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1. Introduction.

In this paper, the equivariant method of moving frames developed in [2,14] will
be applied to study the differential invariants of curves and surfaces in two- and three-
dimensional space under the standard representations of the special linear and general lin-
ear groups. In geometric language, these are referred to as centro-equi-affine geometry or,
alternatively, unimodular centro-affine geometry, and centro-affine geometry, respectively.
Centro-affine geometry has its origins in the work of the early twentieth century Romanian
mathematician Tzitzeica, and was developed in depth by a number of his compatriots; see
[1]. Earlier treatments of invariants of curves and hypersurfaces in centro-affine geometry
using the classical Cartan approach to moving frames can be found in [3,10, 15, 16]. Ap-
plications to ordinary differential equations can be found in [6, 17], and to control theory
in [18]. This particular investigation was sparked by correspondence with Peter Giblin in
connection with his collaboration with Takashi Sano on height and distance functions in
Klein geometries, [4].

In the case of plane curves, there is a single generating differential invariant, the
centro-(equi-)affine curvature. Moreover, a complete system of functionally independent
differential invariants can be obtained by differentiating the curvature invariant with re-
spect to the centro-(equi-)affine arc length. For curves in three-dimensional space, there are
two independent generating differential invariants, the centro-(equi-)affine curvature and
torsion. Again, differentiating these two invariants with respect to the centro-(equi-)affine
arc length produces all the higher order invariants.

In the case of surfaces in three-dimensional space, there is a single second order centro-
equi-affine differential invariant. Moreover, we prove that the algebra of surface differential
invariants can, in fact, be generated by this single differential invariant, in the sense that
all the higher order differential invariants can be obtained by repeatedly applying the two
invariant differential operators associated with the moving frame to the generating invari-
ant and taking functional combinations thereof. This is reminiscent of similar surprising
recent results in Euclidean and equi-affine surface geometry, [12], as well as conformal and
projective geometry, [7].

2. Plane Curves.

We begin by studying plane curves C' C R2. We are interested in the standard linear
action

X =az+fu, U=~vyx+du (2.1)
of the general linear group GL(2) on R2, so that

g:<: §>6GL(2), ad— By 0. (2.2)

However, before analyzing the full linear action, we will restrict our attention to unimodular
or area-preserving linear maps, i.e., consider the action of the special linear group SL(2) C
GL(2) that is given by (2.1) along with the restriction

g:(i‘ §>ESL(2), ad—py=1 (2.3)
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We will denote points in the plane by z = (x,u) € R2. Consider the induced action
of SL(2) on parametrized curves

z(t) = (x(t),u(t)), where the parameter ¢ lies in an open subinterval t € I C R. (2.4)

To construct a (right) equivariant moving frame, we prolong the action (2.1) to the curve
jet spaces J™ = J"(M, 1), defined as the bundle of equivalence classes of curves under the
equivalence relation of nt? order contact, cf. [11]. We use the standard local coordinates
2" = (z,u,u,,u,,,...u,) on J*. Assuming that the curve (2.4) intersects the vertical
fibers transversally', which requires x, # 0, its n—jet j,C C J" is parametrized by the
differential functions

Lilyy — ULy

ux:Dxu:_7 uxx:Dxux: 3 Y uxmx:DxU’xam un:Dxun—D
Ly Ty
(2.5)
where the t subscripts denote derivatives with respect to the curve parameter, while
1 d
= — — 2.6

is the total derivative operator on J".
The explicit expressions for the prolonged action of GL(2) on J” induced by (2.1) are
obtained by implicit differentiation. The transformed horizontal form? is

dX = (az, + fu,)dt, (2.7)
with dual implicit differentiation operator
1 d
= — . 2.8
X aw, + PBu, dt (28)

Thus, the jet coordinates of the transformed curve C' = g - C, where g € GL(2), are
obtained by repeatedly applying (2.8) to v as given in the second equation of (2.1):

Yy, + 0w,
az, +Bu,’

LUy — Uplyy
(az, + Buy)3’

and so on. In the unimodular case, we also impose the constraint (2.3).

