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1. Introduction.

Although the ideas date back to the early nineteenth century (see [1; Chapter 5] for de-
tailed historical remarks), the theory of moving frames (“repéres mobiles”) is most closely
associated with the name of Elie Cartan, [12], who molded it into a powerful and algorith-
mic tool for studying the geometric properties of submanifolds and their invariants under
the action of a transformation group. In the 1970’s, several researchers, cf. [13, 16, 17, 24],
began the attempt to place Cartan’s intuitive constructions on a firm theoretical founda-
tion. A significant conceptual step was to disassociate the theory from reliance on frame
bundles and connections, and define a moving frame as an equivariant map from the man-
ifold or jet bundle back to the transformation group. More recently, [14, 15|, Mark Fels
and I formulated a new, constructive approach to the equivariant moving frame theory
that can be systematically applied to general transformation groups. These notes provide
a quick survey of the basic ideas underlying our constructions.

New and significant applications of these results have been developed in a wide variety
of directions. A promising inductive version of the method that uses the moving frame
of a subgroup to induce that of a larger group appears in [27]. In [6,40], the theory
was applied to produce new algorithms for solving the basic symmetry and equivalence
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problems of polynomials that form the foundation of classical invariant theory. In [37],
the differential invariants of projective surfaces were classified and applied to generate in-
tegrable Poisson flows arising in soliton theory. Applications to computation of symmetry
groups and classification of partial differential equations can be found in [36, 38]. In [11],
the characterization of submanifolds via their differential invariant signatures was applied
to the problem of object recognition and symmetry detection; see [2,5, 7, 8] for further
developments. The moving frame method provides a direct route to the classification of
joint invariants and joint differential invariants, [15, 42, 8], establishing a geometric coun-
terpart of what Weyl, [50], in the algebraic framework, calls the first main theorem for
the transformation group. Moving frames provide a systematic method for constructing
symmetry-preserving approximations of differential invariants by joint differential invari-
ants and joint invariants, [10, 11, 7], based on the multispace construction introduced in
[43]. Multispace is designed to be the proper geometric setting for numerical analysis,
just as jet space is the geometric setting for differential equations. Applications to the
construction of invariant numerical algorithms and the theory of geometric integration,
[9, 21], are under active development.

Most modern physical theories begin by postulating a symmetry group and then
formulating field equations based on a group-invariant variational principle. As first rec-
ognized by Sophus Lie, [33], every invariant variational problem can be written in terms
of the differential invariants of the symmetry group. The Euler-Lagrange equations inherit
the symmetry group of the variational problem, and so can also be written in terms of
the differential invariants. The general group-invariant formula to directly construct the
Euler-Lagrange equations from the invariant form of the variational problem was known
only in a few specific examples, [3,18]. In [29, 30], the complete solution to this problem
was found as a consequence of a general moving frame construction of an invariant form
of the variational bicomplex, [3, 30, 49]; see also [22, 23] for further developments.

Most recently, in [44, 45], Pohjanpelto and I have succeeding in establishing a com-
plete, rigorous, and algorithmic foundation for the moving frame algorithm for infinite-
dimensional pseudo-group actions, [32, 35, 47]. Our methods include a constructive proof
of the Tresse-Kumpera finiteness theorem for differential invariants, [48, 31], and complete
classifications of differential invariants, invariant differential forms, and their syzygies sim-
ilar to the finite-dimensional results outlined in this paper.

Owing to the overall complexity of the computations, any serious application of the
methods discussed here will, ultimately, rely on computer algebra, and so the development
of appropriate software packages is a significant priority. The moving frame algorithms are
all designed to be amenable to practical computation, although they often point to signif-
icant weaknesses in current computer algebra technology, particularly when manipulating
the rational algebraic functions which inevitably appear within the moving frame formu-
lae. Following some preliminary work by the author in MATHEMATICA, Irina Kogan, [28],
has implemented the finite-dimensional moving frame algorithms on Ian Anderson’s gen-
eral purpose MAPLE package VESSIOT, [4]. Interestingly, although the moving frame and
its associated differential invariants require solving systems of nonlinear equations, and so
may be quite intricate if not impossible to explicitly compute, the structure of the resulting
algebra generated by the differential invariants can be completely determined by linear dif-
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ferential algebraic methods. However, large-scale applications, such as those presented in
Mansfield, [36], will require the development of a suitable noncommutative Grébner basis
theory for such algebras, complicated by the noncommutativity of the invariant differential
operators and the syzygies among the differentiated invariants.

