is that one evolution equation for u

- has been modified by the nonﬁrivial deformation into a different evolution
equation in 6 . BSolutions of the modified equation then yield solutions of
the original equations. Discrete symmetries of the modified equations, as
emphasized by Chen, lead to Backlund transformations for the original
equation. Examples will bear out the efficacy and generality of this

generalization of Cheh's approach to. Backlund and Miura transformations.




L. Remarks on "True" Deformations and Backlund Transformations

The deformation equations (3.5,8) are not true deformations in the sense
of Kupershmidt because they do not contain a parameter y, such that the
deformation reduces to the identity and the modified equation reduces to
the original equation as M;ao . In the simplest cases, meaning when the
subgroup K is abelian and can up to covering be identified with its Lie
algebra,and the spectral parameter ) enters so that €e(0)=0, A itself

enters as the true deformation parameter. At A=0 , the transformation (5.5)

reduces. to
+ ) =
QX B(u'm 0 ?

which, since E is an isomorphism, relates QX linearly to N
Differentiating the modified equation with respect to x and setting A=0
yields the original evolution equation, as can readily be checked. More
generally, when K i1is abelian, but e(O){=O , one must scale 6 and look
at A-® or some other singularity of € . Thus, in the case of the

KdV equation, K_1==u becomes the true deformation parameter. More generally,
when K is no longer abelian, one must look at the infinitesimal versions
of the modified equations. These, under an appropriate scaling 6f 6,
should yield the original evolution equations, but the details become very
messy and impractical in general. It is often easier tq treat each case
individually.

As is well knoﬁn, [3], discrete symmetries of the modified équations
yield Bicklund transformations for the original evolutionary system. Fordy,
[5], has pointed out that thesé are in reality automorphisms of the under-
lying Lie algebra. As yet there is no general method: for finding which

automorphism, if any, is appropriate. Since the constructions are well-known



in the standard examples, we leave aside the general question for future
investigation.

It is of interest to put these special types of Bicklund transformations
into the jet-bundle theoretic formulations of Kosmann-Schwarzbach, [1kh],
and Pirani, Robinson and Shadwick, [23]. In particular, the question
arises as to the relation of the flat connection arising from the proloﬁgation
structure of the evolution equation with the flat connection constructed
directly from the Backlund‘transformation in the latter reference. Again,

this will not be treated here.




5. Transformations Associated with s1(2,R)

As originally proposed by Zakharov and Shabat, [30], and re-emphasized
by Ablowitz, Kaup, Newell and Segur (AKNS) [1], many of the fundamental
examples of soliton equations can be integrated by scattering problems
associated with the Lie group SL(2,RR) . Here we derive the most general
deformations for such evolution equations, and show how the standard examples
(KaV, modified KAV , sine-Gordon) fit into our theory. These calculations

are for the most part reconstructions of the original method of Chen, [31],

in our group-theoretic context.

The first step is to classify the possible decompositions (3.2) of
sl(E,ﬂ%) . Assuming & to be one-dimensional, $ must clearly be
a Borel (maximal solvable) subalgebra, [9], all of which are conjugate.

Let n,a be a basis for & with cbmmutation relation
[n,al =2n . (5.1)

In the usual 2X2 matrix representation, of s1(2,R) , © can be taken as

the gubalgebra of lower triangular matrices, so that

Using the fact that & i1s its own normalizer, it 1s easy to show that
there are precisely three non-conjugate one-dimensional complements & to
I8 -, R_f s RO with basis element €5 €y 5 e s respectively, having

the following commutation relationsf
[ev,n]==a s [ev,a]==—2ev-+hvn s (5.2)

where v=-1, +1 or 0O, so e.r=e_ > etc. In the above matrix representation,



0 1
e = s, v=+%£1,0

v 0 :

No interesting evolution equations arise where the subalgebra & in
(3.4) is two-dimensional, hence up to conjugacy there are three distinct

types of scattering problems associated with SL(2,R) . The connections

on the principal bundle are spanned by
= + + & +
L,=D +u e, g(M)a+n(A)n ,

y
(5.3)

M=D, +A a+B e +Cn ,
t Y

where ¢,7) are fixed functions of the spectral parameter A€ R , and
A,B,C are real-valued functions on Jk l,Z><A , L.e. functions of A , u
and the derivatives of u of orders < k-1 . The integrability conditions

(2.7) and commutation relations (5.1,2) lead to generalized AKNS relationsé
DA-TB+UC=0,

(5.4)

D B-2uA+2gB=u, ,

D C+ (27 +Lyu)A - LygB - 2EC =0

Certain choices of &(1) , N(A) 1lead to intereéting; nontrivial solutions
of the integrability equations (5.4), but it is an open question as to the
most general form of these functions allowable.