Uy = DxU = Uxx = DxUx = (26— 37) (2.9)

The existence of an equivariant moving frame requires that the prolonged group act
freely, meaning that the isotropy subgroup at any jet is trivial, [2]. The prolonged action
of SL(2) is free on the dense open subset

V={0#2Az2 =2u, —uzx,} CJ (2.10)

T If not, one can use a change of coordinate, e.g., by reversing  and u. Moreover, the differential
invariants that we ultimately derive will be applicable to any smooth curve.

i Here, we ignore contact components, which vanish when evaluated on curve jets. However,
further applications to the invariant calculus of variations, [9], and to invariant curve flows, [13],
would necessitate keeping track of the contact forms.



consisting of jets of curves at a point z that are not tangent to the line connecting z to the
origin. The moving frame construction is based on a (local) cross-section K C V to the
prolonged group orbits, and we select the particular cross-section defined by the equations

x =0, u=1, u, = 0. (2.11)

xT

The solution to the associated normalization equations
X =0, U=1, Uy =0,
will define a right-equivariant moving frame. Using (2.9) and (2.3), we find that

—u x
a=u, f=-z y=—=— d=—7=— (2.12)
uT, — TU, uT, — TU
which, as the reader can check, does define a right equivariant map p:V — SL(2).
To obtain the differential invariants, we invariantize the higher order jet coordinates,
[2], — that is, substitute the moving frame formulae (2.12) into the prolonged transfor-
mation rules (2.5). In particular, the lowest order differential invariant comes from
Lyl — UpLyy 2 N 2y

U - Y = v = 2.13
xXx (uz, — zu,)? (zAz)3 o ( )

which we identify as minus the centro-equi-affine curvature invariant, [3]. Here
21 N\ Zg = TyUg — Toly, 2y = (21, uq), 2y = (g, uy), (2.14)

denotes the usual (scalar-valued) cross product between vectors in the plane. The centro-
equi-affine arc length element is obtained by invariantizing the horizontal form (2.7):

dX — (ux, —zu,)dt=—(zN\z)dt =—ds. (2.15)

Higher order differential invariants are obtained by successively differentiating the curva-
ture k with respect to arc length; the first of these is the third order differential invariant
(2 A 2) (2 A zige) = 3 (2 A 2) (2 A 244)

K, = CIEAL . (2.16)

If we parametrize the curve using the centro-equi-affine arc length parameter s, then
the formulae simplify as follows. Note first that s satisfies

2Nzg =1, and hence 2Nz, =0, ZNZgge = — 25 N Zgg. (2.17)
Therefore, the first two differential invariants are simply
k=2, Nz, Kg = 23 N\ Zggq- (2.18)

Incidentally, the corresponding left-equivariant moving frame p:V — SL(2) is ob-
tained by inverting the right-equivariant frame. The result is simply p (1)) = (z,, 2), i.e.,
the columns of the matrix consist of the centro-equi-affine tangent along with the point
on the curve, the former being fixed by the requirement that the parallelogram spanned
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by these two vectors has unit area. This reconfirms the observation that the geometrically
based moving frames are always left-equivariant, [2]. The associated Frenet equation, [5],
is

2y = —K2. (2.19)

S8S

For the full affine group GL(2), one can proceed, ab initio, in a similar fashion. An
alternative is to apply Kogan’s inductive construction, [8] based on the SL(2) moving
frame given above. If only the differential invariants are desired, the simplest approach is
to determine how the SL(2) invariants behave under a scaling map

z — Az, (2.20)

and then to take suitably invariant rational combinations thereof. Clearly, under (2.20),

