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Abstract

This paper is devoted to the complete classification of integrable one-
component evolution equations whose field variable takes its values in
an associative algebra. The proof that the list of noncommutative inte-
grable homogeneous evolution equations is complete relies on the symbolic
method. Each equation in the list has infinitely many local symmetries
and these can be generated by its recursion (recursive) operator or master
symmetry.

1 Introduction

This paper can be viewed as a continuation of the work of [22], where the au-
thors began the classification of integrable evolution equations in which the field
variables taking their values in an associative algebra. The analysis provided a
list of one-component (and certain two-component) evolution equations which
admit at least one higher order local matrix symmetry. These equations can
be regarded as quantized analogs of classical integrable systems; see [12] for a
discussion of the noncommutative KdV equation from this point of view. Some
analysis of the solution by inverse scattering and explicit soliton solutions for
certain examples can be found in [14, 18].

In this paper, we rigorously prove that the list of integrable one-component
evolution equations found in [22] is complete, and, moreover, each equation in
their list has infinitely many symmetries. Furthermore, we give their recursion
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(recursive) operators or master symmetries to produce such symmetries. The
proofs are based on methods introduced in [26], where it was shown that the
integrability of a homogeneous evolution equation

ug = up + flu, -, up_1), where un = D7u, (1.1)

with f a polynomial starting with terms that are at least quadratic is determined
by the existence of one nontrivial higher order symmetry. This led to the proof
of a long-standing conjecture that “in all known cases the existence of one
generalized symmetry implies the existence of infinitely many”, [10], under fairly
relaxed conditions. In particular, for homogeneous scalar evolution equations,
to prove the integrability of an equation of order 2 we need a symmetry of order
3, for an equation of order 3 we need a symmetry of order 5, for an equation
of order 5 we need a symmetry of order 7, and for an equation of order 7 we
need a symmetry of order 13. These a priori bounds enable us to symbolically
compute the complete list of integrable homogeneous equations.

Here we generalize the results to noncommutative polynomial evolution
equations of the form (1.1) in which the field variable u takes its values in
an associative, non-commutative algebra A. Examples include matrix and op-
erator algebras, [18, 17], Clifford algebras (including the quaternions), [23], and
the group algebras appearing in the representation theory of finite-dimensional
groups and group algebras, [5]; see [22] for details. We use the notation

Lu(v) = uv, Ru(“) = vu,

for the operators of left and right multiplication in A. (L, is not a Lie deriva-
tive.) The commutator and anti-commutator are denoted by

Cu=L,—R,, Ay =Ly, + Ry.

2 Complete Classification Results

In almost all interesting integrable evolution equations, the right-hand side of
equation is a homogeneous differential polynomial under a suitable weighting
scheme. The differential equation (1.1) is said to be A-homogeneous of weight
p if it admits the one-parameter group of scaling symmetries

(z,t,u) — (@ tz,a ", a u), a € RT.

For example, the Korteweg—deVries equation u; = Uyyzs + uu, is 2-homogeneous
of weight 3.

A second evolution equation is called a (generalized) symmetry of (1.1) if the
corresponding vector fields commute. An equation is called integrable if it has at
infinitely many higher order symmetries. In [22], the following noncommutative
A-homogeneous equations were shown to possess one higher order symmetry.
The main goal of this paper is to rigorously prove that for A > 0 all the equa-
tions in this list are integrable, and, moreover, the list of integrable equations
is complete in the sense that every other A > 0 integrable noncommutative
equation is contained in the symmetry hierarchy of one of these equations.
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2.1 Second order equations
The only possible integrable case is for A = 1.

Burgers’ Equation. There are two versions:

ug = uz + uug, or Ug = Uz + ULU.
They both have the same master symmetry, [20]:
M = zup+ %uz

Burgers’ equation has symmetries of every order, while the third order equations
only have odd order symmetries. As far as we can tell, the noncommutative
Burgers’ equation does not have a recursion operator.

Remark 2.1. The potential Burgers’ equation u; = us + u? does not appear
because it has A = 0 and we are restricting our attention to positive .

2.2 Third order equations
For A = 2, we have only one case.

Korteweg—deVries equation
U = U3z + uu + Ui,
with hereditary recursion operator [8], [12],

R=D.+24,+ 3A4,D,;" +:C,D,;'C,D,"

2.1
=D, (D, +3+A,D;" +1iD;'A, + tD;'C,D;'C,D; ). 1)

For A =1, there are five cases. The first two are the third order symmetries
of the two Burgers’ equations. The other three cases are:

Potential KdV
Uy = usz + uf

The hereditary recursion operator is

R =D+ 24y, +:CuD; "' Cy, — D" (CyCuy + 3Au,)

= (Dy+ 2Au, D' + D' Ay, + 1D, Cuy D, ' Cuy D) Doy (22)
Modified KdV, case 1
Uy = U3 + u2u1 + uluz,
with hereditary recursion operator
R=D.+ 24,2+ 34, D;' Ay + 3C.D; " (Cp2 D' Ay — 3Cy,) 23

= (D, + tc,D;C,) (D, +2A,D; A, .
3 3
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Modified KdV, case 2

Ut = U3 + UU2 — UsU — %uulu.

The recursion operator for this equation,

R = (D, +20.) (Do — 3Ra) (Do + 4C.) ™ (D + 3Lu) Dy (D2 + 3C)

(2.4)
was very recently found by Giirses, Karasu and Sokolov, [15]. Two other meth-
ods of constructing the higher order symmetries are discussed in Section 6.3
below.

