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1 Introduction.

One of the most widely accepted definitions of integrability of partial differential equations
requires the existence of soliton solutions, i.e. of special kind of traveling wave solutions
that interact “elastically”, without changing their shapes. The analytical construction of
soliton solutions is based on the general inverse scattering method. In the formulation of
Zakharov and Shabat [36], all known integrable systems supporting solitons can be realized

as the integrability condition of a linear problem of the form

where the matrices U and V', which depend on the field variables u and their derivatives as
well as a “spectral” parameter A, take their values in some matrix Lie algebra g. Introducing
the g—valued one-form

Q=Udz+Vdt (1.2)

allows us to combine the linear system (1.1) into a single one-form equation

dip = Q. (1.3)

The associated integrability conditions for (1.1) or (1.3), which are obtained by cross dif-

ferentiation, then take the matrix form
dQ—QANQ=0, (1.4)

that is, they imply that the connection one—form € is flat. In terms of the matrices U and

V', the system of equations at hand is characterized by a zero curvature condition

oU oV
5~ 3o TLUV]=0. (1.5)

Any system of differential equations in the field variables u which can be characterized by
such a linear problem will be called “kinematically integrable”, after Faddeev and Takhta-
jan, [15]; see also [27, 29] and references therein.

Among the properties that seem to be characteristic of equations which have been called
integrable are the Painlevé property (Weiss, Tabor and Carnevale [35]), the existence of a
bi-Hamiltonian formulation (Magri [22]), of an infinite number of generalized symmetries
(Olver [25]), of an infinite hierarchy of conservation laws [22], and of a formal symmetry of
rank oo, (Mikhailov, Shabat and Sokolov [23], Mikhailov, Shabat and Yamilov [24]). The

existence of higher symmetries is a particularly good test of integrability because they can
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be computed algorithmically. As an illustration, in Section 2 we prove that the Boussinesq
equation is the unique formally integrable (in the sense of possessing a formal symmetry of
rank oo) polynomial system of evolution equations of its particular scaling homogeneity.

An interesting and natural problem is to investigate the relationships among the prop-
erties listed above. Several theorems have been proved in this context. For example, the
existence of a bi-Hamiltonian formulation implies the existence of a recursion operator, of an
infinite number of commuting conservation laws and of an infinite hierarchy of generalized
symmetries in involution, [22]. More recently, Reyes [27] has shown that all autonomous
second order formally integrable evolution equations possess a zero curvature formulation
(1.5).

We prove in Section 3 that all second order formally integrable equations possess a zero
curvature formulation, thereby generalizing the main result of Reyes [27]. In principle, this
result implies that these systems can be solved analytically by means of inverse scatter-
ing techniques. The zero curvature formulation is based on s[(2,98)—valued linear problems
(1.3), and is obtained by exploiting the fact (Theorem 3.7 below) that all second order equa-
tions which are formally integrable belong to an interesting class of equations introduced
by Chern and Tenenblat [10] — the “equations describing pseudo-spherical surfaces”.

We then reconsider the Boussinesq equation. It is well-known, [18, 13], that it can be
formulated as a zero curvature condition for an sl(3,9%)—valued linear system. Coupled with
our classification and comparison results, this lends added weight to the general equivalence
between formal and kinematic integrability. We use this zero curvature condition in Section
4 to show that the local solutions of the Boussinesq equation determine the structure of
an hyperbolic affine surface on the space of independent variables z,¢. Thus, we can find
geometrical interpretations for a general class of formally integrable equations beyond the

second order case.