D ds — M\ ds, Ky — A Ok, (2.21)
Therefore, the lowest order centro-affine differential invariant is
= s (2 A 2) (2 A Zygy) = 3(2 A 2) (2 A 244) : (2.22)
K3/ (2 A 2)1/2(2y A 24)3/2

which we identify as the centro-affine curvature, defined for curves satisfying the nonde-
generacy conditions

2Nz #0, 2 N 2y # 0. (2.23)

Similarly, the centro-affine arc length is

do = Jrds = |20 gy (2.24)
zZ Nz

The condition that the curve is parametrized with respect to centro-affine arc length is
(2,0 —2) Nz, =0. (2.25)
In this case, the centro-equi-affine curvature is given by

1
(zAz,)%’

and therefore the centro-affine curvature (2.22) is

2Nz
w="lo o 9=l %00 (2.26)
K ZNz,
In this case, the Frenet equation takes the form
Zpy =2 — 3 HZ,. (2.27)



3. Space Curves.

We now turn our attention to the centro-(equi)-affine geometry of curves in three-
dimensional space: C C R3. We will denote points in space by z = (z,u,v) € R3, with
2(t) = (x(t),u(t),v(t)) for t € I C R being a smoothly parametrized curve.

We consider the usual linear action

(X, UV)=Z=g-2=g¢g-(z,u,v)
of the general linear group GL(3) on R3, so that
X =a-z, U=0-z, V=rv-z (3.1)
where «, (3,7, are the rows of the 3 x 3 matrix

«

g=| B | € GL(3), detg = [a,B,7] =a BNy #0. (3.2)
ol

We use [a, 3, 7] to denote the matrix determinant, or, equivalently, the vector triple product
of its rows, with A denoting the vector cross product in R3.

Before tacking the full linear action, we first specialize to volume-preserving linear
maps, and so restrict the action (3.1) to the special linear group

«
g=| B | € SL(3), so that detg=[a,B8,7y]=a-BAy=1. (3.3)
Y

To construct a (right) equivariant moving frame, we prolong the SL(3) action (3.1, 3) to
the curve jet spaces J™ = J"(M, 1), which has local coordinates

n) _
2V = (@, 0,0, U, Uy, Uy, Vs e Uy 0,,),

whose expressions for a general parametrized curve are more or less the same as in (2.5). As
before, the formulae for the prolonged action on J™ are provided by implicit differentiation,
based on

1 d
dX = . dt D, = — . .
(@-z)dt. D= g (3.4)
The first few are
_ _ B2 _ _ (a-2)(B-zy) — (B z)(a-2y)
UX_DXU_O&-Zt, UXX_DXUX_ (Oé'Zt)?’ ) (35)

while Uy xx = DxUxx equals

(- Zt)Z(ﬁ zyy) = (- 2) (B z) (- zyy) — 3 (- 2) (a0 24) (B 2) +3 (8- 2) (- Ztt)2
(a-2,)3 '

(3.6)



We will also require the even longer formula for the transformation of ., but this will
not be written out here. The expressions for the transformed v_,v .., are obtained by
replacing 3 by v in the preceding formulae.

We need to specify dim SL(3) = 8 cross-section equations, which we choose to be

foots kA

r=0, wu=0 ov=1, wu,=0, v,=0, wu, =1 v,,.=0, wu, . =0 (3.7

x xrxr

The associated normalization equations are obtained by replacing the jet coordinates in the
cross-section equation by their transformed versions X,U,V, Uy, ..., cf. (3.1,5,6). After
some obvious simplification, we find

a-z =0, oz = A, 3)\2a~ztt:)\26~zttt,
B-z2=0, Bz =0, Bz, =M\, (3.8)
’7'2:17 V'Zt:(]? ’Y'Ztt:O?

with A an as yet unspecified scalar. Let us set
A=z 224 so that A, = (2,2, 244 |- (3.9)

We impose the nondegeneracy condition A # 0, meaning that the osculating plane to the
curve is transverse to the line connecting the origin to the point on the curve. The second
and third row of equations in (3.8) immediately imply