There are two main results in our paper. The first is that the higher or-
der symmetries of these noncommutative integrable systems are all local. The
recursion operator, when it exists, will operate on an individual symmetry to
give the next symmetry in the hierarchy. Master symmetries accomplish the
same things through the bracketing operation. A recursive operator requires
more than one symmetry in order to construct the next symmetry; examples
will appear below.

Theorem 2.2. Each of the integrable equations listed above admits a hierarchy
of higher order local symmetries, constructed by applying the recursion operator,
recursive operator, or master symmetry.

The second result shows that this list is complete for positive A.

Theorem 2.3. Let A > 0. A noncommutative A-homogeneous equation (1.1)
admits a higher order symmetry if and only if A = 1 or 2 and the equation belongs
to one the preceding six symmetry hierarchies: two Burgers’, KdV, potential
KdV, MKdV1, or MKdV?2.

In particular, unlike the commutative case, there are no direct analogs of the
fifth order Sawada—Kotera or Kaup—Kupershmidt equations, as noted in [22].
The only integrable fifth order noncommutative A = 2 equation is the fifth order
KdV equation. Also, the third order commutative Calogero equation

Uy = usg + 3U2U2 + 9uu? + 3u4u1,
1

with A = %, has no noncommutative analog. On the other hand, there are two
different versions of the MKdV equation. It seems that noncommutativity both
increases and decreases the number of integrable equations.

3 Noncommutative Differential Polynomials
and Differential Operators
We begin by assembling basic facts about noncommutative differential polyno-

mials. For simplicity, we restrict our attention to the case of a single independent
variable € R and a single dependent field variable u which takes its values in
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an associative algebra. Extensions of the basic ideas to several (commutative)
independent variables and (noncommutative) dependent variables are immedi-
ate. The derivatives of u with respect to z are denoted by uw, = Dlu. A
differential monomial takes the form

UT = Uiy Wjp =" - Ugy, »

The sequence of the factors is important. We call £ the degree of the monomial,
and #I = iy + --- + iy the order. We let U denote the set of differential
polynomials of degree k and order n. Let U* = @, U¥, and U, = @, UF. The
algebra of all differential polynomials is denoted by U = €p,, ; uk.

Any linear differential operator H: U — U can be written as a linear combi-
nation of the operators

D%, =L, oR,, oDk, so that D% (v) = ur - D*v-uy = urvpuy.

We call k the order of the operator D} ;. Let Df; denote the space of differential
operators spanned by the D¥; for #I =i, #J = j. Let D* = D, DY, denote
the space of k-th order differential operators, and let D;; = @), ij. The space
of all linear differential operators is denoted by D = @, D* = ®;;Dij- In
particular, a linear operator H:U — U means an order k = 0 linear differential
operator, so H[v] = Y ur - v - uy does not involve derivatives of v. In the
commutative case, any order 0 linear operator is given by multiplication by a
differential polynomial, v — Q[u]v, and so one can identify D° ~ I{. However,
this is not true in the noncommutative case, since the v can appear in different
positions.

Definition 3.1. The Fréchet derivative of K € U is the differential operator
Dk € D defined so that,

Dklv] = % Klu + ev] for every veuU.
e=0

For example, the Fréchet derivative of K = u;u; is
Doy, [v] = (Ru; D% + Ly, D3)v = viuj + uiv;.
For any K, () € U, we define the bracket
[K, Q] = Do[K] — Dk[Q]- (3-1)

This bracket makes U into a bigraded Lie algebra, i.e. a Lie algebra with two
different gradings — order and degree.

Definition 3.2. Two evolution equations u; = K and u; = () are symmetries
of each other if and only if
[K,Q] =0. (3.2)
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On an intuitive level, the symmetry condition (3.2) means that the two flows
defined by the evolution equations commute; however, this interpretation is only
formal, since we do not have the analytical results to establish the existence of
a flow for general evolution equations. We let

Sk ={Q eU| [K,Q] = 0}

denote the space of symmetries of the equation u; = K. As we shall see, even for
noncommutative evolution equations, the symmetry space forms an abelian Lie
algebra under the bracket (3.1) thanks to the Jacobi identity. (Note that we are
only considering constant coefficient differential polynomial symmetries.) The
symmetry approach to integrability requires characterizing evolution equations
u; = K with nontrivial symmetry algebras Sk.

In the definition of noncommutative functionals in [22], we assumed the
existence of a trace operation tr: A — R on our algebra, satisfying tr(uv) =
tr(vu) for all u,v € A. In fact, the explicit trace operation is not required, and
we only need its basic formal properties of linearity and symmetry

e[ Wiy Uiy e ugy, | = [ wg e Uy U,y | j=1,...,k,

under cyclic permutation of our noncommutative variables. In other words, the
cyclic group Zy = Z/kZ will act linearly on the homogeneous subspace U* by
cyclic permutations

Wiy Uiy =~ " Wiy, > Uiy~ Uy, Wiy~ = Uy j=1,...,k,

of monomials We then identify the space of trace forms of degree k as the
subspace RF = U*/Z}, of cyclically symmetric differential polynomials. The
space of all trace forms, R = P, REF . is only a vector space since multiplication
does not preserve cyclic symmetry. The trace itself can be formally identified
with the group averaging or projection operator:

1 k
trP:E Zg-P, PeUu”.
9EZy

For example, we can (formally) identify tr(uujus) with %[uuluz + usuuy +
urusul.