2 Formal Integrability.

We begin with a brief review of formal symmetries and the symmetry approach to integra-

bility. We will be considering nth order evolution equations
up = K[u] = K(z,t,u,uq,...,u,), (2.1)

in which the solution u = f(z,t) depends on a single spatial variable z. The right hand side

is a differential function, meaning that it depends on z, u, and a finite number of derivatives
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Up = Dlgu, as well as, in the non-autonomous case, t. Here, D, and D; denote the total
derivatives with respect to x and ¢ respectively.
A second evolution equation u; = Q[u] is said to be a symmetry of (2.1) if, at least on

a formal level, their flows commute. The infinitesimal symmetry criterion, [25], is

X 1 D(Q) - Do(K) = 0. (2.2)
Here
0K .

denotes the Fréchet derivative or formal linearization of a differential function K.
The definition of formal symmetries relies on the calculus of pseudo-differential opera-

tors, that is, formal Laurent series

D= 3 ka[u] D; (24)

in the total derivative D, whose coefficients are differential functions. We call k the order
of D provided Py # 0. See [23, 24] and [25, chapter 5] for details, as well as [1, 32, 20] for

the non-autonomous case.

Definition 2.1 Let u; = K[u] be an nth order evolution equation. A pseudo-differential

operator D of order m is called a formal symmetry of rank k if
order (D;+ [D,Dk]) <n+m—k (2.5)
on solutions.

Here, given a pseudo-differential operator as in (2.4), we define

D, =[D,D]= Y (D;Rlu)Di= Y Dp(K)D, (2.6)
—00<i<k —00<i<k

the final equality holding on solutions to (2.1).

Linearization of the infinitesimal symmetry criterion (2.2) proves the following:

Proposition 2.2 If u; = Q[u] is an mth order symmetry of an evolution equation (2.1),

then its Fréchet derivative D¢ is a formal symmetry of rank m.

The foregoing analysis extends straightforwardly to systems of equations, see [23, 24].
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Definition 2.3 A system of evolution equations is called formally integrable if it possesses

a formal symmetry of infinite rank.

A recursion operator gives a formal symmetry of infinite rank, [25], and therefore every
system possessing a recursion operator is formally integrable. The converse is not known in
general; see [30] for further discussion. In the case of scalar equations, the existence of one
higher order symmetry, or, more or less equivalently, of a formal symmetry of sufficiently
high order, appears to be enough to guarantee formal integrability. This has been rigorously
proved for homogeneous, autonomous polynomial scalar evolution equations with linear
leading terms by Sanders and Wang, [30], using a remarkable synthesis of the symbolic
method of classical invariant theory and results from Diophantine approximation theory on
the factorizability of certain algebraic polynomials.

It has been also proven that an autonomous second order evolution equation is integrable
if and only if it has a formal symmetry of rank 5, and that an autonomous third order
evolution equation is integrable if and only if it has a formal symmetry of symmetry of rank
8. However, it is not known what rank of formal symmetry is required for a general nth order
evolution equation to guarantee integrability. The following classification of all formally

integrable second order evolution equations can be found in Svinolupov and Sokolov, [32].

Theorem 2.4 Fvery formally integrable second order evolution equation is equivalent, un-

der a contact transformation of the form

t= X(f)a T = ¢(¥a Ea ﬂa_f)a u = qp(za Ea ﬂa _f)a

to one of the following:

ur = Ugg + h(z,t)u, (2.7)
U = Ugy + uug + g(z, 1), (2.8)
ug = Dy(ugu™?), (2.9)
up = Dﬂc(uzu_2 —z), (2.10)
ug = Dg(ugu 2+ z%u) + zu. (2.11)

In the case of systems in ¢ dependent variables, Fokas conjectured [17] that the existence
of ¢ higher symmetries will ensure formal integrability. In an attempt to understand the

validity of this claim, the 2 component system

(2.12)

— 2
{ut—uzzzz+v )

UVt = VUgxxx-
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was conjectured by Bakirov, [3], and then rigorously proved by Beukers, Sanders and Wang,
[4], to only have a single higher (sixth) order symmetry. On the other hand, the Bakirov
system does possess a formal symmetry of infinite rank, [5], and so is formally integrable.
More recently, van der Kamp and Sanders, [34], have proposed an example of a very compli-
cated two-component system possessing only two higher-order symmetries, but it is still not
known whether it possesses a formal symmetry of rank co. Thus, the precise relationship
between formal integrability and the existence of a finite number of higher order or formal
symmetries for systems remains rather unclear.