B:AQz/\zt ’y:zt/\ztt
A A

The first normalization equation implies that

a=puzNz+vzN=zy,

for certain scalars u, v. Substituting these expressions into the second and third equations

produces the formulae

YA A

©3A27 AT
Finally, substituting the expressions for «, (3 and ~ in the unimodularity constraint, we
find

)\3 3

1:[04,6,7]:—F[z/\ztt,z/\zt,zt/\ztt]:K, and hence A= A3,

where we make use of the elementary determinantal identity
[2A 24, 2 A 24, 2, N 24y ) = — [2, 24, 24 )2 = — A% (3.10)

Therefore, the right-equivariant moving frame induced by the cross-section (3.7) is given
by
:Atz/\zt_z/\ztt ﬁ:z/\zt szt/\ztt
3A5/3 A2/3 7 AL/3 A

As always, a complete system of functionally independent differential invariants is
obtained by invariantization, that is, substituting the moving frame formulae (3.11) into the

(3.11)
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unnormalized transformation rules. The generating differential invariants are the centro-
equi-affine curvature k, obtained from v,., and the centro-equi-affine torsion T, obtained
from u,_,,. All other differential invariants are obtained by differentiating the curvature
and torsion with respect to the centro-equi-affine arc length element

ds = A3 dt, (3.12)

which comes from substituting the moving frame formula for « into (3.4). A short com-
putation produces the required expressions:

o — (26 246> 24t
Az (3.13)
S [2, 20 2ee ] + 412, 2045 2144 ] _ 5A7 :_§d_2 1 312 24, 2y | '
A5/3 3 A8/3 2 42 \ A2/3 A5/3

Parametrization of the curve with respect to centro-equi-affine arc length requires

A=[zz2,2,]=1,

?77sr7ss

leading to the following simplified expressions for the curvature and torsion invariants:

K= (24, Zgg1 %555 ) T =3[2,244 Zggs)- (3.14)

SY~ss8? ~“sss 177887 7s88s
Inverting the matrix whose rows are the right moving frame vectors (3.11) produces the

corresponding geometric left-equivariant moving frame’ p(2(3) = (2, z,,, 2) € SL(3). The
associated Frenet equation, [5], is

T 2. (3.15)

S

Wl

Rgsg — K2 —

Turning our attention to the full centro-affine action, under scaling,

Z — Az, K — A3k, T — AT27, ds — \ds. (3.16)
Therefore, the lowest order GL(3) differential invariants are

K, ~ T
1/3 T="3/3"
K4/ K2/

R =

(3.17)

which we identify as the centro-affine curvature and torsion — although in this case they
are both fourth order differential invariants. Similarly, the centro-affine arc length is

do = k3 ds = ¢ Lo 2 2] dt. (3.18)
[2, 2, 2]

The condition that the curve is parametrized with respect to centro-affine arc length is

(2000 — %3 205 29 = 0. (3.19)

ooo 1V Yo Yoo

T Here, the 2’s are viewed as column vectors.



In this case, the centro-equi-affine curvature is given by

1 1
K= — = —

[2,2,,2,,] A

Y Yor Yoo

Therefore the centro-affine curvature and torsion are

/H\J: /{_G' — [27’2072000]
K [2720'720'0'] ’
?:—h-l—/{—?’-l—?m[zz 2 l=-% 4472 4 33 %00 %000l .
K 3 12 y “oo) “ooo o 3 [Z, Z,, Zo-a]
Thus, we can instead use the simpler expressions
%: [27 Zcﬂzaaa] ;: [Z7ZO'G'7ZG'O'G'] (321)
[2720'720'0'] ’ [27 20'720'0'] ’

as the fundamental centro-affine differential invariants for space curves.

