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EQUIVALENCE OF HIGHER ORDER LAGRANGIANS
I. FORMULATION AND REDUCTION

By N. KAMRAN (') and Peter J. OLVER (3)

ABSTRACT. — It is shown that the general equivalence problem for an r-th order variational problem (with
or without the addition of a divergence) can always be formulated as a Cartan equivalence problem on the jet
bundle J'. Moreover, equivalence on any higher order jet bundle automatically reduces to equivalence on
J'. As a consequence, we deduce the existence of *derivative covariants”, which arc certain functions of the
partial derivatives of a suitably nondegencrate r-th order Lagrangian whose transformation rules are the same
as those of the n-th order derivatives for any n > r. This implies that any such Lagrangian determines an
invariantly defined system of n-th order differential equations for any n > r, generalizing the Euler-Lagrange
equations.

1. Introduction

The most basic equivalence problem in the calculus of variaticns is to determine when
two variational problems can be transformed into each other by a suitdble change of
variables. The solution to this problem would have many important consequences, and
significant applications in a wide range of physical problems where variational methods
are of importance. Elie Cartan, ¢f. [4], developed a powerful method which produces
necessary and sufficient conditions for the solution of such equivalence problems, and,
in [5], [6), began direct investigations into specific equivalence problems from the calculus
of variations. Subsequent rescarch ([2), (3], {7], [8], [11], [12]), has almost exclusively con-
centrated on first order Lagrangians. With this paper, we initiate a series of papers on
various aspects of the equivalence problem for higher order Lagrangians, with particular
emphasis on novel phenomena that do not appear in the first order case. Applications
to the determination of Cartan forms, [13), and new invariant differential equations
beyond the classical Euler-Lagrange equations, [20], will be among the immediate results
of this investigation.

The first part of this paper is concerned with the formulation of the various equivalence
problems for r-th order Lagrangians, both with and without the addition of divergence
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370 N. KAMRAN AND P. J. OLVER

terms. Clearly, for a nondegenerate r-th order Lagrangian, the jet bundle J* is the
minimal order jet bundle for which we can reasonably expect a Cartan formulation of
these equivalence problems. However, there have been suggestions that, since the Euler-
Lagrange equation for a regular r-th order Lagrangian is a 2 r-th order system of
differential equations, and, also since the Cartan form proposed by Shadwick. [17],
naturally lives on the jet bundle J2"~!, the Cartan equivalence problem for regular r-th
order Lagrangians should itself be properly cast on the jet bundle J2*~!. We begin by
addressing this general “‘reduction problem”, and prove that this is not actually the case;
although one can formulate the equivalence problem for an r-th order Lagrangian on
J ** for any k 2 0, these equivalence problems all have the same solution, and one might
as well begin by reducing the equivalence problem to the minimal order jet bundle,
viz, J'. We then show how to generalize the results of [12] for first order Lagrangians
so as to formulate the Lagrangian equivalence problems as Cartan equivalence problems
on the jet bundle J'. The standard equivalence problem is fairly straightforward, but
the divergence equivalence problem requires a much more complicated construction and
structure group.

Application of the Cartan construction to the equivalence problem on J* will lead to a
complete set of r-th order invariants which provide the necessary and sufficient conditions
for equivalence. Consequently, any (r+k)-th order invariant, k > 0, (e.g. the Euler-
Lagrange equations), or invariant differential form on J'**, k > 0, (e. g. the Cartan form)
must be expressible in terms of the fundamental r-th order invariants of the given
Lagrangian. Indeed, as we will show, provided the equivalence problem finally reduces
to an {e}-structure on the base (even after perhaps requiring a prolongation), it is possible
to construct a series of “derivative covariants”, which will be certain r-th order functions
constructed from the various partial derivatives of the Lagrangian, whose transformation
rules are identical with those of the partial derivatives of the dependent variables of
order n for any n > r. Consequently, given any invariant, invariant equation (e. g. the
Euler-Lagrange equations), or invariant form (e. g. the Cartan form) which depends on
derivatives of the dependent variables of order greater than r, one can replace all such
derivatives by the associated derivative covariants so as to produce a corresponding r-th
order invariant of the same type, which has precisely the same transformation rules as
the original invariant object. Thus, invariants produced from the Cartan method for
the Lagrangian equivalence problem formulated on a higher order jet bundle will all
have corresponding r-th order counterparts arising from the J* equivalence problem. We
argue that it is in this way that the higher order invariant quantities such as the Euler-
Lagrange equations and Cartan form associated with an r-th order Lagrangian are
*“hiding” in the solution to the Cartan equivalence problem over J*.

Moreover, for any n > r, the n-th order derivative covariants will naturally lead to
invariantly defined n-th order systems of differential equations associated. with an r-th
order Lagrangian, of which the 2 r-th order Euler-Lagrange system of equations and its
covariant derivatives are but some of the examples. As a particularly striking example,
in a subsequent paper in this series, [20], we shall exhibit an invariant third order ordinary
differential equation associated with any second order particle Lagrangian (whose Euler-
Lagrange equation is of order 4)! This stands in contrast to a commonly accepted **folk
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EQUIVALENCE OF HIGHER ORDER LAGRANGIANS 371

theorem™ that the Euler-Lagrange equation is the only invariant differential equation
which can be associated with a variation problem. However, as shown by Anderson (1],
the Euler-Lagrange equation is the only invariant differential equation which is a linear
function of the Lagrangian, so these new expressions must be nonlinear combinations of
the Lagrangian and its derivatives.

2. Contact transformations and contact forms

In this section, we introduce the basic notation. As the equivalence calculations are
purely local, it suffices to work in Euclidean space throughout. Let xe X =R’ denote
the independent variables, and weU=R‘ the dependent variables, so that functions
u=f (x) can be viewed as sections of the trivial bundle Z=X x U. (As our considerations
are primarily local throughout, it suffices to work on a trivial bundle for simplicity,
although these constructions can readily be put into global form, in which Z would be a
more general vector bundle over the base manifold X.) We use the notation uf =23, ",

where a=1, ..., g, and J=(j,, j,, ..., j,) is an unordered multi-index with 1 < 2p
for the partial derivatives of u of order m= #J. We let (J, i) denote the multi-index
U1 das - - <5 Jms 1), sO that uj ;= d,uj. Further let u,=(@3), a=1, ..., q. # J=m, denote

all the m-th order derivatives, which serve as coordinates on the space
(2.1) U,2U®0O0"X*=U,_,®X*;

here ©™X* denotes the m-th symmetric power of the dual space to X. Further, let
u=(u, u,, ..., u,) denote all the derivatives up to order . The variables (x, u") are
coordinates on the jet space

2.2) F=rz=XxU®=Xx(UxU,x...xU,).