Corresponding toc each such solution, we get a deformation associated -
with the given decomposition of s1(2,1R)

Theorem 5.1 Let A,B,C be nontrivial solutions of the integrability
equations (5.4) leading to an evolution equation u, =K , so

K:=[DXB-2uA-+2§B]’ The deformation equations for this evolution

A=0

equation assume the forms:




i) Q_‘é 6, tutg sin 20 -7 sin29==o s

6 +B+A sin 26 - C sin0 =0

t
ii) Q+. Qx+u+shm2w—sﬁmﬁe=0,
5 (5.5)
Qt-+B-+A sinh 26 ~C sinh 6=0
) 2
iii) Qi 6, +u+280-76" =0,
9t+B+2A9-CGQ=O

(Of course, the actual modified equation is obtained by substituting for u
according to the first equation into the second equation.)
We do the case of @ , the others being similar. Let @ = exp(6 e.O)

Then from (5.2),

2

Ad 9(Aa +Beo+Cn) =(A+6C)a+(B-26A-06 C)eo+Cn

Therefore, the linear map S(6): -8 in (3.4) assumes the form
s(e) =-20e_, S(e)n=-6~2eo

Since @ 1is abelian, the deformation equations (3.5,8) are then easily
seen to assume the form, listed in the statement of the theorem.

The main poinﬁ of interest is that the deformation equations (5.5)
arise naturally from the underlying group theory. Chen's somewhét ad hoc
original method of introducing a projective coordinate and then, in the
Rf cases, making an inspired change of coordinates to introduce the
trigonometric or hyperbolic functions now has the proper interpretation.

The change of coordinates is precisely that one that converts the projective
coordinate into the additive subgroup coordinate for the abelian subgroup
K=SL(2,IR) generated by the subalgebra g . We nOW'illustrate\the use

of theorem 5.1 for some of the more classical examples.



Example 5.2 The Korteweg-de Vries Equation.

The appropriate decomposition is that using RO , with

e()=x , (0 =1
The spatial half of the deformation equations (5.5) is

92+2?\9-6’2‘4u=0 ,

which is nothing but Gardner's generalization, [22], of the Miura transformation.

The XdV equation

u%==qxxxf6uqx‘ (5.6)

arises from the solution

A=4x3—2m1+%{ ,
2 4
B =y u-2ay,tu -eu

C=LL}\2-2U. 3

of (5.5). The temporal half of the deformation is then

2 2 3 Q5.2 _
0, +I"a - 20 tu, -2u +20 (k) -2Xu+ux)—6 (kA" -2u) =0 >

which, on substitution, simplifies to the Modified KdV equation

2
9t=eXXX—69 Q’XA+1H\96X . (5.7)

Invariance under the symmetry 6—--6 , A--A leads to the Bicklund
transformation for the XdV equation, [3], [27].
Example 5.3. Modified KXdV and sine-Gordon Equations.

Here the g decomposition is appropriate with E(A) =% , N(A) =0

The deformation equations have gpatial half



9X+u+>\ sin 26 =0
For the modified KdV equation,

A =1M3 +27\u2 s

B=lLXEu—2)\u +u +2u3 ,
X XX -

C=-2xu ,
X
so that

PR
tzuxxx+6u Ye (5.8)

The "modified" modified KdV equation then assumes the form, [3],

_ 3 .2
at_exxx~+29XA+6>\(.sm 20)6,. » (5.9)

Again, the discrete symmetry 6--6 , A=\ leads to the Backlund

transformation. For the sine-Gordon equation

WX{-;:Sin w o, (5.10)

: 1
let u‘=‘”2‘WX_ s, SO

A=1/4) cos w , B=1/U\ sin w , C=1/2) sin w
The deformation is then

8 +w +2\ sin 6=0
X X

1 .
.t o sin(w+6) =0,

where, Tor simplicity, we have replaced 6 by 0 . These can be written

N

a3

O p=1- (2?\9t>2 sin 0 , (5.11)



[3], or in integro-differential form

U ‘ '
8, = 2xs1n(2k f sin 6 dx) . . | (5.11")

In either case the same discrete symmetry 0--6 , A-XA yields the
Bicklund transformation.