4. Surfaces.

We now turn our attention to the centro-equi-affine geometry of surfaces in three-
dimensional space: S C M = R3. In this case, we denote points in space by z = (z,y,u) €
R3, with z(s,t) = (x(s,t),y(s,t),u(s,t)) being a parametrized surface. We impose the
usual regularity condition

2g N2y 0 (4.1)

on the underlying surface parametrization. We consider the same linear action of SL(3),
that maps a point z = (z,y,u) € R3 to the image point Z = (X,Y,U), with

X=a-z, Y =03z, U=~-z, (4.2)

where «, 3,7 continue to satisfy (3.3).
To construct a (right) equivariant moving frame, we prolong the action (4.2) to the
surface jet spaces J” = J"(M, 2), with local coordinates

u u

n) _
Z( ) - (aj? y7 U’? ux?“’y?“’xm?

s Wy e ) j+k<n,

Ty’ Tyyr -

where u;, indicates the derivative 07k /027 0y*.  As before, the formulae for the pro-
longed action on J” are provided by implicit differentiation with respect to the transformed
horizontal one-forms

dX = a,ds + o, dt, dY = pB,ds+ 5, dt. (4.3)
where, to make the formulas less cluttered in the sequel, we abbreviate

a, =a-z

s o5 Qp = Q- 2y, Q= Q- Zyy N (4.4)

and similarly for 3,~. Keep in mind that, unlike those on z, the subscripts on «, 8,y do
not indicate derivatives, but rather the scalars obtained by taking dot products with the
corresponding derivatives of z with respect to the surface parameters.
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The dual implicit differentiations to the transformed one-forms (4.3) are, therefore,

1
Dy = 5 (8,D, — B,D,), D, = 5 (—a.D, +a,D,), (4.5)
where
0 =a,f, —af, = (- 2)(B2) = (a-2)(B2) (4.6)
Note that J is a scalar. Consequently, the first prolonged transformations are given by
Uy = Bivs — ; B : Uy, = sVt ; s (4.7)

Let us also write one of the second order formulas:

ﬁt(ﬂt,yss + ﬂtsfys ﬁslyst B ﬂss,yt) B ﬁs(ﬁtvst + ﬂtt,ys B ﬂsfytt B ﬁstfyt)
Uxx = -
52
ﬂt(ss — ﬂs(st
2
the rest having similar expressions that the reader can easily find.

Interestingly, even though dim SL(3) = 8 and dim J? = 8, the prolonged action is not
(even locally) transitive. Indeed, the orbits in J? are, generically, seven-dimensional, and
thus there is a second order differential invariant! The easiest way to deduce this is to
look at the prolonged infinitesimal generators. Recall, [11], that the nth prolongation of a
vector field

(4.8)
Uy,

0 0 0
on R3 is the vector field
. ‘ P
(n) — k (G+k)y 2
A% =V + Z SOJ (CE, Yy, u J ) ou N (410)
1<j+k<n J
on J® = J*(R3,2), whose coefficients are given by
" = DiDy (0= Euy —nuy ) + &y g+ Ny G (4.11)

For the linear action of SL(3), a basis for the second order prolonged infinitesimal genera-
tors is provided by the eight vector fields

x0, —ud, —2u,0, —u,0, —3u,,0, —2u,d, —u,0, .

TY Uy

yo, —ud, —u,0, —2u,0, —u,,0, — 2ny8uzy 3uy, 0,

Y0, — u,0,, umﬁu —2u,,0, (4.12)
ud, —u2d, —u, uyﬁu —3u, umﬁu = (Uy Uy + 2uy Uy, )0, — (2uyuy, +uyu,, )0, |
20, —u,0, —2u,,0, —u,0, .

ud, —u,u,0, — ui@uy = (Uy gy + 2uy 1y, )0, — (2uyuy, +uyu,, )0, —3u,u, 0, |
z0, — 0,_,

Yo, — 8uy
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For generic 23 € J2, they span a 7-dimensional subspace of TJ?(R3,2)|.2), thereby
proving the claim.

We will eventually prove, using moving frame methods, the following result, which is
very much in the spirit of those established in [12] and [7].