A function f:J"— R will be called a r-th order function; in general the order of a
function (or differential form) will indicate the highest order derivative of u upon which
it depends.

There are various changes of variables which are to be considered, of which the
fiber-preserving, point, and contact transformations (cf. [11]) are the most important.
Throughout this paper, we will use the index x to refer to the class of transformations
allowed, with k=0 corresponding to fiber-preserving transformations, x = corresponding
to point transformations, and x = 2 corresponding to contact transformations. According
to Bicklund’s theorem ([9], p. 202]) contact transformations only generalize point
transformations when g=1, and we shall accordingly reserve the index x=2 for these
cases. By a k-map ¥: )" — J* we mean the r-th prolongation of a fiber-preserving, point
or contact transformation according to the value of k. In particular, on the base bundle
J?=2Z=X x U our transformations all take the form .

23) F=olxuh),  a=y(x, uh).
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372 N. KAMRAN AND P. §. OLVER

The functions @, ¥ actually depend on first order derivatives of « only in the case of
contact transformations (x =2); for point transformations (k= 1), ¢, ¢ depend on just
(x, u), while for fiber-preserving transformations (k=0), ¢ is additionally restricted to
just depend on x alone. A reason for our convention on the index k is the fact that,
for a general x-map, the Jacobian matrix Do =(D;¢’) of total derivatives of the base
transformation, which we can regard as a linear map on X, has order «:

2.9 order Do=x.
Given a k-map V¥, let
(2.3) Uy =Y (%, 4™)
denote the coordinate transformation on the m-th order derivatives, and
(2.6) W= (x, 4= (o (x, ), - .., ¥, (x, 4)

the complete fiber transformation on J'. The functions ¥, can be constructed inductively
using the chain rule formula

U=, (x, u™)
Q@7 ' =(1®De MDY,
=Au,+(1®De "DVY,,_,.

Here 1 denotes the identity map on U, _,, and D¢ ~" is the inverse transpose of the
Jacobian matrix (2.4), which we are regarding as a linear map on X*, so that 1® Do ™7
determines a linear map on U,_, ® X*=U,,. Further, D, _, denotes the matrix of
total derivatives (D; ¥}) of ¥,,.,, regarded as an element of U,, in the obvious manner,
while the (m — 1)-st order matrix Dy,, _, consists of total derivatives of the entries of {,,_,
restricted to J™~!, i. e. without the leading order terms which depend on u,,. Finally, the
“matrix” A,eGL(U,), which, for m 2 k+ 1, gives the complete dependence of u,, on
the highest order derivatives u,,, is given explicitly by the formula

(2.8) A,=A,® O™ (Do "),
where
2.9 Aog=0,Y—u, 0,0=0,y—Dy.Do"'.0,0,

is a k-th order function, with d,{ referring to the Jacobian matrix of ¥ with respect to
the dependent variables u.

The contact ideal on J', r 2 1, denoted S, is generated by the contact forms

P
(2.10) =dui— ) ui,dd, a=1l,...,q 0Z#J<r
i=1
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374 N. KAMRAN AND P. J. OLVER

DeFiNiTion 2. — Two r-th order Lagrangians L and L are said to be (r + k)-standard
equivalent, k 2 0, if and only if there is a x-map ¥: J*** = J"** such that

(3.2) W*{Ldx}=Ldx mod.s"*®,

An easy result from the form of the transformations (2.3) is that this equivalence
immediately reduces to J°, except in the special case of first order Lagrangians under
contact transformations, i e. the case r=1, k=2. This case is anomalous, since the
transformation (2.3) will necessarily reduce to a point transformation ([7), [11)).

ProposiTioN 3. — Suppose k 2 0 and either r > 1, or x # 2. If two Lagrangians L
and L are (r+k)-standard equivalent, then they are r-standard equivalent, and satisfy the
change of variables formula

(3.3) ¥+ {L(x, #")}.detDp=L(x, u).

Proof. — Note first that by Bécklund's Theorem ([9), p. 202)) since ‘¥ preserves the
contact ideal, its restriction @ to the base space X depends on at most first order
derivatives of the u's, cf. (2.3). Thus, according to (2.4), the pull-back ¥*(dx") can
depend on contact forms of order at most x. Therefore, upon expanding the left hand
side of (3.2), we find

1. W* {Ldx}=L.detDopdx, k=0,
Y*{Ldx}=L.detDpdx+Y 6 A £2, k=1,
3.4) =

4
'{“{Edf}=t.detD(pdx+Z(B’ NE+T B A g;), k=2,
a =1

for certain (p— 1)-forms &%, &5. This demonstrates that the only possible case in which
derivatives of u of order strictly greater than r can occur in the pull-back W* (L dx) is
the exceptional case r=1, k=2. Apart from this case, we can clearly take k=0 in (3.2).

We now turn to the divergence equivalence problem.

Derinition 4. — Two r-th order Lagrangians are said to be (r + k)-divergence equivalent,
k 2 0, if and only if there is a k-map W: J*** = J'** and a (p— l)-form Q on J'** such
that

(3.5) W*{Ld3) = Ldx+dQ  mod.s"**+ 1),

The reason we take the (r+ k& + 1)-st order contact ideal is because the total divergence
of a p-tuple of functions of order r+k is, in general, of order r+k+ 1. An alternative
approach is to replace the contact ideal #**% by its differential closure, noting that this
is contained in S5+ (cf. [12)).

ProposITION 5. — Two r-th order Lagrangians L and L are (r+ k)-divergence equivalent
Sfor any x, r, k if and only if

(3.6) W*{L(x, «)}.det Do =L(x, ")+ DivF,
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EQUIVALENCE OF HIGHER ORDER LAGRANGIANS 375

where F(x, u"*") is a p-tuple of (r+ k)-th order functions.