It is worth noting that both the Bakirov system (2.12), and the van der Kamp—-Sanders
example can be decoupled, in the sense of the following definition. This means that they

are, in a sense, not “true” two-component systems.

Definition 2.5 A two-component system of evolution equations is called decoupled if one

of the equations depends only on a single dependent variable.

A decoupled system can be effectively considered as a pair of scalar equations, where the
solution to the equation involving only one of the dependent variables drives the second
equation. In this paper, we only consider genuinely non-decoupled systems. Since all known
symmetry pathologies occur in decoupled systems, we will continue to use the existence of
higher order (formal) symmetries to detect integrability.

A particularly important example to be studied here is the Boussinesq equation
Ut = Uggry + Dg(uuyg). (2.13)

This integrable soliton equation was derived by Boussinesq, [6, p. 258], as a model for the
uni-directional propagation of long waves in shallow water. Less well known is the fact that
in the 1870’s Boussinesq also derived the Korteweg-de Vries (KdV) equation, its first three
conservation laws, and its one-soliton and periodic traveling wave solutions, in [7, eq. (30),
p. 77], [8, egs. (283, 291)], some 25 years before the paper of Korteweg and deVries!

We rewrite the Boussinesq equation (2.13) as a system of two evolution equations

{ U= e (2.14)

Ut = Uggg T Ulg.

The system (2.14) has an obvious scaling symmetry

(z,t,u,v) — A"tz A28, A2u, ). (2.15)
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The most general autonomous polynomial evolutionary system that admits such a scaling
symmetry is
{ Ut = a1Ugg + agvg + azu?, (2.16)
v = D1Uggy + bovgy + b3uug + byuv,
where the a;,b; are arbitrary constants. The following Theorem demonstrates that the
Boussinesq system (2.14) is, in a precise sense, the unique integrable system among all

non-decouplable systems of the form (2.16).

Theorem 2.6 A nonlinear, non-decouplable equation of type (2.16) is formally integrable

if it is equivalent (up to a scaling) to one of the following systems

e =tz = o + 07 217)
UVt = Uggy — Uz + Ulg
Ut = Ugy + U

t T T (2.18)
U = (Oé - 1)'Ufa:a:a: — Ugy + UUg

{ U= e (2.19)

Vt = QUggpy + UlUy

The proof of Theorem 2.6 relies on extensive symbolic computations based on a Mathe-
matica symbolic manipulation package developed by the second author; see also [26]. The
computations demonstrate that the three systems (2.17), (2.18), (2.19), form a complete
list of non-decouplable systems of type (2.16) that possess a formal symmetry of rank at
least 7. In all three systems, we can eliminate v and obtain a single equation for u. When

a # 0, both (2.18) and (2.19) reduce to a rescaled version of the Boussinesq equation
Ut = QUggzy + Dy (uuyg). (2.20)

Indeed, (2.18) seems to be a previously unknown way to write the Boussinesq equation
as an integrable system, although it can be reduced to (2.19) by an invertible differential
substitution (u,v) — (u,v + uz;). On the other hand, the first system (2.17) reduces to an

ordinary differential equation u; = wus and thus can be solved explicitly!

Remark: In (2.19) we can rescale any positive parameter a to 1 and any negative o to —1,
and thus reduce to the usual Boussinesq equations uy = *uyzpy + Dy(uuy). On the other

hand, the parameter « in (2.18) is essential and cannot be scaled away.

In the next two sections, we consider the existence of geometrical interpretations for

formally integrable equations.
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3 Geometric Integrability.

Geometric integrability was introduced by Chern and Tenenblat [10], motivated by Sasaki’s
observation [31] (See also Kamran and Tenenblat [21]) that the graphs of solutions to the
soliton equations integrable by the AKNS inverse scattering scheme are pseudo-spherical

surfaces.