Theorem 4.1. All differential invariants of a generic centro-equi-affine surface S C
R3 are generated by a single second order differential invariant through invariant differen-

tiation. Namely,
I=H/A?, (4.13)

where

H = [stzwzst]Q - [ 57Zt7255] [stztvztt]7 A= [ 7stzt]~ (4.14)

In particular, when S coincides with the graph of the function u = u(x, y),

_ 2 — _
H =y, —u,,u,,, A=u—-zu, —yu,

so that H reduces to minus the Hessian of w. In this case, the generating differential

invariant is simply
2 _

(u—zu, —yu,)?

Since the prolonged action is not free on J2, the lowest order moving frame will be of
third order. We will work with the “hyperbolic” local cross-section:

x =0, y=0, u=1, u, =u, =u,, =u,, =0, Uppy = L. (4.15)

x Yy xrx rrxr

The fact that this defines a local cross-section follows from the fact that the third order
prolonged infinitesimal generators are linearly independent at each jet belonging to it. As
we will see, the resulting moving frame will be defined for hyperbolic surfaces, that sat-
isfy I > 0. For brevity, we will not discuss the elliptic case, where I < 0, although it is
straightforward to deduce the corresponding differential invariants and their interrelation-
ships from our computations. The parabolic case I = 0 requires a higher order moving
frame.

To construct the hyperbolic moving frame, we solve the corresponding normalization
equations

X=0, Y=0, U=1 Ux=Uy=Uxx=Uyy =0, Uxxx=1, (4.16)

for the group parameters. In view of (4.2), the first three require that
a-z=0, G-z=0, veoz=1. (4.17)
Using (4.7), the following two normalization equations for the first order derivatives, imply

Y = Qs Bevs = B (4.18)
I claim that this requires both

0=, =7"2,, O0=7v=7"2. (4.19)
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Indeed, suppose 7y, # 0. Then (4.18) implies that

ap=Aag,  B=AB, %= A

for some scalar A. But, in view of (4.4), these conditions are equivalent to
a'(zt_)\zs):ﬁ'(zt_)\zs>:7'(275_/\25):0' (420)

Thus, in view of (4.1), the vector
2, —Azg #0,

is a non-zero element of kernel of the matrix g € SL(3) with rows «, 3,7, which is a
contradiction. Thus v, = 0 and, by a similar argument, 7, = 0 also. Combining (4.19)
with the third equation in (4.17), we deduce that

zZ, Nz
,y = SA t?
The latter nondegeneracy condition requires that the tangent plane to the surface at the
point z € S be transverse to the vector from the origin to z.

We next look at the second order normalization equations Uy y = Uyy = 0. Using
(4.8) and its counterpart for Uy, and keeping (4.19) in mind, we find that

where A=lz2z,2]#0. (4.21)

a?,yss - 20‘506157515 + ailytt = 07 ﬂtzfyss - 2656157515 + ﬁgvtt = 0 (422)
Note that (4.21) implies that

[Z4y 245 Zgs | [25, 24, 241 ] (24 24y 244 |
(4.23)
Consider the quadratic equation
Yosl? = 2797 + v = 0, (4.24)
and let
- Vst — V ’721& — VesVtt [Zs7zt725t] _ \/ﬁ
1 - )
Zgy 2y Zgg
7;5 [ ERiad ] (425)
ro — Vst + Vst — Vss Vet _ [Zs7 Zt”zst] + \/ﬁ
2 ,yss [Zs7zt7zss] ’

be its two roots, which are real in the hyperbolic regime I = H/A? > 0. Then (4.22)
implies that either

a,—rjoa,=o-(z,—r12,) =0 and By —ry B, =0 (2, —ryz,) =0, (4.26)

or the equations obtained by reversing r, <= r,. Indeed, these two equations must involve
different roots, as otherwise, when combined with (4.19), this would lead to the same
contradiction as in (4.20). For specificity, we will stick with the situation given above
during the rest of the computation. Combining (4.26) with (4.17), we find

a=pzA(z—rz), B=vzA(z—ry2), (4.27)
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for certain scalars p,v. Furthermore,

a, = —pA, a,=—pri A, B, =—vA, By =—vryA. (4.28)
Note that this implies that the quantity (4.6) is given simply by
o _ 2pv A?VH