Progf. — By the same argument as in the previous proof, we obtain the expressions
(3.4) for the pull back of the Lagrangian form. Also, we can write the (p— I)-form Q
in (3.5) as

Q=
i

FidX  mods"*h,

(g ]

n

1

where the F; are functions on J"*, and dx'=0, Jddx. Then

dQ=DivFdx  modgU**+1
=DivFdx+ Y Y 6AL,

#)Sr+k «

for certain (p—1)-forms (5. Plugging this expression and (3.4) into (3.5), we conclude
that the two Lagrangians are related by formula (3.6), proving the proposition.

We now proceed to analyze the change of variables formula (3.6) closer. The first
remark is that, since the two Lagrangians are assumed to be of order r, the divergence
term DivF is restricted so as to preserve this order. According to (2.4), except in the
exceptional case r=1, x=2, both of the terms L and W* L.det Do in (3.6) depend on at
most r-th order derivatives of u, hence DivF must be an r-th order function. The case
r=1, x=2 is special, since, for instance, for p=g=1 all Lagrangians are divergence
equivalent under contact transformations [11). One further remark: if L is actually of
order r' < r, but the divergence term DivF in (3.6) depends on r-th order derivatives
of u, then the resulting r-th order Lagrangian L will be degenerate, and thus not of
great intrinsic interest. Indeed, the Cartan method will inevitably exclude degenerate
Lagrangians, as they can themselves always be reduced to a lower order jet bundle by
adding in a suitable divergence. The most interesting case, then, is when both L and L
are nondegenerate r-th order Lagrangians.

Now, the key point here is that the requirement that DivF be an r-th order function
does not necessarily imply that F itsell has order r. An elementary counter-example is
provided by the third order 2-tuple F=(uu,, u, Uey = Ul — U u,), which has second
order divergence:

H - — —_ - — g2
DivF=D, (uu,,)+ D, (u,u, ~uu,, —u, Upy) = Uy Uy — UZ,.

However, a fundamental result, proved in [14], states that if DivF is of order r, then
one can always find some r-th order p-tuple having the same divergence.

LEMMA 6. — Let r and k be positive integers. Suppose F (x, u™) is a p-tuple of k-th
order functions with the property that its total divergence DivF=A (x, u") is of
order r. Then there is an ‘“equivalent” r-th order p-tuple F(x, u'") having the same
divergence: A=DivF=DivF,

For instance, in the above example, we can take F=(u, uy,, —u,u,)as our equivalent
second order 2-tuple, although this is not the only possibility. Thus we can replace F
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EQUIVALENCE OF HIGHER ORDER LAGRANGIANS 3713

Note that the order of 8} is one more than the order of J, which is the reason for the
strict inequality in (2.10). It will be convenient to assemble these forms into a column
vectors 6,,=(06), a=1, ..., g, # J=m, of (m+ 1)-st order contact forms, which we can
view as lying in the tensor product space T*J™*! ® U, the second factor indexing the
various entries of 8,. Similarly let 8 =(0,, ..., 6,_,) be the complete collection of
contact forms generating the ideal 5, which we regard as an element of T*J*® U~ 1,
We note here the fundamental result that any x-map preserves the contact ideal.

LEMMA 1. — Let ¥ : V' = J be any x-map. Then
\y# e(f)= A") . e").

where the matrix A”e GL(U") is an invertible linear transformation, which is block
lower triangular with respect to the Cartesian product decomposition (2.2), and the
diagonal blocks A,,: U, — U,, m < r, are given explicitly by the formula (2.8), (2.9).
(There are also many structural relations among the various off-diagonal blocks of A®
but we wll not require these here.)

This is a consequence of the elementary fact that the transformation rules for contact
forms and for derivatives are essentially the same. Indeed, we have the basic formula

2.11) W* (du,)= A, du, + Dy, dx  mod s™,

which is a consequence of the chain rule formula (2.7).

3. Eqguivalence of Lagrangians

We begin by setting up the basic equivalence problem for a general variational problem
3.1 L= J L (x, ') dx,
2]

whose Lagrangian L is a smooth function of order r. We regard (3.1) as an oriented
integral, so the integrand is a p-form Ldx=Ldx' A ... A dx".

In formulating the equivalence problem for such a variational integral, we must first
choose the appropriate class of allowable changes of variables and the precise notion of
equivalence. Throughout this section, the index k=0, 1, 2 will correspond to fiber-
preserving, point or general contact transformations, as above. In the standard equivalence
problem the two variational integrals are mapped directly to each other under the
prolonged transformation. The divergence equivalence problem only requires that the two
sets of Euler-Lagrange expressions are mapped into each other, which is the same as the
requirement that the two Lagrangians differ by a divergence ((3], [11]). We begin our
analysis with the standard equivalence problem, which is much easier 10 formulate.
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376 N. KAMRAN AND P. J. OLVER

in (3.6) by any equivalent r-th order divergence F: J* — R”, and still preserve the basic
equivalence of the two Lagrangians. Putting the above remarks together, we have
proved the following reduction theorem for the divergence equivalence problem.

THeOREM 7. — Suppose r > |, or x #2. Then two r-th order Lagrangians are (r+ k)-
divergence equivalent for some k > 0 if and only if they are r-divergence equivaleni.

This has still not quite reduced the divergence equivalence problem for r-th order
Lagrangians back down to the jet bundle J*, since (3.5) (with & =0) still requires equiva-
lence modulo the contact ideal .#“* ", which contains forms depending on (r+ 1)-st order
derivatives. The full reduction to J* is harder, and requires a more complete discussion
of the Cartan formulation for this problem, which we present in the following section.

4. Cartan formulation of the Equivalence Problem

We now turn to the formulation of our basic equivalence problems in a form amenable
to the Cartan equivalence method. First we indicate how to set up the standard
equivalence problem on J'. Assume for simplicity that we are on a domain where
L > 0. (The points where the Lagrangian vanishes play a distinguished role in the
standard equivalence problem, and we will avoid them. [f L <0, then we perform an
orientation reversing transformation before beginning). We need to construct a suitable
coframe on the base space, which in this case will be J, and then determine the
appropriate structure group so as to encode the Lagrangian equivalence problem. We
begin with the independent variables x, and define the column vector of one-forms
weT*J @ X, with entries

@.1) w=>2MLdd, i=1,....p.