Definition 3.1 A two-dimensional manifold S is called a pseudo-spherical surface if there

1 =2

exist one-forms @w',w?, w3 on § that satisfy the independence condition @' A @? # 0, and

the structure equations
do' =@ AT, dw’ =w'Aw, dw°=w' Aw-. (3.1)

The pseudo-spherical structure equations (3.1) imply that the induced Riemannian metric
W' W' +w? ®w? has constant Gaussian curvature —1, and that moreover, @® is the unique

associated connection form.

Definition 3.2 A system of differential equations
Az, t,u,uq,...,u,) =0, (3.2)
in two independent variables is said to be of pseudo-spherical type if there exist one-forms
w* = for(z,t,uy ..o up) dz + foo(z,t,u, ... us) dt, (3.3)

whose coefficients fng, o = 1,2,3; 8 = 1,2, are smooth differential functions, which satisfy
the pseudo-spherical structure equations (3.1) whenever u = u(z,t) is a solution to the

system (3.2).

We exclude the trivial cases when the differential functions f,g all depend only on z,¢, and
when w! Aw? = 0. Note that the graph {(z,¢,u(z,t))} of any solution to a pseudo-spherical
system for which w!(u(z,t)) A w?(u(z,t)) # 0, has the structure of a pseudo-spherical
surface.

The characterization of a system of differential equations as one describing pseudo-
spherical surfaces has several advantages: (a) it allows us to study conservation laws and
Bécklund transformations from a geometrical point of view (Sasaki [31], Tenenblat [33],
Reyes [28, 29]), (b) in accordance with the results of Kamran and Tenenblat [21], it allows us

to determine “generic” solutions of a scalar equation of pseudo-spherical type from suitably
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generic solutions of any other such equation, and (¢) it characterizes the system as the
integrability condition for an s[(2,9R)—valued linear problem.
Items (a) and (b) will not figure prominently here. As for (c), we use the one-forms w®

to define the s[(2, 9%)—valued one-form

Q:de+th:1<“’2 “’1_“’3>. (3.4)
2\ w4 ud —w

The structure equations (3.1) imply that the zero-curvature condition (1.4) holds on so-
lutions u(z,t). The converse also holds: each sl(2,9%)-valued one-form satisfying (1.4) on
solutions can be used, as in (3.4), to construct three one-forms w® satisfying the pseudo-
spherical structure equations (3.1) on solutions to the system. The additional nondegeneracy
condition

wh Aw? £0, (3.5)

is not immediate, but can be ensured by applying a suitable gauge transformation to the
connection determined by (3.4); see [12] and [29], for details.
Of course, solution by inverse scattering requires a linear problem depending on a “spec-

tral” parameter.

Definition 3.3 A differential equation (or system of equations) is geometrically integrable

if it describes a non—trivial one—parameter family of pseudo-spherical surfaces.

Classifications of scalar geometrically integrable equations, under the hypothesis that the
equation at hand is not only sufficient (as in Definition 3.2) but also necessary for the
pseudo-spherical structure equations (3.1) to hold, have appeared in Chern and Tenenblat
[10], Kamran and Tenenblat [21], Reyes [27], and references therein. In order to formalize
this hypothesis, we follow [21].

Given a kth order scalar differential equation u; = K (x,t,u, ..., u;,), consider the differ-

ential ideal Zx generated by the two—forms
du A\ dx + K(z,t,u,...,ug)dz A dt, du; A\ dt — ui1 dz A dt, 1<i<k—1,

on the reduced kth order jet space with coordinates z,¢,u, u1, ..., uy. Note that the local
solutions to the evolution equation correspond to integral submanifolds of the exterior
differential system {Zg,dz A dt} determined by the equation ideal Tx. We shall use the
terminology “strictly pseudo-spherical” to indicate that Zx is algebraically equivalent to
a system of differential forms satisfying the pseudo-spherical structure equations whenever

u(z,t) is a solution of the equation u; = K.
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Definition 3.4 A scalar differential equation u; = K(z,t,u,...,ux) will be called strictly
pseudo-spherical if there exist one-forms w® = fo1 dz + fo2 dt whose coefficients are differ-

ential functions f,3 depending at most on derivatives of order k, such that the two-forms
0 = dw' — W3 AW?, Qy =dw?® —w Aw?, Q3 =dw® —w' Aw?, (3.6)
generate the equation ideal Z.