Remark 3.3. Let S* denote the full symmetric group on k letters, which acts
on monomials by permuting the factors. We can formally identify the space of
commutative differential polynomials of degree k with the subspace S* = (/¥ /Sk
of fully symmetric differential polynomials. The algebra structure of S = @, S*
is obtained by first multiplying and then symmetrizing.

The total derivative operator D, acts on the space of trace forms R in the
obvious fashion. The cokernel G = R/D,R is the vector space of (noncommu-
tative) functionals, [22], whose elements are denoted by [ tr P dz where P € U.
We introduce the natural nondegenerate pairing

<P;Q>=/tr(P-Q)dw (3.3)
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on the space U. This allows us to define the adjoint H* € D to a linear differ-
ential operator H € D by the usual formula

(v;Hw]) = (H*[v];w) forall v,wel. (3.4)

For example, C;; = —C, is skew-adjoint.

The variational derivative or Euler operator associates with each functional
T[u] = [ tr Plu]dz its Euler-Lagrange expression §(Z) = E(tr P) € U, defined
so that

(E(tr P);v) = / tr(E(tr P) - v) d = % Total| . @9

We note the important formula
§(P;Q) =E(tr(PQ)) = Dp(Q) + Dg(P), (3.6)

cf. equation (5.80) in [20]. In particular, E(P) = D} (1) is obtained by applying
the adjoint to the Fréchet derivative operator to the constant function 1. The
characterization of the kernel of the Euler operator E as the image of the total
derivative follows as in the commutative case.

Theorem 3.4. A trace form tr P € R lies in the image of the total derivative,
tr P =tr D, A, if and only if E(tr P) = 0.

This result is an immediate consequence of the symbolic method; see be-
low. As discussed in [20], this forms one term in an entire complex — the
(noncommutative) variational complex. See [11] for further development of the
noncommutative variational complex.

The development of the full noncommutative variational complex is an open
(and rather urgent) problem.

Theorem 3.4 characterizes the image of the total derivative on the space
of trace forms. We also need to describe the image of D, on the full algebra
of differential polynomials &. Define the space J = U/D,U of algebra-valued
functionals P[u] = [ P[u]dz where P € U. Note that there is no trace in this
case, and so we cannot cyclically permute the monomials, although we are still
permitted to integrate by parts. For example,

/tr(uul) de = — /tr(ulu) dz = —/tr(uul) dz,
so that [ tr(uui)dz = 0. Indeed,

%Dz tru? = %tr[uul + uru] = truyg.

/uuldxz—/uludaryéo.

On the other hand,
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If H € D is a linear differential operator, we define its pairing with a differ-
ential polynomial v € U by integrating its action on v

(H;v):(v;H)z/H[v]da:. (3.7)

(There is no longer a trace in this formula.) Integration by parts shows that
we can always replace H by an order 0 differential operator M € D°, so that
(H;v) = (M;v) for all v € Y. The pairing (M ;v) between D° and U is
nondegenerate. Note that, in the commutative case, D° ~ If and so this pairing
reduces to the previous one, but this fact is no longer true in the noncommutative
category.

The variational derivative of an algebra-valued functional P = f Pdx e J
will be a linear operator §P = E(P) € D°. It is defined by the usual variational
rule

(E(P);v) = /{E(P) v} de = % Plu + ev] . (3.8)

=0
For example, if
P = uwujus,

then, integrating by parts twice,
(E(P);v) = /[UU]_UQ + wviug + uulvg] dx
= /[UU1U2 — UIVUy — UVU3 — U UV — ULV | dT
= /[vuluz — UIVUs — UVU3 + UpUy U + 2U1Us¥ + uuzv)] d

Therefore,
E(P) = Lusui+2usustuus = Luy * Ruy — Ly - Rug + Ruyus- (3.9)
There is a direct analog to the previous Theorem 3.4.

Theorem 3.5. A differential polynomial P € U lies in the image of the total
derivative P = D, A if and only if E(P) = 0.

If P € U* is homogeneous of degree k, then

k k

E(P)v=>) Ei(P)v=>_ Y E(P)-v-E}*(P),

i=1 i=1 v

where E/’!'(P) € &*~" and EY*(P) € U*~* are homogeneous differential poly-
nomials of respective degrees i — 1 and k — i, and so E;(P) € D;_1 _;. We
further define the differential polynomial

F(P)=) E/'(P)-EP*(P)eu*' for Peut (3.10)

v
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Note that the differential operator E;(P) is uniquely determined by the differ-
ential polynomial F;(P). For our preceding example (3.9),

F1(P) = uyus, F»(P) = —ujus — uus, F3(P) = uguy + 2ujus + uug.

Note that one can compute each F;(P) directly by just varying the i-th factor
in each term in P.

Theorem 3.6. Let P € U*. Then P = D,Q if and only if F;(P) = 0 for any
single 1 < i <k.

The remarkable fact is that we only need to check that one of the F;(P)
vanishes in order to conclude that P € Im D,, which implies that all F;(P) = 0.
Clearly Theorem 3.5 is a corollary of Theorem 3.6. We will prove Theorem 3.6
in the following section.

4 The Symbolic Method

As in the commutative classification in [26], the proof of Theorem 2.3 relies on
the symbolic method first introduced by Gel’fand and Dikii, [13]. The method
was generalized by Shakiban, [27, 28], who used it to apply the invariant theory
of finite groups to the study of conservation laws of evolution equations, and
Ball, Currie, and Olver, [3, 19], to classify null Lagrangians arising in nonlinear
elasticity. In [19] the connections with the symbolic method of classical invariant
theory were first recognized; see [21] for the full details. We also note the
applications of Anderson and Pohjanpelto, [1, 2], in the calculus of variations.