Note that @; A ... A @,=Ldx is just the Lagrangian p-form. The coframe elements
corresponding to the coordinates « ™! will be rescaled contact forms, which we assemble
into a column vector '

6:(90’ L-llngl’ L—zlpez, e, L""”“’B,_l)TeT* ® yr-n,

(The scaling factors are introduced for later convenience.) To complete the elements 8,
o to be a coframe on J'=XxU"=Xx U~V x U,, we introduce the column vector of
one-forms ne T*J*® U,, with entries

4.2) g=L"""di;, x=1,...,q, #J=r
Finally let Q=0 0, )TeT*J ®J be the column vector representing the entire base
coframe. Vectors and matrices will be represented in block form relative to the com-

ponents d, o, ® of the full coframe Q.
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EQUIVALENCE OF HIGHER ORDER LAGRANGIANS 3

For the standard Lagrangian equivalence problem, the relevant structure group will
be the matrix Lie group G, = G, where x=0, 1, 2, corresponds to the class of transfor-
mations allowed, consisting of all block lower triangular matrices of the form

A 0 0
4.3) B 1 0)
C D.J E

where, using the notation introduced in section 2,
(i) JeGL(X), det)=1,
(i) Ae GL(U"™ ") is block lower triangular, with diagonal blocks A,=A,® ©*J~7,
(iii) Be Hom(U"" Y, X), where B=(B,, B,, ..., B,_,), B;e Hom (U}, X), and

B;=0 for j2x,

(iv) CeHom(U"" 1 U,)

(v) DeHom(X, U,), D} ,=D}. ;. whenever (J, )=(J', i),

(vi) E=A,® ©J-TeGL(U,).

Of these conditions, (i) will ensure that the Lagrangians maich up exactly according
to (3.2), (i1} are the contact conditions given in lemma 1, and (iii) reflects the form of
the allowed transformations, ¢f. (3.4). Indeed, according to Bicklund’s Theorem, if we
are dealing with contact transformations, we could even enlarge our structure group to
allow all the entries B; to be nonzero initially, since the ultimate form (2.3) of the base
transformations will ultimately require us to reduce down to B;=0forj= 2. (However,
see also the discussion in [13).) Condition (v) reflects the equality of mixed partial
derivatives. [Here, recall that (J, /) represents an unordered multi-index, so the condition
is that (J', /') is some permutation of (J, i).] Finally, (vi) reflects the chain rule formula
for the r-th order derivatives given in (2.11).

THEOREM 8. — Two Lagrangians L and L are r-standard equivalent if and only if there
is a diffeomorphism \¥ : J* — ) which satisfies

4.4) Y*()=g.Q,

where g is a G,-valued function on J'.

The proof is fairly straightforward, and is left to the reader. Note that we did not
a priori assume that the map ¥ be a x-map; this follows as a consequence of (4.4). An
important remark is that, although we know that we can always reduce to J*, we could
equally well set up the (r+k)-standard equivalence problem, using the analogous base
coframe on the higher order jet bundle J*** for any k = 0 (with r replaced by r+k in
the definitions of 6, n), and the corresponding structure group GU**. Proposition 3
implies that the solutions to these two equivalence problems must be the
same. (Although, as we will see in [13], for a specific example, the explicit necessary
and sufficient conditions for equivalence. while certainly isomorphic. may not have
identical forms.)
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378 N. KAMRAN AND P. J. OLVER

The divergence equivalence problem is a bit more tricky to encode in Cartan form,
since in proposition 4, we still have not entirely eliminated all the (r + 1)* order derivatives
of u. However, by mimicking the constructions presented in [12] for first order Lagrangi-
ans, we will still be able to formulate the problem as a Cartan equivalence problem on
the jet bundle J*. As discussed in [12], we will still assume that L > 0, as this can always
be arranged by adding in a suitable divergence. (This restriction is a little discomforting,
as it is not an intrinsic property of the problem. Robert Bryant (personal communica-
tion) has been able to give a formulation of the problem which avoids this condition in
the case of first order Lagrangians (see [3]} for the case p=1), but his constructions do
not appear to generalize to higher order Lagrangians.) As in [12], we need to append
some additional variables w=(w,, ..., w,) to take care of the additional divergence
term. These are essentially the coordinates on the space W=AP"'T*X = R?. The
base space will now be J* x W, and we complete our earlier coframe on J by letting v
denote the column vector of one-forms

4.5) vi=L0" " 1gw  i=1, ..., p

Finally let ==(@, o, , v)T be the column vector representing the base coframe.

The structure group for the divergence equivalence problem will be the matrix Lie
group H,=HY, k=0, 1, 2, corresponding to the class of transformations allowed, consist-
ing of all block. lower triangular matrices of the form

A 0 0 0
B J 0 0
C D.J E

(4.6) 0
Q TR TM T

subject to the following conditions

(') JeGL(X),

(ii) AeGL(U"" ") is block lower triangular, with diagonal blocks
A=A, ® O T,

(iii) Be Hom (U" ™", X), where B=(B,, B, ..., B,_,), B;e Hom(U;, X), and

B;=0 for j=x,

(iv) CeHom(U"" ", U,)
(v) DeHom(X, U,), D} ;=Dj. ;. whenever (J, H=(’, i),
(vi) E=A,® ©"J TeGL(U,).
(vii) Qe Hom (U*~Y, W)
(viii) ReHom (X, W) = Hom (R?, R®), and detJ=1+1trR,
(ix) MeHom(U,, W), Y M;?,=0 for each K with # K=r,
. 0=K

-1
(%) T= <eGL(W),
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EQUIVALENCE OF HIGHER ORDER LAGRANGIANS 379

Here, as with the first order case presented in [12], conditions (i') and (viii) replace the
condition detJ=1 in the standard equivalence problem, and ensure that the Lagrangians
match up as in (3.6), with trR corresponding to the total divergence DivF.
Conditions (ii)-(vi), are exactly the same as above. Condition (ix), which reduces to a
skew symmetry condition in the first order Lagrangian case (where the matrix M is
square) ensures that both F and DivF are functions on J*, with the (r+ 1)-st order
derivative terms in the divergence cancelling out. (Here is where we finally get rid of
the (r+ 1)-st order derivatives in our problem!) Finally, condition (x) reflects the induced
transformation rulces for the new variables w, which are really coordinates on the (p—1)-
st exterior power of the cotagent bundle, A?~! T*X. It is a remarkable fact that these
conditions do indeed define a Lie group.

