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In the classification of integrable systems, the symmetry method has proven to be
the most systematic and successful. Many commutative integrable systems have now
been completely classified using this direct, computational approach. Attention has
now shifted to various noncommutative generalizations.

This note is a continuation of the systematic classifications of non-abelian inte-
grable systems by the authors, [11], in which the dependent variables are matrix-
valued, or, more generally, take values in a general associative algebra. The equations
found to be integrable via the symmetry approach fall into two categories: those
which, like Burgers’ equation, can be linearized by differential substitutions, and
those which, like the Korteweg—deVries equation can be solved by inverse scattering.
One can construct a Lax pair for the system based on the recursion operator, [10],
but the associated scattering problem is nonstandard, and must be reduced to a stan-
dard form amenable to direct analysis, typically by using the squared eigenfunction
construction, [1].

The so-called derivative nonlinear Schrodinger equation has the form

@1 = ipge + | P, (1)

and is known to be integrable (see [7]). The complex equation (1) is equivalent, under
a complex change of variables, to the pair of real equations

Uy = Uge + duvuy, + 2uv,, )
Vp = —Vgp + duvvg + 20%u,.

Note that the system (2) is homogeneous if we assign weightings of 1 to the dependent
variables u and v, while z and ¢-differentiation have weights 2 and 4, respectively. The
general form of such a homogeneous system is given by

Uy = Ugy + A1 U Uy + a2uVU; + az3v?uy + aau?v, + asuvy, + asvvg+
biu® + boutv + baudv? + bau?v3 + byuv? + bgt® (3)
Vi = —Vgpgy — &11)2% — A VUV, — &3u2vx - &4v2ux — A5VUV; — &6u2ux—

b1v® — baovtu — bgv3u? — byvZu® — byvu? — bgu®.

Our choice of notation for the coefficients stresses the existence of a transformation
u < v, t < —t, which preserve the class of equations (3). Under this involution a; is
replaced by a; and so on.



The class (3) contains some integrable cases. Namely, for any constants « and S,
the following systems are completely integrable (see [9])

U = Uy + 20uvy + 2Buvu, + o 8 — 2a)udv?, (4)
Vi = —Vgp + 200U + 2Buvv, — o8 — 2a)uv3,

()

U = Ugy + 20uvu, + 20uv, — afudv?,
U = —Veur + 200Uy + 20uvv, + afuivd.

If « =1 and § = 2, then (4) coincides with (2). Two more well known systems
described by (4) correspond to @ = 1 and # = 0, [1], and & = 0 and 8 = 1, [4].
All these systems were integrated with the help of the inverse scattering method.
The system (5) with @ = 8 = 1 have been considered in [5], and turns ouit to be
linearizable.

It is easy to see that rescaling ¢, 2, u and v in (4) and (5), we can make « equal to
1, unless it is zero, so the essential parameter is the ratio of & and 5. Both systems
(4) and (5) have a higher symmetry of the form

uT - u:L‘:L‘:L‘:L‘ + f(u’ ’U’ ux} vx, ul‘-’[f} v:L‘CL‘a ul‘-’[/'.l') v:L‘:L‘:L‘)) (6)
Vr = —VUgger + g(u, U, Ug, Vg, Ugy, Voo, Uzzx, Uxxx);

where f and g are homogeneous polynomials of weight 9.

It is known that the majority of integrable equations possess matrix generaliza-
tions (see [13, 11]). In particular, a matrix counterpart of the derivative nonlinear
Schrodinger system (2) takes the following form (see [6])

{ut = Ugy + 2uvuy + 2ugvu + 2uvgu, (7)
Vy = —Ugpg + 20UV + 20 uv + 2vugv.

We will call (7) the non-abelian derivative NLS-equation. The dependent variables
u and v can be square matrices of arbitrary size, or, more generally functions with
values in an arbitrary (perhaps infinite dimensional) associative algebra. As in the
scalar case, this equation has a higher symmetry of the form (6), where f and g are
homogeneous non-commutative polynomials of weight 9.