The basic idea is simply to replace u;, where 7 is an index — in our case
counting the number of derivatives — by &%, where ¢ is now a symbol. We
see that the basic operation of differentiation, that is, replacing u; by w;y1,
is now replaced by multiplication with &, as is the case in Fourier transform
theory. For higher degree terms with multiple u’s, one uses different symbols
to denote differentiation; for example, the noncommutative binomial u;u; has
symbolic form £i&J. In the commutative case, [21], one needs to average over
permutations of the differentiation symbols so that w;u; and uju; have the
same symbolic form. However, in the noncommutative case under consideration
here, this is no longer necessary. In other words, the noncommutative symbolic
method works with general polynomials, while in the commutative case one
restricts to (multi-)symmetric polynomials.

Let A* = R[¢,, ..., &] denote the algebra of polynomials in k variables. Let
AE be subspace of homogeneous polynomials of degree n. The transform or
symbolic form defines a linear isomorphism between the space U* of homoge-
neous, noncommutative differential polynomials of degree k and the space A*
of algebraic polynomials in k variables. It is uniquely defined by its action on
monomials.

Definition 4.1. The symbolic form of a differential monomial is defined as

k 11 ¢t 1 k
Uiy Uiy ==~ Ugy, eun — é-ll 22 kk € An
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In general, in analogy with Fourier transforms, we denote the symbolic form
of P € U by P € AF. The transform has two basic properties:
DzP(é-l:" . >§k) = (51 + - +€k) A(é-la' .- 7£k)7
k
1 6’
(517 "75/6 1 - Z £17 "76]‘*1;075]'7""6’6*1)

i
6uz ] —

(4.1)

<.

for P € U*. The following key result is a consequence of these formulae. It is
proved in the same manner as in the commutative case, [26].

Proposition 4.2. Let K € U™ and Q € UT, then D (Q) € URE™ !, where
Dy is the Fréchet derivative of K, and

m n—1
DK[Q] = ZI? (517'"7£T—17Z£T+H75T+n7'"7€M+n—1> @(£T7"'7§T+n—1)'
T=1

k=0

The symbolic forms of the algebra-valued version of our two different Euler
operators are also based on (4.1). Again, the proof proceeds as in the commu-
tative case, [13].

Proposition 4.3. Let P € U* then

F/i(F) =P, i1, =& = = &ty Eiy 5 Ebe1)

Theorem 3.6 is now an immediate consequence of Proposition 4.3 and the
formula (4.1) for the symbolic form of the total derivative.

For trace forms, we need to quotient by the action of the cyclic group Zy,
which acts on AF by cyclically permuting the variables; the generator is

(517627"'7519) — (527"'7519761)'

Let B¥ = A/Zj be the space of cyclically-symmetric polynomials. The trans-
form defines a linear isomorphism from R¥ = tr A* to B*. Given P € U*, let
tr P be the corresponding trace form, and E(tr P) € U*~! its Euler-Lagrange
expression. Then

k
= 213(&,---,&—1,—51 == &k-1,815- -5 i)
i=1

Theorem 3.4 follows immediately.

Incidentally, the commutative case is done in a similar fashion, but one
quotients by the full symmetric group S* instead of the cyclic subgroup Zy. See
[21] for details.
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Theorem 4.4. Let P € U be an arbitrary differential polynomial. Then the
differential polynomial

C E(tr P) = uE(tr P) — E(tr P)u

lies in the image of the total derivative, that is, there exists A € U such that
CyE(tr P) = D, A.

Proof: Without losing generality, we take P € U*, so

k
CuE(trP) :Zﬁ(£i+17"'7§k7_£2_"'_§k7§27"'7£’i) -
i=1
k ~
=D PG, =6 = = G, &, Gi).
=1

According to Theorem 3.6, we only need to check that F,(C,E(tr P)) = 0. Its
symbolic form is

k
Fi(CuE(trP)) =Y P&, &1, =61 — - — &1, 61500, 6in1) —
=1 . X
=D PGty &2 bt =6 = = &1, 6, o)
i=1
=0.

Thus the statement is proved.

5 Symmetries of »-Homogeneous Equations

In this section, we apply the symbolic method to prove our basic classification
Theorem 2.3. A key observation is that it suffices to compute the linear and
quadratic or cubic terms of a nontrivial odd order symmetry in order to guar-
antee its existence. This observation speeds up the classification process, since
any obstructions to the existence of symmetries have to show up early in the
computation. The computations are remarkably similar to the commutative
case, [26]. The key differences are a) the polynomials arising in the symbolic
computations are not required to be symmetric under permutations, and b)
while the bounds on the orders of the equation and the symmetry happen to be
the same as in the commutative case, the final symbolic computation used to
complete the classification relies on whether or not the variables commute.

In [26], we gave extensive results about the mutual divisibility of certain
particular multivariate polynomials, called “G-functions”, which play a crucial
role in proving the (non-)existence of symmetries. We will show that the same
(commutative) G-functions appear in the computation for noncommutative evo-
lution equations, and so all the results for the commutative case, as discussed
in section 5 of [26], are immediately applicable to the noncommutative case.
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Definition 5.1. The G-functions are the (commutative) polynomials

m k
I =gty — (6t )

The key fact is the following formula for the bracket of a differential poly-
nomial with a linear differential polynomial:

[m] = G,(cm) Q, whenever  Q € U™, (5.1)

This follows immediately from (4.2) and the fact that w; has symbolic form
ur = £F. An immediate application is the following known result that classifies
the symmetries of linear evolution equations.