THEOREM 9. — Two Lagrangians L and L are divergence equivalent if and only if there
is a diffeomorphism W : J' x W = ' x W which satisfies

4.7) P*(E)=h.E,

where h is an H -valued function on J' x W,

The proof of this result is far less straightforward than the standard equivalence
problem, but follows as in the first order case discussed in [12]. For brevity it will
be omitted. This completes the preliminary encoding of the Lagrangian equivalence
problems. At this point, one can lift the coframes and commence the arduous task of
implementing the equivalence algorithm; however, this will be taken up in future papers
in this series. (See [20] for the case p=g=1, r=2.)

5. Derivative covariants and invariant differential cquations

One of the important consequences of the reduction theorem for the Lagrangian
equivalence problem is the existence of *“derivative covariants”. Loosely speaking, a
derivative covariant of order m 2 r, will be a certain function of the Lagrangian and its
partial derivatives (hence an r-th order function) with the surprising property that, taking
into account the transformation properties of the Lagrangian itself, it transforms in
exactly the same way as the m-th order derivatives of the variables u. Thus, as far as the
changes of variables are concerned, derivative covariants and derivatives are “‘isomorphic”
quantities, even though the derivative covariants only depend on r-th order derivatives
of u. The goal of this section is to make these statements precise, and prove a fundamen-
tal result on the existence of derivative covariants. We begin by presenting a framework
for general equivalence problems which, while somewhat novel, is in a form amenable
to the development of these ideas.

In any equivalence problem, there is a collection of functions & . which we regard as
the coordinates on a fiber bundle E with structure group G and fiber F, over our base
manifold M. (See [18] for the basic theory of fiber bundles.) Thus, for the standard
r-th order Lagrangian equivalence problem. M=J", and the only function is the
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380 N. KAMRAN AND P. J. OLVER

Lagrangian L, which we regard as the fiber coordinate in a one-dimensional vector
bundle (line bundle) over M; the transformation rules on the fibers (which determine the
structure group of the bundle) are, in this case, the Lagrangian change of variables
formula (3.3). Note especially that the base manifold may come equipped with extra
structure restricting the allowable changes of coordinates, so we only need define transi-
tion rules on the fibers of E for the allowable coordinate changes. (In the case under
consideration, the base manifold is J, and we are only allowing changes of coordinates
induced by the r-jets of x-maps on X x U.)

In the original formulation of a specific equivalence problem, we are given two local
coordinate expressions for an object, e.g. a Lagrangian, and want to determine whether
there is an allowable coordinate transformation from one to the other. In our fiber
bundle language, by an E-equivalence problem we mean the problem of determining
whether two given local coordinate expressions for sections of the fiber bundle E are
actually the same section. Now, local coordinates y,: U, » V, = R" on M provide a
local trivialization

X:i E'U,_'v:x F.
The transition functions on the overlap of the two coordinate charts take the form

_ Xp=xgoxi " V,x F > Vg xF,
X:ﬂ (.\7,, f) = (X,.p (x:)’ gnB (x:) f)¢ Xy € vv fe F! gzﬁ (x:) € G9

where x,;=x5°%, ' is the transition function on the base (which may be restricted by
the extra structure on M). For a specific E-equivalence problem, we are provided with
two different local coordinate expressions

5= (%0 (D)} € VX F, sp={(x;, fy(xp))} € VX F,

for possible sections of E, defined over open subsets V_, Vg« R". The equivalence
problem is to determine whether they determine the same section s of E, i.e. whether we
can find local coordinate maps x,, x, with the property that s, =y, (s), sp=%p(5) repre§ent
the same section s of E. A second way of stating this problem is that we are required
to find an allowable transition function Xap Such that sg=x%(s,), i.e.

(5 l) (x[h fp (x[i)) = X:n (xcn ./; (xu)) = (x:ll (xx)s guﬂ (x'x) 'ft (Xu)),

on the overlap of the two coordinate systems.

Any invariant [ of an equivalence proolem will, in particular, depend on the functions in
the collection # and their derivatives, and, possibly, the base variables themselves. The
derivatives of the functions in & will coordinatize the jet bundle J*E, which is a fiber
bundle whose structure group is determined completely by the structure group
of E. Thus [ will be a function from J*E (or possibly just some open subset thereof) to
some manifold Y, the image space for I. (In particular, Y=R for a scalar
invariant.) The key remark is that the invariance of I is equivalent to the requirement
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that it define a bundle map from J*E 1o the trivial fiber bundle M x Y, having structure
group {e}. Thus, we are led to the following abstract definition of an invariant.

DerINITION 10. — Let E— M be a fiber bundle, which determines a corresponding
equivalence problem. Let Y be a smooth manifold. A Y-valued invariant for the E-
equivalence problem is a bundle map

I: FE-MxY,

where M XY is the trivial fiber bundle with structure group {e}.
In local coordinates, 1 will take the form

i(X,, f(k)) =(x,, I (x,, f(k)))’ XV, f""e F*

S™ denoting the k-jet coordinates corresponding to the fiber coordinates /, and where
I(x,, f¥) €Y is the usual formula for the invariant. The fact that T maps to a fiber
bundle with trivial structure group {e} means that whenever two sections S, Sp, are
related by an allowable coordinate change as in (5.1), then, on the overlap of the two
coordinate charts,

(5.2) T(xg S5 p)) =1 (ap (5), 899 (X2) S (ap (RN =T (x, £9(x,).

This now agrees with the traditional definition of an invariant.

We can also reformulate these concepts in terms of more familiar objects from the
geometric theory of the equivalence method, ¢f. [19]. We first note that, once a given
equivalence problem has been reformulated in Cartan form, the functions in & which
are of interest will re-appear as the coefficients of the coframe elements over the base
manifold M. As such, they naturally fit into the framework of G-structures. Accord-
ingly, let G, be a structure group (which, in examples, is usually not the same as the
structure group G of the fiber bundle E used above). Let Bg, and Bg, be G,-structures
on manifolds M and M respectively. The Cartan equivalence problem for these structu-
res is the problem of finding all the local diffeomorphisms f: M — M such that the
diagram

Be. 5 B,
(5.3) ™| |

ML m

*

commutes (cf. [19], p. 313). Locally, the G,-structure B;, will be coordinatized by the
#7ied coframes @=g.Q, where Q is a prescribed coframe on the base manifold M, and
g is an element of the structure group G,. Since the invariants can depend on higher
order jets of the coefficients of the coframe elements, we are led to introduce the higher
order structure bundle BE), cf. [16), §11.3, whose structure group is the prolongation
G'¥. Locally the bundle B¥ will be coordinatized by the higher order lifted coframes
OW =" QW where g"e G, and @ =, Q is the higher order frame determined by Q.
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In this language, a Y-valued invariant of the Cartan equivalence problem (5.3) will be
given by a map [: BE! — Y such that the diagram

g /%, gw
G. —* Bg.
™ 9

commutes for all maps f which solve the self-equivalence problem

!