[stztvz

d=pv(ry—r)A (4.29)

SSs ]

Now, even though we as yet don’t have the complete moving frame, we can still derive
the second order differential invariant by substituting our formulas (4.21, 28, 29) for «, 3, vy
and ¢ into that of Uyy . The non-vanishing terms are

— atﬁtﬁyss + (O‘sﬁt + atﬁs)’yst — O‘sﬁsﬁytt [257 “ts Zss]
= = . 4.30
UXY 52 2# v A2 ( )
On the other hand, the unimodularity constraint (3.3) coupled with (4.21,27) implies
8%
1=[a,8,7] = A [2s N2 2 N (2 =71 20), 2 N (2 — 13 2) ]
2uvAVH
— WA (e — )= 22NV
e (rz Tl) [Zs7zt7zss] ,

by a slight generalization of the determinantal identity (3.10). Therefore,

_ [Zs7 Zt’ Zss]

M= AV

Substituting this into (4.30) produces the second order differential invariant v/H /A = v/I.
In other words, the differential invariant (4.13) is minus the square of the invariantization
of the jet coordinate u,, with respect to the moving frame specified by the cross-section
(4.15).

The two invariant differentiation operators are obtained by normalizing the implicit
differentiation operators (4.5), and so require us to implement the final moving frame
normalization in (4.16). We calculate the explicit formula for the third order transformed
jet coordinate Uy, y y by directly applying the implicit differentiation operator D to (4.8).
After substituting the moving frame normalizations — specifically (4.19) — the remaining
nonzero terms are

1= 5_3 [ﬁ?,ysss - 3655152,75515 + 3656{751% - ﬂg,yttt +
+ 3 (Bl?ﬁst - ﬁsﬁtﬁtt)’yss + 3(ﬁt2ﬁ55 - ﬁszﬁtt)’)/st + 3 (Bsﬁtﬁss - Bgﬁst)’)/ss } .
We then substitute (4.21, 23, 28, 31), and solve resulting equation for

v= /AT, (4.32)

and so d=A. (4.31)

Y

where

J=- [257 2t ngsss + ngsst + ToZstt + Zttt] +3 [257 2t Zss] [27 Rt = ToZgy Tolyy + ngst] +
+3 [257 %t Zst] [27 Rt T ToRgy By — rgzss] -3 [Zs7zt7 Ztt] [Z7Zt T ToRgy gt + TQZ.SS]'
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Thus, the hyperbolic centro-equi-affine moving frame is given by

J/3 Al/3 Zg N2
Z A (2 — 11 2,), ﬁ:mZ/\(Zt_Tzzs)v szt, (4.33)

— [257 Zt’ Zss]

2A4/3\/H

Substituting these expressions into the implicit differentiation operators (4.5) produces the
invariant differential operators D, D,.

1/3
AL/ [24y 24y 2

J1/3
:W<T2D5+Dt>7 Dy = — ss]

2A4/3\/H

The proof that the second order differential invariant I generate the entire differential
invariant algebra through iterated invariant differentiation relies on methods introduced
in [12] and further developed in [7]. We will assume the reader of this last part is familiar
with these references, and so will be content to outline the computations, which are based
on the fundamental moving frame recurrence formulae, [2], without detailed justification.