Proposition 5.2. Consider an n-th order linear evolution equation

n
=K = E Cjug,
j=1

where the c; are constants and ¢, # 0. Then its space of symmetries is
o Sk =U if and only if n = 1;
o Sk =U' if and only if n > 1.

Proof: We can assume, without loss of generality, that the symmetry Q € Y™ +!
is homogeneous of degree m + 1. We merely transform the symmetry condition
[K,Q] =0 and use (5.1), obtaining

KQ] ZCJ @:

Therefore

Ma

1

c; (€] + '+££n+1):ZCj(fl+"'+§m+1)j-
j=1

J

Under the assumption, this holds if and only if either n =1 or n # 1 and m = 0.
We recall the divisibility properties of the G-functions, which were proved
in [4, 26].

Proposition 5.3. We have Gim) = T,g”H,Sm), where (H,Em),Hl(m)) =1 for all
k <1, and T\ is one of the following polynomials:
oem=1:
— k=0 (mod 2) 6162
— k=3 (mod 6): 6i&(& + &)
— k=5 (mod 6): G&(& +&)(E +a&+8)
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— k=1 (mod 6): L&+ &) G+ &6 +86)?

e m=2:

— k=0 (mod 2): 1

— k=1 (mod 2): (& +&)(6 +6)(& + &)
o m > 2: 1

Any A-homogeneous evolution equation of order n can be broken up into its
homogeneous components, and so takes the form

up = Z K! y;,  where M EUTL (5.2)
i>0

We assume that K = u, and 0 < A\ € Q. When iX ¢ N, K:_,, = 0. This
reduces the number of relevant A to a finite set.

Let S € U be a symmetry of order m of the evolution equation (5.2). We
break up the bracket condition [S, K] = 0 into its homogeneous summands,
leading to the series of successive symmetry equations

SIS s Kin]=0, for  r=0,1,2,... . (5.3)
i+j=r

According to Proposition 5.2, S must have nontrivial linear term, S°, # 0, and
we can set SO, = u,, without loss of generality. Clearly we have [S9,, K9] = 0.
The next equation to be solved is

[S?na Kif)\] + [Sizf/\a K?z] =0. (54)

Condition (5.4) is trivially satisfied if K has no quadratic terms: K} |, =0.
Let us concentrate on the other case KTIL_A # 0. We use Proposition 5.3 to
rewrite (5.4) in symbolic form:

Spa
G

1 _ _p&, &) (1)
G §1&(6 + &) o’ (5:5)

71
n—AXA
where limg, 4¢, 0 p(&1, &) exists. We next set 7 = 2 in (5.3), and find

I?fz—QAGg) +M

. B
where M is the symbolic form of the commutator
M= [Srln—)\aKrll—)\] (5.7)

between the quadratic terms.
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We use the notation ¢ | p to indicate that the polynomial ¢ divides the
polynomial p, while g J p indicates that ¢ does not evenly divide p. Consider
the set

I={p( &) : (& +&)Ipé, &) or &b |pr,é) }

consisting of bivariate polynomials p(£;,£2) which have either & + & or & &2 as
a factor.

Proposition 5.4. Suppose m and n are odd. Let M,p be given by (5.7), (5.5),
respectively. Then (&1 + &2) (&2 + &3) (& + &3) divides M if and only if p € T.

Proof : Using formula (5.5), we compute M to be

= (&1 + &2, 83)p(&1, €2) Fey 65 (€1 + &2) + P(€1,82 + &3)p(€a, €3) Fey e, (2 + €3)

£686(E+ &) (& + & + &) L1666+ &) (G + 6 +E)

where

Feoe,(n) = G (0,6)G (n = &, &) — G (0,6)GR) (n — &, &)

Notice that & + &3 is a factor. We now prove that limg, ¢, o of this expression
is zero. The second summand has

li F; =
Elﬁglﬂo £2,61 (52 + 53)

=GO (6,6 + &)GV (&2,6) — GV (62,6 + &)G) (62, 6)
= —GW(&,6)GV (&, &) + G (&, 6)GN (&,&) = 0.
As for the first, a straightforward computation shows that
d
FE2,§3 (0) =0= d_’l’}FEQ’Es (0)
Moreover,
d2
d_nzF{z,Es (0) =
d d d d
— 92 (1) 2 oW, — _92 2 oWy, _ 2o
=2nm [(-1)" G - ()T ] £ 0.
This implies that

n=0

F€2,§3 (51752)
G460 (& +6)°

and therefore (& +&) [ M unless (&1+&2) |p(&1+£2,8)p(&1, &), or, equivalently,
(&1+&) | p(&1, &) or &1 | p(&1,&2). Similarly, when we deal with the factor &+ &3,
we obtain (2 +&3) [ M unless (§& +&3) | p(&1, &2 + &3)p(€2, €3), or, equivalently,
(& + &) | p(&r,&) or & | p(&1,&). Therefore, the statement of the proposition
follows.

£0
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Corollary 5.5. Assume m and n are odd. Then (& + &)(& + &)(& + &3)
divides I/(\'%_mGg) + M if and only if I/(\'le_)\(&,ﬁg) eT.

We next state a result that says that the symmetry algebra of a noncom-
mutative polynomial evolution equation is commutative. Moreover, every sym-
metry is uniquely determined by its quadratic terms. The proof is the same as
Theorem 5.5 in [26].