An interesting open problem is whether there are any equations that are pseudo-spherical,
but not strictly pseudo-spherical.
The following characterizations, taken from [27], will be used in our proof of the implica-

tion “formal integrability = kinematic integrability” for second order evolution equations:

Lemma 3.5 A kth order scalar evolution equation u; = K(z,t,u,...,ux) is strictly pseudo-
spherical, with associated differential functions fog such that fo = X is a constant “spectral”
parameter, if and only if

a) fi11 and f31 only depend on x,t, and u, and are not both independent of u,

b) fi2 and fso only depend on x,t,u,...,ux_1,
¢) fo2 only depends on z,t,u,...,u_o, and

d) the following identities hold:

0 0
Dy fia + Afs2 — foafs1 = Difi1 = 21t +K ﬂ,
ot ou
Dy fao + fi2f31 — f11f32 =0,
0 0
Dy f32 + Af12 — faafi1 = Difs1 = Ofs1 +K ﬁ
ot ou

Theorem 3.6 Let f,g be differential functions satisfying the conditions of Lemma 3.5.
Suppose f31 = ¢ f11 # 0 with ¢ = £1. Then the associated scalar evolution equation u; = K

18 strictly pseudo-spherical if and only if foo depends only on t, fso = ef12, and

Dy fio +e(Afi2 — fiirfao) — %
K= % . (3.7)

ou

We are now ready to prove the main result of this section.

Theorem 3.7 Every second order evolution equation u; = K(z,t,u, Uy, uyy) which pos-

sesses a formal symmetry of infinite rank is of pseudo-spherical type.
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Proof: We refer back to the list of formally integrable second order equations. Equations
(2.8)—(2.10) are simple modifications of the equations considered in Theorem 6 of Reyes
[27]. For completeness, however, their associated one—forms are also collected here. We
begin with Equation (2.7):

1. Pseudo-spherical one—forms associated with Equation (2.7) are

W' = a(z, tyudz + [a(x,t)uw . (s Na(z, 1) + aag: ﬂ) u] dt,

2
w? = Ndz — %dt,

w? = ew!,
in which e = £1, and the function a(z,t) # 0 is a solution of the linear equation
da(z,t) 0%a(x,t) _ Oa(z,1)

oz Ox? ot

The derivation of these one—forms is similar to the case of (2.11) discussed below, and

—2eA

= a(z,t)h(z,t).

will, in the interests of brevity, be omitted.

2. For equation (2.8), the associated pseudo-spherical one—forms are

w' = (Fu+alz,1)) de + (Fue + 1u” + Bla, 1)) dt,

w? = Xdz + (3 u — Aa(z,1)) dt,
w? = =Xdz + (3 u+ Aa(z,1)) dt,

in which the functions a(z,t) and S(z,t) satisfy the equations
ag+a®+B=0, Pr—oy—39=0.

3. For equation (2.9), we have

Az —Az

e "y
5 T dt, w? = \dz, w? = e Mudr +

w! = e Muds +

u
4. For equation (2.10), we have

wh = —e Ay dx + (—efEMuqum + (5(55)) dt,

w? = \dz,

w? = —ee A udr + (—5 e ATy "2, + 55(x)> dt,

in which ¢ = £1 and () is a solution of the equation

EXG + 0y = e EAT,
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5. Finally, let us consider Equation (2.11). First we apply the change of variables u = ,
to transform it into
v = K = v?vgg + 220 — 3z0. (3.8)
Applying (3.7) with k¥ = 2 and v replacing u, we find that

Voe f12,0, + Vefi20 + €Af12 — efi1foe + fios
fll,v )

Here, and below, we use an abbreviated comma notation to denote partial derivatives. To

K =

(3.9)

agree with (3.8), the coefficient of v, in (3.9) must be v, and so

f12 = v? f11,0vz + a(z,v)

for some a(z,v). Substituting this expression into (3.9) yields

('U2f11,v)v 'Ui + (au +e AU2f11,v + UQfll,’u,m)'Ux +ela — 5f11f22 + ay
fll,v )

Since the coefficient of v2 must be zero, we obtain

K =v%vg, +

(3.10)

fi1 = —c(z)v™! + d(z),

for some functions ¢(z) and d(z) to be determined. Since the coefficient of v, must be 22,

we obtain the following formula for a:
afz,v) = —zc(z)v™! = Aec(z)v — cp(x)v + B(x).