We let

D, (ryD,+ D,). (4.34)

denote the normalized differential invariants obtained by invariantization of the surface jet
coordinates. In particular, the phantom invariants resulting from the choice of cross-section
are

Ioo =1, Ilo = 101 = Izo = 102 =0, 130 =1, (4~36)

while

VI (4.37)

is the square root of the second order differential invariant (4.13). There are three inde-
pendent, non-constant differential invariants of order 3, namely I, I, I3, and five more
of order 4, namely I,,, I5;, 159,113, 1y,. Since our moving frame is of order 3, a general
theorem, [2], (which is a consequence of the recurrence formulae below), implies that one
can generate all the higher order differential invariants by invariant differentiation of the
9 normalized differential invariants of order < 4, that is, one more than the order of the
moving frame. Thus, to establish Theorem 4.1 we need only show how to express the third
and fourth order differential invariants as combinations of invariant derivatives of I;.

Ill = L(“my) =

To accomplish this, we make use of the explicit recurrence formulae. The key result,
[7,12], is the following:

Theorem 4.2. The recurrence formulae for the differentiated invariants are

8
Dlljk = Ij+1,k + Z @‘/ik(ov 07 I(j+k))le7
k=1

- j4k>1, (4.38)

Dyl =10+ > ©1F(0,0,19)) Ry,
k=1

where RY are certain differential invariants, known as the Maurer—Cartan invariants, while

Ik (0,0, 10FR)) = L(gpﬁk(x,y,u(J‘Fk))) is the invariantization of the coefficient of 0/0u

in the prolonged infinitesimal generator v, , as given in (4.11).
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The Maurer—Cartan invariants are, in fact, uniquely determined from the recurrence
formulae for the phantom differential invariants (4.36), which, being constant, give re-
currence formulae (4.38) with vanishing left hand sides. The result is a linear algebraic
system for the Maurer—Cartan invariants, and a direct computation produces their formu-
las in terms of the normalized differential invariants (4.35):

%140 - %121/111

%131 - %1221/111

%112/111 %103/111
—1 0
R = (RH) = %/Ill %121/111 (439)
- %I4O+%I21/I11 _%I31+%1221/I11
0 —1
0 -1

The other ingredient is the commutator formula between the invariant differential
operators, which has the form

[D17D2] =D, Dy =Dy D, =Y, D, + Y, Dy, (4.40)
where, by the methods of [2], the commutator invariants are

I3+ 1),

The commutator trick of [12] allows us to express both commutator invariants as certain
rational combinations of derivatives of I;,. Indeed, applying (4.40) to I;; and any one of
its derivatives, say D,I;;, leads to a pair of linear algebraic equations whose coefficients
depend on I,; and its invariant derivatives. These linear equations can be immediately
solved for Y}, Y,, producing the desired formulae.

With these in hand, we analyze selected non-phantom recurrence formulae (4.38).
First, setting j = k =1,

Yy =513 — J Yy =3514- (4.41)

Wl

1
3

DIy = Iy, Dyl = I,
immediately gives two of the third order invariants. Now, since we can write the com-
mutator invariants (4.41) and I, [, in terms of I, the same holds for I,,, I;;. Next,
subtracting the recurrence formulae
Tyolyg — 21513, + 31y
21, ’
I3 1o — Ip, 15
Iy 7
and then replacing 1, I5,, 5,115 by our already established formulae, we deduce a for-
mula for I,, in terms of I;;. Then, using

D1131 = I41 - %140131 + 4I11 -

D2I40 = 141 - %140131 + 4I11 -2

Igl — 2I21I12 — I03

D2121 = 122 - %121131 + 2I121 + 27 )
11
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we obtain a formula for the remaining third order differential invariant I;;. The last two
fourth order differential invariants, I,4, I, can then be obtained by differentiating I,:

317, + I 1ys)

3(13) + I)5) 144

Dylyg = I3+ Ip3lyo — Dylyg = Iyy + Lo3ls; —

This completes the proof of Theorem 4.1.
The corresponding moving frame analysis of centro-affine surfaces will, in the interests

of brevity, be deferred until a subsequent paper.

Acknowledgments: 1t is a pleasure to thank Peter Giblin for inspiring me to write this
paper, and for helpful advice during its genesis.
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