Theorem 5.6. Suppose the evolution equation (5.2) has a nonzero symmetry of
order m > 2 . Suppose Q;ﬂ\ # 0 is a nonzero quadratic differential polynomial,
where ¢ > A, with ¢ # m,n, and q odd if n is odd, that satisfies the leading order
symmetry condition [KD, QL ]+ [K}_,,Q% =0, cf. (5.4). Then there exists
a unique symmetry of the form Q = .5, Qfl_/\i. Moreover, the symmetries @
and S commute.

We make a very interesting observation. Suppose @ is a nontrivial ¢-th odd
order symmetry of (5.2) with odd n, whose quadratic terms have symbolic form
(5.5):

o R (@vae+edy HY
Qq—/\ - Hr(bl) .

Proposition 5.3 implies that A < 3 4+ 2min(s, s'), where s’ = n—%ﬁ (mod 3)

and s = q_-|2—_3 (mod 3). Then Theorem 5.6 implies that

- R\ (@ +a&+e)y HY,
Qas43-n = HD )

gives rise to a symmetry () = Q33+3 +Q%s+3_ »+- - - of the original equation. (Of
course, one can use this argument to generate an entire hierarchy of symmetries.)
This implies that the evolution equations defined by ) and K have the same
symmetries, so instead of considering K we may consider the equation given by
@, which is of order ¢ = 2s + 3 for s = 0,1,2. It follows that we only need to
find the symmetries of A-homogeneous equations (with A < 7) of order at most
7 in order to obtain the complete classification of symmetries of A-homogeneous
scalar polynomial equations starting with linear terms.

A similar observation can be made for even n > 2. Suppose we have found
a nontrivial symmetry with quadratic term

~ 1?1 \ G((11)

QL =129
q 61 £2 HT(LI)

This immediately implies A < 2. Then @%_A = 2I?i—x /HT(LI) gives rise to

a symmetry @ = Q3 + Q3_, + --- of the original equation. Therefore, we

only need to find the symmetries of equations of order 2 to get the complete
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classification of symmetries of A-homogeneous scalar polynomial equations (with
A < 2) starting with an even linear term.
Finally, we must analyze the case when K has no quadratic terms. Assuming

K is not a linear differential polynomial, we have K ,, =0fori=1,...,j—1,
and Kfl_)\j # 0 for some j > 1. In place of (5.4), we now need to solve the

leading order equation

[Stws K jp] + [ Kpl=0.

n m—jA’"n

Using (5.1), the symbolic form of this condition is

G _ Ki—j)\G%) 5.8
mAT oG (5.8)

Proposition 5.3 implies that this polynomial identity has no solutions when
j > 3, or when j = 2 and n is even, since G%) and Gg) have no common
factors, and the degree of K;i—j/\ is n—jA < n, which is the degree of Ggf). This
implies that there are no symmetries for such equations. When j = 2 and n is
odd, the equation can only have odd order symmetries. If the equation (5.8)
can be solved for any m, it can also be solved for m = 3.

By now, we have proved the noncommutative counterpart of Theorem 5.7
in [26].

Theorem 5.7. A nontrivial symmetry of a A-homogeneous equation is part of
a hierarchy starting at order 2, 3, 5 or 7.

Only an equation with nonzero quadratic or cubic terms can have a nontrivial
symmetry. For such A, we must find a third order symmetry for a second order
equation, a fifth order symmetry for a third order equation, a seventh order
symmetry for a fifth order equation with quadratic terms, and the thirteenth
order symmetry for a seventh order equation with quadratic terms. It remains to
analyze each of these particular cases in detail. A straightforward computation,
done with the help of MAPLE, completes the proof of our fundamental Theorem
2.3. The details of this final symbolic computation are completed as in the
commutative case described in [25].

6 Construction of Recursion Operators

In the paper [24], the structure of recursion operators was studied in the com-
mutative case. The nonlocal terms in the recursion operators take the form
PD;'Q, where P,Q € U. The same method can be easily adapted to the non-
commutative case, when the recursion operators are in the same form as (2.2),
the recursion operator for noncommutative potential KdV. Here we apply these
methods, as far as we are able, to discuss the recursion operators for the other
noncommutative integrable systems.
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First we need to extend our differential polynomial calculus. If H[u] € D is
a linear differential operator, we define its Fréchet derivative by the formula

Dylw] = % Hlu + ew] for every  we€U.
e=0

Note that Dg:U — D is a linear map from differential polynomials to linear
differential operators; thus Dg[w]v is a bilinear operator on v,w € U. The
Lie derivative of H with respect to a differential polynomial ) € U is given
by £o(H) = Dy[Q)]. Intuitively, the Lie derivative represents the infinitesimal
change under the flow u; = Q.

The adjoint of a (bi-)linear operator B:U{ — D is defined in analogy with
(3.4) using the pairing (3.7) between linear operators and differential polynomi-
als, so that

(v; Blw]) = (B*[v];w) for all v,w € U.

We can use this to define the action F[H] of a linear operator F' = F[u] € D on
a second linear operator H = H[u] € D so that

(FH];v) = (H; F*[v]).

The action F[H] is a form of Lie differentiation. We can then generalize the
product formula (3.6) for the variational derivative:

6(H;Q)=E(H[Q]) = Dy[Q] + Do[H]. (6.1)

Example 6.1. We compute D*Cu2 and Dgul. For any g, h € U, we have
(Do, [9]5h) = (Cugrguih) = (=Crlu;g);

(Dew, lg)ih) = (C.g ) = (Cp.nsg).