Example 5.4 Harry Dym Equation.

Here we use the R, decomposition with &(A) =0, M(A) =2 . The solutions
=1/2\
A=A 3

: x’
B= -2}\111/2 + (u-l/g')’xx

3

c:efﬁvg

of (5.4) yields the evolution equation

ut::(ufl/éyk , (5.12)

XX

whose integrability was first noticed by Dym, cf [17], [20]. The

deformation equations

2
9X+u—}\9 =0,

@t‘2“5/24(dﬁy@?;x+2thlﬂ%ge+2x2a4/2§3=o

J

Yield the modified Dym equation:

oaleno?-0) YR + (e -0)R) <0 L (5

o XX

t

In this case, no relevant nontriwvial discrete symmetry appears to be

available, so we cannot find a Backlund transformation.

Example 5.5 Some Novel Equations.
Different choices of the way the spectral parameter A enters into

the scattering operator gilve different evolution equations. Here we present

two new evolution equations arising from SL(2,R) prolongations, together



with their deformations. Both of these example use the decomposition

corresponding to v=0

For £(n)=1, 7(x) = , the functions

A= (a2 VR )y
B: —2111/2)\ - E(u_l/e)x + (u—l/g)‘.

xx
o _2u-l/2)\2

satisfy the integrability conditions (5.4) for the evolution equation

Y = <u-l/2)'xxx - u(u—l/g)x ’

a variant of the Harry Dym equation. The deformation equations (5.5) read
5 .
9X+u+29—}\9 =0,

0, - 22 2(u_l/2)):c. ; (u'1/2>xx+

+(—l+u'1/2 +2(u'l/2)xz) G +2u_l/2)\292 =0,
which can be combined into a somewhat complicated modified equation. As

for the Dym equation, no Backlund transformation is apparent.

The choice E(A) =7 , N{(A) =X has solutions

A=-e"™2 4 w}-;(egwk

2w 2\ 2w
B = -2, e )\+(WXX+3W)8 ,

leading to the evolution equation

w ,=(w__+8ww +6W3)62w ,
xt XXX X XX X

where we=uoo. The deformation equations are



6 +w +7\9—)\92=O s
x X

e

2 2 .22\ 2w
0, - (-2wxx+(wxx+3w )+ (=207 +w MO +21%6%)e™" =0

The modified equation is now of integro-differential kind, but with no

Bicklund transformation.




6. Three-Wave Interaction Equations.

In this section we discuss the deformation theory for a real version

of the three-wave interaction equations

U - pu, =8V,
Vi ‘UVif=‘ﬂ uw ‘ (6.1)

Wy -T W = ouv,
where p,0,71,8,N,{ are real constants, with EsNslsp=0,p-1,0-7 < all positive
(other signs can be treated analogouély.) As originally noticed by Zakhavov
and Menakov, [29], and developed by Kaup, [12], this system can be integrated
via a scattering problem associated with the Lie group SL(3,R)

To describe this prolongation structure, we first rescale u,v,w so that

(6.1) is in the "normalized” form

0y o= (o - v
Vt—cjx=(Thp)qw s (6.2)

we =W, = (p ~o)vw
Consider the Iwasawa decomposition, [9],
s1(3,R) =g +9 ,

where @ 1is a maximal compact and ¢ a Borel subalgebra. Since all such
decompositions are conjugate, we may use the standard 3% 3 matrix
representation of s1(3,1]R) with & being the subalgebra so(3,R) of
skew-symmetric matrices and § the subalgebra of lower triangular matrices.