BG. - BGo

M 1 15M

M L M

In this framework, once we’ve managed to encode our equivalence problem in Cartan
form, the original fiber bundle E will correspond to a certain G, -invariant subbundle of
the vector bundle associated to the structure bundle Bg,. For instance, in the standard
Lagrangian equivalence problem, rather than consider the Lagrangian line bundle over
J© as constructed above, we could look at the subbundle generated by the base forms
(4.1), and the corresponding contact forms (2.10) required to preserve invariance of E
under the structure group. (In the fiber-preserving standard equivalence problem, no
contact forms are required.) Moreover, the k-jet bundle J*E will then naturally appear
as an invariant subbundle of the vector bundle associated to the higher order bundle
B%. Thus we can work entirely within the standard differential-geometric framework
of the equivalence problem. However, for the present discussion, we find it more
convenient to work directly with the fiber bundle E so as to avoid extra complications.

We now generalize the definition of a Y-valued invariant to include quantities that,
while not invariant, obey some prescribed transformation rule. Referring back to
definition 10, we find that it suffices to replace the trivial bundle M x Y by some other
fiber bundle.

DerFiNiTiON 11, — Let E— M be a fiber bundle, which determines a corresponding
equivalence. Let K — M be another fiber bundle. A K-covariant for the E-equivalence
problem is a bundle map

F: JFE-K.
In local coordinates, F will take the form
Fx, f™=(x, F(x,, f*eV,xY,

where Y now denotes the fiber of K. Covariance of F means that, on the overlap of
the two coordinate charts, the function f obeys the transformation rule

(54) F (xﬂ’ fl{” (x[!)) =F (Xup (xu)s gg‘B) (xu) . [;“ (x:ﬁ (x:))) = hq[! (xu) .F (xcn m(“)’
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where the fiber transition functions h.p(x,) take values in the structure group H of the
bundle K. In the case when H={e} is trivial, then (5.4) reduces to (5.2), and we are
back to the classical case of an invariant. We now illustrate this general definition by
some simple examples taken from the equivalence problem for a first order Lagrangian
on the line (¢f. [6), [7), [11]).

Example 12. — For the standard Lagrangian cquivalence problem, the Lagrangian
itself is trivially an E-covariant, where E is the line bundle determined by L,and F: E-E
is the identity map. Powers of the Lagrangian will similarly define E™-covariants, where
E™ denotes the corresponding m-th tensor power of the line bundle E.

Less trivial examples can be constructed as follows: Consider a scalar first order
Lagrangian L(x, u, p), where p=u_, under the pseudogroup of point transformations
x=@(x, u), =Yy (x, u), where the barred and unbarred variables refer 1o the two different
local coordinate systems [called (xg, fp) and (x,, f;) respectively above). Let

(o))

denote the Jacobian matrix of the base transformation. The transition rules on the
fibers of the Lagrangian line bundle E are given by

(5.5) L=De¢ 'L=(bp+a)"'L.

Let m:J' - Z=XxU denote the trivial projection, and define the determinant line
bundle A=n* A2T* Z, which has fiber transition rules

J=(ad-bc) f.

Then the Hessian H= L,, determines a A~2® E~3-.covariant because it transforms
according to the rule

A=(ad-bc)~?(bp+a)*H.
Similarly, the differential polynomial
K=LL,, +3L,L,,
is a A™? ® E ™~ *-covariant because
R=(ad-bc) 3 (bp+a)°K,

as the reader can readily check using the chain rule. (The individual summands of K
are not covariants.) The product

(LL,,,+3L,L,)?

ppp P _~pp

I=K2, L ' H 3= .
L.L},
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is thus an invariant, being a section of the trivial product bundle
AP®E°)PRE®MA*®E ) *=MxR.

This expression is the well-known [irst invariant for the standard Lagrangian equivalence
problem (c/f. [6], [11)).

In accordance with this example, we note that the functions which determine the
different branches of a given Lagrangian equivalence problem turn out to be certain
particular covariants associated with the problem. However, the precise form of the
associated image bundle K in the context of the Cartan procedure is not clear to us at
present.

DeFiNiTION 13, — Assume that our base space has the form M=J)'=J'Z,
Z=XxU. An m-th order derivative covarianti of an equivalence problem is a
nf J"-covariant. Here n,: J* — X is the natural projection, so that o J™ denotes the pull-
back of the m-jet bundle J™ to the /~jet bundle J'.

Locally, what does a derivative covariant look like? For simplicity, let us restrict
attention to the case under consideration, the r-th order Lagrangian equivalence problem
on the jet bundle J, I = r. Thus, M=J', and the line bundle E - M will have base
coordinates (x, 4") and the single fiber coordinate L, while J*E will have the same base
coordinates, and fiber coordinates L™, meaning all the partial derivatives of L with
respect to all the base variables (x, ) up to order k. (However, note that L depends
only on (x, u'"), so the partial derivatives of L with respect to the derivatives of u of
order greater than r will automatically vanish.) On the pull-back bundle K=n}J", the
base coordinates are (x,u™) and the fiber coordinates ™=(}), for
a=1,...,4, #J £m. The transformation rules on K are the same as those of the m-
th order derivatives of u,

i—,(m)=¢(m) (X, v(m)),
¢f. (2.6). An m-th order derivative covariant will then be a collection of functions
o™ =F(x, u™, L®)=(F% (x, u®, L¥)), a=1,...,q, #JZm

According to the local form (5.4) of definition 11, these functions must transform exactly
the same way as the k-th order derivatives of 1 do:

(5.6) F=y"(x, F).
A trivial example of an m-th order derivative covariant is provided by
5.7 F(x, u", L®)=y™,

foranym < L

In all the interesting examples of m-th order derivative covariants associated with an
r-th order Lagrangian that we know so far, we have m > r, and the components of F of
order < r agree with the trivial example (5.7); it is only the higher order components
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that involve L and its derivatives. In fact, if
(5.8) F=(, F,, ..., F),

is any m-th order derivative covariant, then its homogeneous components F;=(F}),
a=1, ..., g, #J=/, called homogeneous derivative covariants, can be re-assembled indi-
vidually to form further derivative covariants; for example, we can replace any k-th
order homogeneous piece of any derivative covariant by the k-th order piece of any
other derivative covariant [e. g. the trivial covariant (5.7)], and still preserve the covariance
of the function. For instance, if F is as in (5.8) with m < /, then

F=@"""F,)

is also a derivative covariant, with trivial (m— 1)-st order components, but non-trivial
m-th order component. Thus, in practice it makes sense to concentrate on the homogen-
eous derivative covariants from now on. Also note that we can multiply any component
of a derivative covariant by any invariant of the equivalence problem without affecting
the basic covariance, so we can readily produce many derivative covariants from any
given one.

Example 14. — Consider a first order Lagrangian L (x, u, p) on the line. The rational
function

(59) Q(x, u, p, L= 2L P Ly

PP

is a second order homogeneous derivative covariant. In other words, if x, u, are related
1o x, u, by a point transformation, whose prolongation 10 J? is given by

P=V,(x, u, p) Do’ g=V,(x, u, p, q) Do’

where ¢=u,,, and L is the new Lagrangian as in (5.5). then a short calculation shows
that Q satisfies the derivative covariant transformation rule

Qx, u, p, L) =, (x, u, p, Q(x, u, p, L))

Thus the rational function Q obeys the same transformation rules as the second order
derivative ¢, and hence Q determines a homogeneous second order derivative covariant
for L. By the above remarks, we can combine Q with the trivial first order derivative
covariant to get a full second order derivative covariant

F(x, u, p, L) =(u, p, Q(x, u, p, L),

One of the main consequences of the existence of derivative covariants is that they
determine invariantly defined systems of differential equations associated with the given
equivalence problem. The class of solutions of such a system will therefore play a
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distinguished role. For example, the solutions of the Euler-Lagrange equations deter-
mine the critical points of the functional.

ProposiTiON 15. — Let F,, be a homogeneous m-th order derivative covariant. Then
the m-th order system of differential equations

(5.10) u, =F, (x, u® L®),

are intrinsically defined in the sense that if ¥ is any x-map taking the Lagrangian L to L,
then W will map the system (5.10) to the corresponding system in the barred variables. In
particular, the transformation will map solutions of one system to solutions of the other.

For instance, in example 14, the differential equation corresponding to the covariant
(59) is

q=Q(x, u, p, L),

which is nothing but the Euler-Lagrange equations for the first order Lagrangian,
¢f. (5.9). Indeed, in the case of one independent variable, p=1, solving the Euler-
Lagrange equations for the highcst order derivative of u will always produce a derivative
covariant, similar to the one described above, whose associated invariant system of
differential equations (5.10) is just the Euler-Lagrange equations themselves. Similarly,
solving for thé highest order derivative of u in any derivative of the Euler-Lagrange
equations will produce higher order derivative covariants. One might conjecture at this
point that these are the only invariantly defined differential equations associated with a
given variational problem. Surprisingly, this naive guess is not correct, and we will see
that there are other such intrinsically defined systems.

The key result that allows one to readily determine derivative covariants is the
following.

ProPOSITION 16. — Let m 2 r, and suppose E=(Ej§)e GL(U,),

F=(Fi)a=1,...,q #J=#K=m,i=1,...,p,

are functions depending on (x, u"™) and partial derivatives of L. Define a corresponding
collection of one-forms

(5.11) {=E.(du,-Fdx)eT*J"® I,

with components

P
(5.12) g= ¥ E},',‘(duK—Z Fg_,.dx‘), a=1,...,q, #J=m,

#K=m =1
such that the coefficients F obey the symmetry condition
(5.13) F;,=F}. . whenever (J, )=, 7).
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Suppose the one-forms {, are invariant modulo the contact ideal ™ under K-maps, i.e.

Y*@)=¢ mod 5™,

Then F is an (m+ 1)-st order homogeneous derivative covariant.

Proof. — This turns out to be a simple consequence of the fact, noted in lemma I,
that the transformation rules for contact forms and for derivatives are essentially the
same. Since { is invariant modulo #™, we have W*{={mod ™, which we expand
using (2.11):

Y*="*{E.(du, - Fdx)}=¥*E. {Apdu,+(DVY,,.,— (1 ® De")¥* F] dx} mods'™,
Comparing this expression with (5.11), we find that

Y*E.A, =E,
Y*E.{-Dy,_,+(1®De")¥*F]=E.F.

Therefore
Y*E{1®De")¥*F-A,.F-Dy,_,]=0.
Finally, since E is invertible, we use (2.7) to conclude that
Y*F=(1®@ Do M {A,.F-D{,_,}=v.(x, u"™, F)

obeys the same transformation rules as the m-th order derivatives of &. This suffices to
prove that F is an (m+1)-st order homogeneous derivative covariant.

Suppose we have managed to solve the J'** equivalence problem (either standard or
divergence) for some & 2 0, and that, as a result of applying Cartan’s method, we have
managed to reduce the equivalence problem to an {e}-structure on the base manifold
F*k. We are allowing the possibility of prolonging the problem (which may be inevi-
table, ¢f. (12]), as long as the problem ultimately reduces to an {e}-structure on the
base. It is then a simple matter 10 then apply this result to find derivative covariants
for any such Lagrangian. Consider the resulting invariant coframe elements

(=E.n+D.J.0+C.6,

corresponding to the base coframe elements r=(ny), a=1,...4q, #IJ=r+k,
¢/. (4.2). The coefTicients E, D, J, C, will be certain functions on Jr** depending on
the coordinates (x, «"**) and the partial derivatives of L; they are explicitly determined
by the Cartan method, and result from the normalizations of essential torsion
terms. These invariant one-forms will be of the form (5.12), where the functions F are
related to the normalized group parameters according to the system of equations

(5.14) E.F=D.J.
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We need also check that the coefficients F obey the symmetry condition (5.13). However,
this follows directly from (5.14), and the symmetry conditions (v), (vi) placed on the
elements of structure group G,. Since each one-form £} is, by construction, invariant,
proposition 16 implies that the coefficients F=(Fj ;) form an (r+ & + 1)-st order homogen-
eous derivative covariant,

CoroLtary 17. — Let L be a nondegenerate r-th order Lagrangian with the property
that the corresponding Cartan equivalence problem reduces io an {e}-structure on the base
J°, and let m be any integer with m > r. Then L possesses a sel of m-th order derivative
covariants F=(Fy). Consequently there exists an invariantly-defined system of m-th order
differential equations

(5.15) ut = F% (x, u®, L®)

associated with any such Lagrangian.