The nondegeneracy of the pairing implies that
Dgu2 (h) = —ChA,, and Dgul (h) =Cp,p-
Recall that a recursion operator satisfies the basic condition
Lk[R] = Lx(R) + [R,Dk] = 0. (6.2)

In [20], the left hand side of (6.2) is called the (1,1)-Lie derivative of the re-
cursion operator R, since it represents the infinitesimal change in 9R under the
flow u; = K when R is considered as a (1,1)-tensor.

6.1 KdV equation

We begin with the recursion operator (2.1) for the noncommutative KdV equa-
tion. We prove that the higher order symmetries produced by R are all local.
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Theorem 6.2. Let R be the recursion operator (2.1) for the KdV equation.
If the “seed” symmetry Qo € U satisfies £g,[R] = 0, then the higher order
symmetries Q; = R'Qo are all local.

Proof : In the proof, only the nonlocal terms are important. We use ~ instead
of = to throw away the local terms of a operator. Thus, we can write

R~14,D;'+3%C,D;'C,D;"

for the KdV recursion operator (2.1).
We first note that SR is a hereditary operator, which means that it satisfies
the additional condition

Lo [R] = R Lk [R] = 0. (6.3)

(See Definition 5.33 in [20].) The hereditary property (6.3) can be proved di-
rectly, or by using the fact that R is recursion operator arising from the biHamil-
tonian structure of the KdV equation, [22]. As a consequence of the hereditary

property,
LRl =0, (6.4)

provided Q; = R (Qo) is local. The goal is to prove that we can apply R to Q;
and obtain a local differential polynomial Q;+1 = R(Q;) € U. Let us write out
the nonlocal terms in (6.4):

£0.[R] ~ 34p.q 07" — 3Dq,Au, D7 + 34w D7 Do, + 5Cq, D7 ' CuD;" +
+1C,D;'Co,D;' - tDq, (CuD;'CuD; ") + % (CuD;'CuD; ") D, -

We first consider the terms involving two D, !:

Cqo,D,'C.D,'+C,D,'Cq,D, "' —Dq,[Cu)D, ' CuD, ' +CD, ' CuD, " D}, [1],

which must equal zero. Independence of the summands implies that Cg, =
Dq,[Cy] and Dg, [1] = 0, i.e. E(Q:) = 0, which implies that there exists T € U
such that D,T; = @;. Therefore,

C.D;'Cq,D;" + C,D;'C,D;"'Dg, = C,Cr,D; " + C,D; " (D4,[Cu) — Cry) ,
and so (6.4) implies that D7, [Cy] = Cr,. Therefore, by (6.1),
6(Cu;Ti) = E(Cu[T)]) = D¢, [Ti] + D7,[Cu] = =Cr1, + C1; =0

since D, [T;] = —C1,. We have therefore proved that @; = D,T; € Im D, and
also C,T; € Im D,,. This implies that SR[Q)] is local, and completes the proof.

Remark 6.3. Since SR does not explicitly depend on z, we can take Qo = uy,
which is a trivial symmetry of any equation which does not explicitly depend on
2. Therefore, each Q; = R!(u;) defines a local symmetry of the noncommutative
KdV equation.
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6.2 Modified KdV, case 1

We now implement the same proof for the operator (2.3), which gives the local
symmetries for MKdV1.

Theorem 6.4. Let R be the recursion operator (2.3) for the MKdV1 equation.
If the “seed” symmetry Qo € U satisfies £q,[R] = 0, then the higher order
symmetries Q; = R'Qo are all local.

Proof: The MKdV1 recursion operator R is also hereditary. Therefore,

£Ql [m]] ~ %(AD-‘DQZ - DQl [Aul])Dz_lAu + %Aungl(AQl + Dél [Au]) -
- iDq, (CuD,'Cy2D,*A,) + § (CuD,'Cy2D, ' A,) Dg, +
+ %CQID;ICuz D;IAU + %CUD;ICIpD;lAQl +
+ %CuDz_ICUQﬁQzuDz_IAu -
— 1(Cq, = Do [Cu) D7 Cuy — 2CuD (Cb.y + D [Cur)).

Using the independence of the different summands, we conclude that
Cq, — Dg,[Cu] =0 and Aq, + Dy, [Au] = 0.
Therefore, using (6.1),
0(Au; Qi) = DG, [Au] + D7, [@Q1] = 0,

so there exists T; € U such that D,T; = A, Q. Notice that A, Dy, = D, Dr, —
Ag,. Hence

Lo, [[mﬂ ~ %(ADEQI - DQI[Aul])Dz—lAu - %‘DQI (CUD;ICUZD;IAu) +
+$Cq,D;'Cp2D; Ay + 3C,Cr, DM Ay +
+3CuD, " (D7,[Cy2] — Cry Ay — 3Cp,q, — 3D, [Cu,]) -

We conclude that
D%, [Cy2] = C1ryAu — 3Cp,q, — 3D5,[Cuy] = 0.
Therefore,
E(CpTi —3Cy, Q1) = D¢ ,[Ti] + D3, [Co2] = 3(Dg,, [Qi] + DG, [Cu]) = 0,
since, according to Example 6.1,
D¢ ,(T)) = -Cr, Ay,  Dg, (Qi) =Cp,q-

Therefore, C2T; — 3C,, Q; € Im D,,, which finishes the proof.
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6.3 Modified KdV, case 2

The recursion operator (2.4) was recently constructed in [15] using the Lax

operator, [16],
L =D} + %uD,. (6.5)

In the commutative case, the Lax operator (6.5) can be transformed into the
Lax operator for MKdV1, L = D? — %ul - %uQ, by a gauge transformation. In
the noncommutative case, we could not find an operator to transform one to
the other. This, perhaps, explains the existence of two versions of the noncom-
mutative MKdV.