In this paper we classify integrable non-abelian generalizations of the integrable
systems (3). Namely, we consider the systems of the form

{utzuxx—i—F(u,v,ux,vx), (8)
v = —Ugg + G(u, v, Ug, vg),
where F' and GG are non-commutative polynomials of weight 5. Each of them contains
56 arbitrary constants.

From the methodological point of view, this work is very similar to the classifica-
tion of non-abelian equations of the nonlinear Schrodinger type that was previously
done in [11]. We refer the reader to this paper for motivations and references. The
history of development of the symmetry approach to classification of scalar equations
was described in the surveys [12, 9, 8].



The main result of the paper is a list of integrable non-abelian systems (8). These
systems can be interesting for the following reasons. First, they can lead to integrable
quantum models of the same type. Second, limiting procedures such as Whitham
averaging give us new integrable systems of the hydrodynamical type. Third, symme-
try reductions of these systems allow us to produce non-abelian ordinary differential
equations having the Painlevé property, [11].

For the actual computation we used a computer program implemented a MATH-
EMATICA package. It available at the web site

http://www.math.umn. edu/~olver.

For non-abelian systems to compactify the answer it is convenient to add to the
transformation
U v, t e —t (9)

an involution *, satisfying the conditions
For the matrix equations one can identify the involution * with the transpose.

Theorem. Up to scallings of ¢, z, u, v, the transformation (9) and the involution
*, there exist, besides (7), the following homogeneous non-abelian systems (8) of
weight 5, having a homogeneous symmerty (6) of weight 7:

Uy = Ugg + 2ugvu,
{vt = —Ugpe + 20UV, (10)
Ut = Ugg,
{ UV = —Vge + 20Uv; + 20U, (11)

(12)

Uy = Uge + 2Uuvu — 2uvuVU,
UV = —Uge + 20Uz v + 20uvuv,

U = Upp + 20205 + 2upuv — 2uvpu — 2uvu, — 2uvuv 4+ 2uviu — 2udv? + 2ulvuv,
Uy = —Vgr + 2uzv? + 2uvv, + 2u?vd — 2uvuv?,

(14)

Ut = Uy + 2020y + 2uzuv — 2uvuy — 2uvu’v + 2ulvur — 2udv?,
v = —Vgz + 2uzv? + 2uvvy — 2upuv + 2uvuv — 2uvuv? 4+ 2u?ev3,

Up = Uy — 2020 — 2upuv + 2uvpu + 2uvuy, + 2uzvu — 2uvu’v + dulvuv — 2uv?,
Vy = —Vgp — 2Uup¥? — 2UVVy + 20Ugv + 20uv + 20UV, + 2uviuv — duvuv? + 2u?v3,

o

U = Uy + 2020, + 2upuv + 2uzvu + 2uviu — 2udv?, (16)
Uy = —Vgs + 2upv? + 2uvvy + 20uv, — 2vulu? 4+ 2u?v?,

(13)

(15)
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Uy = Upp + 20205 + 2uzpuv — 2uvgu — 2uvuvu + 2uvu — 2udv? + 2uvuv, (17)
U = —Vgs + 2uzv? + 2uvvy — 20ugv + 2vuvuy — 2vuiu? 4+ 2uvd — 2uvuv?,

This list contains a number of new non-abelian systems. We do not as yet know
how to integrate them. The empirical observation claiming that any equation having
one higher symmetry is completely integrable has been remarkably efficient during last
15 years. Recently, Beukers, Sanders and Wang, [3], rigorously proved that a fourth
order system due to Bakirov, [2], has a sixth order symmetry, but no higher order
symmetries. Nevertheless, we do not expect this pathology to enter into the present
classification, and are absolutely sure that all systems from our list are integrable.

It is interesting to compare the list with the abelian integrable systems (4) and (5).
The systems (7) and (16) are different non-abelian analogues of (4) witha = 1, 8 = 2.
The systems (10), (15) and (17) in the commutative case coincide with (4) with
a =1, f=0. At last, the systems (11) and (13) correspond to (5) with @ =0, 8 = 1.

Thus, among the one-parameter abelian families (4) and (5) there are only 4
equations that have non-abelian generalizations. On the other hand, each of these
four has several such generalizations.
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