Substituting into (3.10) and considering the coefficients of v and v2, we find that ¢ = 1,

f21:)\,f22:ﬁ:d:(),and

c(z) = ze .

Summarizing, Equation (3.8) describes one—parameter families of pseudo-spherical surfaces

with associated one—forms
wl = —ze Mo ldz + (:ve_)‘%w — e ATyl - e_)‘“”v> dt w? = \dz w3 = wl.
This finishes the proof.

Remark: Of course, the one—forms appearing in the proof of the preceding theorem are not

unique. For instance, the one—forms

Az Az A+ 2 2UL — UgpU
ot =C dx—l—e umdt, QZZMdm_Q( T m)dt,
u ut u ut
—Ax —Ax
B=Cde+ 2.
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satisfy the structure equations of a pseudo-spherical surface whenever u(z,t) is a solution of
Equation (2.9). These one-forms do not contradict Lemma 3.5 because the corresponding
two-forms (3.6) do not generate the equation ideal. Indeed, if we write A = u; + 2u2 /u® —

Ugy /u?, then

-z
Aa 1 A3 .~ e N 2 o~ .~ 2 U,
ledwl—w?’AwQ: A, szdw2—w1/\w3:—_(DmA__wA>,
u u u
-z
A —~ ~ ~ e
Qs =d@® -3 AG? = 5 A4,
(7

involve derivatives of the equation and therefore do not satisfy the algebraic requirements

for the equation to be strictly pseudo-spherical.

Remark: A straightforward generalization of the last part of the proof above yields the

following new family of evolution equations of pseudo-spherical type:

F_
'ut:< v$+D$F)vz—3mv+$2fu$+cv,
T

in which F(z,v,v;) is arbitrary, and c is a constant. Indeed, it describes pseudo-spherical

surfaces with associated one—forms

L= _we*’\cc dr — e 2% (—zF(z,v,v5)v + 23 + v?)
v v

w? = Xz + cdt, w3 = wh.

dt,

Remark: Ding and Tenenblat [14] have recently developed a theory of differential systems
describing surfaces of constant curvature, generalizing the notion of an equation of pseudo-
spherical type discussed here. It would be very interesting to check whether one can use
this point of view to extend our Theorem 3.7 to formally integrable systems of equations
[5, 19, 23, 24, 30].

4  On equations describing affine surfaces.

We now investigate the geometry underlying integrable equations which, like the Boussinesq
equation, arise as the integrability or zero curvature conditions for an sl(3,9t)—valued linear
system. We begin by summarizing the (equi-)affine geometry of surfaces in terms of moving
frames following Chern and Terng [11] and Flanders [16].

Let E3 be the three-dimensional affine space equipped with coordinates x = (z', 22, z3)
and volume form dV = dz' A dz? A dz®. The Lie group G which preserves dV is the

equi-affine group SA(3) = SL(3,R) x R3.
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Consider a surface M C E3. Let {e;(z), e2(z),e3(x)} be an affine moving frame on M

such that e;(z) and ey(z) are tangent to M at x, and

det(e1(z), e2(x),e3(x)) = 1. (4.1)
We write
3 3
dr = Zwa €a, deg = ng g, (4.2)
a=1 p=1

so that w® and wh can be identified with the Maurer-Cartan forms of G. Equations (4.1)-