The Miura transformation can also be used to construct recursion operators,
[29], p- 52. In the commutative case, the diagram

=+/—1 2
KdV (u) < nry

MKdV (v)

w; =u

PKdV (w)

indicates the connections between the KdV and MKdV equations. The same
holds between the noncommutative KAV, MKdV1 and PKdV. However, we do
not know a Miura transformation for MKdV2, and so have been unable to put
MKdV2 into this diagram.

Construction of the local symmetry hierarchy can also be based on the
method of fractional powers of the associated Lax operator; see [6] for the com-
mutative case, and [9] for the noncommutative KdV. The MKdV2 hierarchy is

given by
2n+1

Ltn = [L+ 2 7L]7

2n+1
where L 2 stands for all terms with positive powers of D,. We compute

L% =D, + %u — (%ul + 11_8u2) D;l + (%ug + %ulu + %uul + 5l4u3) D;Q
- (21—4u3 + iuw + %uuz + 77—2uf + %uﬂf
+ 31—6uu1u + %GUQUI + J’Tsu‘l) D;3 + .-
Then

5
2 _ b 5 4 5 5,2 3 25 5 25 5,3 2
L2 =D+ 3uD; + (5us + 2u®) D3 + (Buz + Suru + Buwy + Zu’) D2
5 5 5 25,2 5 . 2
+ (§u3 + FFUU + FUU2 + THUT — 51U U

5 2.2 5 4
+ puuu + L utuy — ggu’) Da,
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which leads to the fifth order symmetry

ug + g (uug — ugu + uiuz — uzuq)

+ % (U2U3 + u3u2 — duuzu — usuU1 — ULUUL — 2u? — 3uiusu — Suuzul)

3

+ = (ugu® — wdus + 3uugu® — 3uusu)

+ 19 (wvwu — vuguuy +uiu® —uPu}) + 22 (vurw® + vPu e’ + vPugu)

In [16], the recursive operator

Tn+1 = DzTn + %'Uan + ZT]'T"*]'? TO = _éu’
7=0

where T, € U was constructed. The trace forms tr(Tp), tr(Ton4+1) € R, where
n = 0,1,---, are conserved densities. Therefore, one can construct infinitely
many symmetries via the Hamiltonian flows obtained by applying the Hamil-
tonian operator $) = D, + C, + %C’uD; 1C, to the associated cosymmetry
Cy; = E(tr T;). The resulting symmetries ; = $HC; are all local due to Theorem
4.4. For example, the fifth order symmetry ()5 is produced by applying $ to
the cosymmetry

Cs = ug + 2 (uug — ugu) + (uyug — uguy) —
— 5 (3u”uz + duuyu + Bupu®) — § (2und + wruur + 2uiu) + Fu’.

Remark 6.5. Following Dorfman, [7, 8], we call D;T + D, X = 0 a “conven-
tional” conservation law of a differential equation if T € U instead of T € R.
For the KdV equation, u; = D.(us + u?) is a “conventional” conservation
law, which leads to cosymmetry 1 appearing in the D! term. For MKdV1,
Dw? = D, (uug + ugu — uf + u4) is a “conventional” conservation law, which
guarantees that A,u; € Im D,. Interestingly, for MKdV2, none of the known
conservation laws are conventional.

7 Operator Symmetries

Having extended our calculus of Fréchet and Lie derivatives from differential
polynomials to differential operators, we can formally define the notion of a
differential operator being a symmetry of a given evolution equation. How-
ever, it is not entirely clear what this really means in terms of the traditional
interpretation of a symmetry generating a flow that maps solutions to solutions.

Definition 7.1. A differential operator H € D will be called a symmetry of the
evolution equation u; = K if it satisfies the bracket condition

[H, K] = Dp[K] — Dk[H] = 0.

A cosymmetry of the evolution equation u; = K is a differential operator C' € U
satisfying
D¢[K] + Dx[C] = 0.
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Example 7.2. Consider the commutator C,. We find
Doy;u; [Cu] = (Ry; DY + u; DI)(Cy) = Ry, Cu; + uiCuy = Cuyyuy -

This reflects the fact that C, is a trivial symmetry of any noncommutative
evolution equation.

In the commutative case, the nonlocal terms of a recursion operator always
take the form PD;1@Q, where P is a symmetry and @ is a cosymmetry of the
equation, [24]. In the noncommutative case, this statement will be valid if we
extend our notion of symmetry and cosymmetry to include linear (differential)
operators. Furthermore, in the recursion operators (2.1) and (2.3), the D;*
appears twice in the nonlocal terms, and so one must use products of operators
of the form PD;1Q.

In the KdV recursion operator (2.1), we read the term C,D,'C,D," as
C.D;'1-C,D,'1, where C, is a trivial symmetry and 1 is a cosymmetry
of the KdV equation. Similarly, in the MKdV1 recursion operator (2.3), we
read C,D;1C2D;'A, as C,D;'A, - C,D;'A,, where C, is again a trivial
symmetry and A, is a cosymmetry of MKdV1. These observations deserve
further investigation.
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