In this representation, the connection leading to (6.2) is spanned by




O u v y 0 O
L=D +]-u O w +J]O0 & O s
-v ~w O 0 O e
O pu ov a 0 0
M=Dt“+ -u O qw| *A[O D 0
GV =W 0 0 0O ¢

where
Yy=2r-oc-p , 0=20~=1=p , €=2p-0o-T ,
and
=(p+o)r=20p , b=(p +1)o-2pr , c= (0o *+7)p-201
Let
0 1 0 0 0 1 0 0] 0
ax=1-1 0 o] , g.={ 0 0 0|, g.=]0 0 1
1 0 0 0 2 -1 0 0 3 0o -1 0

be a basis of @ , so that 6 8 +920?+9303€R can be represented by

the column vector £= (81 s 62 s GB)T . For this basis of @ it is easy
to check that Ad eQ[Q has the matrix representation
2

( 0 - co + - +

cos CGI 09162 593 c9193 s@

P.
cB.6., -~ 86, cos 6 - co, c8,.,8 +sQ
R(Q) - r2 3 2 273 -y
2
_ce‘l‘QB - 59_2, c6293'— sG.l\ cos O - 093

\
where c = (cos 9-1)/92, s=sin 6/6 and 9=H§H=(G§+9§:+6§)‘1/2

Similarly, ¢(ad ﬁ)]gg hag¢ matrix representation

¢ ’l A 2 A _ 3
1+s(92,+ 93) 50,0, c93 | 59163 6,
~ 2 :‘-)-

5(0) =J 8016, + o, 1+%(91+93) @9293 cé,

A .
Ay S 2

-30 : +6%)
%9,193 +efy. 36,05 +cl) 1+38(e] 92‘,

where §=(sin 0 - 9)/93{' . Finally we must compute the transformation



8(6) : -R , but it clearly suffices to compute the restriction of s(e)
to the diagonal elements in § , since these are the only ones appearing in

L , M. Note first that in the 3x 3 matrix representation of s1(3,R) ,

exp(g) =R(8)

” ,
for ,?,:(@l’eg 9,3-)63 and «@=(93~’92~’91) . Therefore, if A:diag(a,a,y),

a-&ﬁ-# =0 , to find S(6)A we need merely compute the supra-diagonal
Y=y ~

elements of R(E)AR(-8) . Therefore
(p-0t)s cos 6 o + (Oé-’y)cs@?@l + (Y—B)csegel - (ozeg +5e§ +y(292+8§))02— 3 ye
S(6)A= (a—B)csegeg + (y-a)s coso 6, + (_B;Y)cseieg- (oz9§+ 5(292+92)+yei)c2-3ac
(ﬁ-a)cs6§93+ (a—y)cs9i93+(y—8)s cos6 93-(a(292+9§)wegwei)ce;soac |

= s(@,B,Y,0)

Theréfore we have the following deformation equations:

@(9_).‘ Qxy+u+R(9) s(y,8,¢,-0) =0 ,

§(e)a, +su+R(6)s(a,b,c,-0) =0,

where A==diag(p,c,¢) . Thus the modified three-wave interaction equations

assume the form

3(6)0, .- 08 (0)0, - A R(0)s(y;8,¢,-0) + R(0)s(a,b,c,-6) =0

which, if written out in full detail,is extremely complicated. No discrete
symmetries are readily apparent, so we do not seem to get a Backlund

transformation.



7. Some Open Problems

Several important gaps remain to be filled in the above scheme.

i) How can the construction be generalized to equations with
prolongation structures where the Lie algebra énd scattering operators do
not decompose into two subalgebras where the variables u.m ~lie in one
and the spectral parameter )\ in the other subalgebra? Clearly some
such generalization must work as the examples of deformations and Bécklund
tfansformations for higher order ILax pairs, [19], and generalized Klein-
Gordon equations modelled on Toda systems assoclated Wifh semi-simple Lie
algebras, [6], [7], demonstrate. Fordy, in a recent preprint, [5], shows
how generalizing Chen's construction to "projective representation" might
be used in these cases, but the underlying group-theoretical structure
is not apparent. More work is needed to fuliy comprehend these systems.

ii) Since the modified equations arise from comple?ely integrable
evolution equations, these equations must also be integrable. In particular
they must have a prolongation structure, énd the question is how this is
related to the prolongation structure of the original equations. Uhfortunafely
it is not always true that the underlying Lie algebras of the prolongation
structures of the two systems are the same; Pirani and Soliani [24], have shown
this for the "modified-modified KdV equation," (5.9). This could lead to

some very interesting Lie-algebraic constructions.
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