(It would be interesting to see if one could eliminate the hypothesis that the Cartan
solution to the equivalence problem reduce to an {e}-structure on the basc in this
result. The method introduced in [20] has some bearing on this question.)

Example 18. — For the case of a first order Lagrangian on the line, formulated as an
equivalence problem on the jet bundle J!, there is just one lifted form corresponding to
the base coframe element t=dp. According to the calculations in [11], for each of the
equivalence problems (standard or divergence), the corresponding invariant adapted
coframe element takes the form

C=A(dp—Qdx)+C8,

where Q is the derivative covariant described above, 0= du-p dx is the contact form, and
A depends on L and its derivatives in a complicated manner, which depends on the
particular equivalence problem under consideration. Since { is invariant, we conclude
immediately from proposition 16 that Q is a homogeneous second order derivative
covariant, as we observed earlier. The corresponding differential equation (5.15) is just
the Euler-Lagrange equation.

It appears that, for a first order Lagrangian, the only homogeneous derivative covari-
ants are essentially the Euler-Lagrange equation, its derivatives, and invariant multiples
thereof. This is no longer true for a second order Lagrangian on the line. Indeed, the
solution of the equivalence problem on the minimal order jet bundle J? will lead to a
third order homogeneous derivative covariant, and a corresponding invariantly defined
third order differential equation

(5.16) w"'=F(x, uu, v, LW(x, uu,u")).
The Euler-Lagrange equation is, of course, of order 4 for a nondegenerate Lagrangian,
and is probably some “covariant derivative” of the third order equation (5.16), although

we do not know this at present. An explicit example of such an invariant equation is
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the third order equation
5.17) D,(LL)= LL,L,.

As will be proved in a later paper in this series, this differential equation is invariant under
the pseudogroup of fiber-preserving transformations of the second order Lagrangian
L(x, u, p, q), provided L satisfies the nondegeneracy condition

(5.18) 2LL,+L2 #0, i.e. L# (Ag+B)*?,

for A, B functions of x, u, p. This means that if L is mapped to L under a transformation
of the form x=@(x), u=Y(x, u), then the equation (5.17) is mapped to the analogous
equation for L. Therefore, the solutions to the equation (5.17) play a distinguished role
for the associated variational problems. The geometrical or analytical significance of
such an equation remains to be determined. In a subsequent paper, [20], we will develop
these and other parametric formulas coming from Cartan’s analysis of the second order
particle Lagrangian on both J2, [5), and also the corresponding problem on J3, which is
the bundle the Cartan form lives on, and compare the results. In particular, this will
lead to explicit formulas for the invariants and derivative covariants of this problem,
and the corresponding invariant differential equations. This will be necessary to pursue
the tantalizing problem of the interpretation and application of these new invariant
differential equations associated with variational probiems.

We also remark that even for first order Lagrangians in several independent variables,
the system of invariant differential equations (5.15) is new. For instance, in the case of
a Lagrangian in one dependent and two independent variables treated by Gardner and
Shadwick, (8], their solution to the equivalence problem will lead to an invariantly defined
sccond order system of the form

Uy = F] (.\', ““), L(k) (.\', u“’)),
(5.19) ey =F, (x, D, LW (x, uM)),

u, =F;(x, u'h, LW (x, u'M)).

It would be of interest to determine the explicit parametric formulas for these equations,
and discuss their interpretation. In particular, we conjecture that the Euler-Lagrange
equation for such a Lagrangian will be built up of a suitable invariant combination of
the three component invariant parts given in (5.17), although this remains to be verified
explicitly.

Finally, we remark on the correspondence between the invariants of a higher order
version of the Lagrangian equivalence problem and the r-th order invariants coming
ircm the solution to the minimal order J* version of the same equivalence
problem. Suppose we have a Lagrangian with the property that the associated Cartan
equivalence problem reduces to an {e}-strucmre on the base manifold. Suppose
Hx, u**9 LYY is any invariant associated with some version of the Lagrangian equiva-
lence problem, obtained from the Cartan solution to the J*** formulation of the problem,
and depending not only on the Lagrangian and its derivatives, but also higher order
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derivatives of the u's. The question is, is there a corresponding r-th order invariant
quantity which will appear the J" equivalence problem? The answer to this question is
provided naturally by the derivative covariants associated with L. Indeed, for
r <m < r+k, we can replace each m-th order derivative of u appearing in the formula
for [ by its corresponding derivative covariant. [n this way we will deduce an “equiva-
lent” invariant I(x, ', LY") which does just depend on at most r-th order derivatives
of the u's, and therefore must be a combination of the r-th order invariants coming
from the J’ equivalence problem and their covariant derivatives. Thus, as far as the
transformation properties of the Lagrangian are concerned, | and [ determine “‘iso-
morphic” invariants, even though their precise formulas are quite different. Similar
remarks apply to other invariant quantities, including the Euler-Lagrange equations and
the Lagrangian form. For each of these invariant objects depending on higher order
derivatives of the u’s there will be a corresponding r-th order invariant object with the
same transformation rules as the higher order object. Note that we are not implying
that these objects are the same (One certainly can’t reduce the 2r-th order Euler-
Lagrange equations to an r-th order equation with the same solutions!)—only that they
transform in identical manners under the appropriate pseudogroup, and therefore from
an equivalence problem standpoint describe “isomorphic” objects. Again, we hope to
make these ideas clearer with specific examples in a later in this series.

We would like to thank the Institute for Mathematics and Its Applications, Minnesota,
for its hospitality during the fall program, 1988, on Nonlinear Waves-Solitons, during
which time this work was completed.
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