(4.2) imply the unimodular constraint

3
> wh=0 (4.3)
B=1

and the sa(3) structure equations

3 3
dw® = Zwﬂ A wg, dwg = ng A wg, a,8=1,2,3. (4.4)
,3—1 ’y:l
Let @® and @), denote the restrictions (pull-backs) of the one-forms w® and w? to the surface

M. We deduce the structure equations

3 3
dwr=0, dwh=> @AW, ,f=123 (4.5)
a=1 =1
corresponding to the unimodular subgroup SL(3,R), along with the additional structure
equations
do' =@ ANw} + @ A @, @ =0, (16)
A = @' AT + @2 AT, 0=0' AT + AT, '
arising from the translation components. The “fundamental theorem of the theory of sur-
faces” says that conversely, given a set of one—forms satisfying (4.5) and (4.6), there exists
an affine surface M described locally by a moving frame satisfying (4.1). See Flanders [16]
for a proof of this result.
Suppose we are given a system of differential equations A = 0 that forms the integrability
conditions for a one-parameter family of s[(3,9R)-valued linear problems of the form (1.3),

where
Q= (wg) =U(z,t,u,...,ur)dec + V(z,t,u,...,us)dt (4.7)

is an sl(3, 9R)—valued one-form whose coefficients are differential functions. By construction,

the entries wf of Q satisfy the unimodular structure equations (4.5) when restricted to
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solutions to the system. Thus, in order to identify the surface described by solutions of the

1

system A = 0, it is enough to find one—forms w', w? such that equations (4.6) are satisfied.

Our aim is to show that this can indeed be done for the integrable equations of Boussinesq
type classified in Section 2.
Zero curvature representations of the Boussinesq system (2.14) can be found in [18, 13].

We consider the following version of (2.14)
1
vy = 2wy, W= —E(UmaC + 4ovy,). (4.8)
It possesses the standard Lax pair
L=08)+v0; + v, +w, P=08+3v. (4.9)
We convert the system LY = AV, ¥, = PV into an equivalent first order system

Ve =Uv, =V (4.10)

with s(3,9%)—valued coefficient matrices

0 10 2v 0 1
U= 0 o 11, V= %Um—w—l-/\ —%’U 0
—%vm—w—l—)\ —v 0 évm—wm —%vx—w—i-/\ —%v

One can easily check that Equations (4.8) are indeed the integrability condition of (4.10).

The corresponding s{(3, R)-valued one-form (4.7) produces the one-forms

w%z%vdt, w%:(%vw—uH—/\) dt, w%z(—%vm—w—}—)\) d:c+(%vw—ww) dt,
w? = dz, ws = —3vdt, w3 = —vdz + (—gvs —w+ \) dt,
w:l” = dt, wg’ = dz, wg = —%’Udt,

(4.11)
that satisfy the structure equations (4.5). As pointed out above, the one remaining task is

1

to find one—forms w', w? so that the structure equations (4.6) are satisfied.

An important simplification occurs if instead of finding simply w! and w?, we look for
one-forms w!, w?, w? satisfying (4.4) on solutions of the Boussinesq system (4.8). Clearly,

the one-forms

wl=wl, Wwr=w?, Wi =i, (4.12)

will satisfy these conditions. However, since w? # 0, the one-forms (4.11), (4.12) are not

adapted to the surfaces described by solutions of the Boussinesq system (4.8).
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This can be arranged by applying a suitable gauge transformation to the linear system

(4.10). A short computation shows that the unimodular matrix

—%v 0 -1
S = 0 1 0 (4.13)
1 0 O

leads to the gauge transformation

U=8SUS"+8,85 = -1 0 ~2y :
0 1 0
(4.14)
%fu %'ux—l—w—/\ —%UQ %Um éwx
V=SVvs'l+8585'=] o —1v Loy —w+ X :
-1 0 0

on the coefficient matrices of the one—form (2. The resulting s[(3,9%)—valued one-form Q=
U dz + V dt has entries
o = %Udt,

~3 2 1
Wy = —zvdr + (z vy — w+ A) dt,
@7 = svdz + ($v,+w—N) dt, 2 s (5 va )

~1
&7% = (—%'ux +w — )\) dr + (-%’UQ — %UM — %wz) dt, fz =& (4.15)
©F = —d, fz = dz,
52 = ~Lodt, w3 =0
We then set
ot=dt, @*=—-dz, @*=0. (4.16)

We can easily check that these adapted one-forms (4.15), (4.16) satisfy all the structure
equations of an affine surface immersed in E® whenever (v(z,t),w(z,t)) is a solution of the
Boussinesq system (4.8).

Combined with our classification result (Theorem 2.6), and the fact that we can easily
transform (2.18) into (2.19) and vice-versa by using simple differential substitutions, the

foregoing discussion allows us to conclude the following.

Theorem 4.1 Every nonlinear, non—decouplable equation of Boussinesq type (2.16) de-

scribes affine surfaces.
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What kind of affine surfaces have we obtained? Let us go back to Chern and Terng
[11] and Flanders [16]. We denote by M any affine surface determined by a solution
(v(z,t), w(z,t)) of the Boussinesq system (4.8), and we let {e;, N} (i = 1,2) be a mov-
ing frame on M with e; (i = 1,2) tangent to M. Note that

W= (20" — tvgp — 2 wg) B + (gvs —w+A) &7,
@ = ((1). —w+ )\) w + 3'0 &?
and so we have the linear dependencies
5= 3 hadt,  i=1.2.
k=1,2

The sign of |H|, the determinant of the matrix (h;;), is invariant under unimodular trans-

formations of the form
e, =aje; +ales, N'=cN +ajer + aleo. (4.17)

We will assume that |H| # 0. Note that the non-generic case |H| = 0 also occurs, for
instance, for some constant solutions of (4.8).

The affine metric on M is defined to be the quadratic form
IT=HTV* Y hiyjo'ed
i,j=1,2
The geometrical properties of interest are those invariant under changes of frame (4.17)
keeping the affine normal vector fixed. This vector is defined (Flanders [16] p. 364, Chern
and Terng [11], p. 113) thus: one normalizes the frame {e;, N} in such a way that Equations

(4.2) become
dr=w'e; +w?ey, de = w{ ej + ew'N, dN= w?l, el + w% e, (4.18)
in which € = £1, the precise sign depending on the signature of the quadratic form 77, and
wi+wi = wi = 0.

The affine normal vector is then » = N. This normalization implies
w3— Z lkAk 1=12
k=1,2
and also that the quadratic form

I =Y o &f
i=1,2
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is invariant under changes of frame fixing v. The affine curvatures of M are the invariants

of I11 relative to I1. In particular, the affine mean curvature of M is

L=%H" Y I

i=1,2
Our one—forms (4.15), (4.16) are already normalized. In the present situation,

~1 _ A1 ~2 _ _ ~2
Wy = —Ww, w3 = —w",

and so

We conclude that the solutions to the Boussinesq system define affine surfaces with affine

mean curvature
—1/4

and hence are always hyperbolic affine surfaces.

An important remark is that we could have chosen &* = @} instead of (4.16). We would
have then obtained affine surfaces of positive affine mean curvature. In fact, the right choice
is related to the signature of the quadratic form I7, as pointed out after (4.18). It would
be interesting to check whether this signature depends on the solutions of the Boussinesq
system (4.8). If it does, can one classify the affine surfaces arising from different solutions
of (4.8)?

Finally, we would like to speculate on the possibility of extending the notion of an
equation of pseudo-spherical type considered in Section 3 to affine geometry. Chern and
Terng [11] proved that minimal affine surfaces admit Backlund-like transformations. Buyske
[9] then showed that, unlike the classical Backlund transformation, these transformations are
periodic of period two and in fact, essentially trivial, being a combination of an involution
and a translation of the affine conormal. However, they can still be used to obtain new
solutions of the system of equations underlying the geometry of minimal affine surfaces
from old ones, [2, 9, 11]. Thus, it is worth asking how one can generalize this picture. What

is the appropriate class of systems describing minimal affine surfaces?
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