Let us now present the basics of the equivariant moving frame method. Through-
out this paper, G will denote an r-dimensional Lie group acting smoothly on an m-
dimensional manifold M; see [44,45] for the more sophisticated methods required for
infinite-dimensional pseudo-groups. Let Gg = {g € G|g-S = S } denote the isotropy sub-
group of a subset S C M, and G§ = N.eg G, its global isotropy subgroup, which consists
of those group elements which fix all points in S. The group G acts freely if G, = {e} for
all z € M, effectively if G, = {e}, and effectively on subsets if Gf; = {e} for every open
U C M. Local versions of these concepts are defined by replacing {e} by a discrete sub-
group of GG. A non-effective group action can be replaced by an equivalent effective action
of the quotient group G/G7%,, and so we shall always assume that G acts locally effectively
on subsets. A group acts semi-reqularly if all its orbits have the same dimension; in par-
ticular, an action is locally free if and only if it is semi-regular with r-dimensional orbits.
The action is regular if, in addition, each point z € M has arbitrarily small neighborhoods
whose intersection with each orbit is connected.

Definition 1.1. A moving frame is a smooth, G-equivariant map p: M — G.

The group G acts on itself by left or right multiplication. If p(z) is any right-
equivariant moving frame then p(z) = p(z) ! is left-equivariant and conversely. All classi-
cal moving frames are left equivariant, but, in many cases, the right versions are easier to
compute.

Theorem 1.2. A moving frame exists in a neighborhood of a point z € M if and
only if G acts freely and regularly near z.

Of course, most interesting group actions are not free, and therefore do not admit
moving frames in the sense of Definition 1.1. There are two basic methods for converting
a non-free (but effective) action into a free action. The first is to look at the product
action of G on several copies of M, leading to joint invariants. The second is to prolong
the group action to jet space, which is the natural setting for the traditional moving frame
theory, and leads to differential invariants. Combining the two methods of prolongation
and product will lead to joint differential invariants. In applications of symmetry construc-
tions to numerical approximations of derivatives and differential invariants, one requires a
unification of these different actions into a common framework, called “multispace”, [43];
the simplest version is the blow-up construction of algebraic geometry, [19].

The practical construction of a moving frame is based on Cartan’s method of normal-
ization, [25,12], which requires the choice of a (local) cross-section to the group orbits.

Theorem 1.3. Let G act freely, regularly on M, and let K be a cross-section.
Given z € M, let g = p(z) be the unique group element that maps z to the cross-section:
g-z2=p(z)-z€ K. Then p: M — G is a right moving frame for the group action.
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Given local coordinates z = (zy,...,2,,) on M, let w(g,z) = g - z be the explicit
formulae for the group transformations. The right moving frame g = p(z) associated
with a coordinate cross-section K = { z; = ¢;,...,%, = ¢, } is obtained by solving the

normalization equations

T

wq(g,2) = ¢y, w,.(g,2) =c,, (1.1)

for the group parameters g = (gy,...,g,) in terms of the coordinates z = (z,...,2,,).

Theorem 1.4. If g = p(z) is the moving frame solution to the normalization equa-
tions (1.1), then the functions

L(2) =w,4(p(2),2), .o Ly (2) = w,(p(2), 2), (1.2)
form a complete system of functionally independent invariants.

Definition 1.5. The invariantization of a scalar function F: M — R with respect to
a right moving frame p is the the invariant function I = ((F') defined by I(z) = F(p(z) - 2).

In particular, if I(z) is an invariant, then «(I) = I, so invariantization defines a
projection, depending on the moving frame, from functions to invariants.

Traditional moving frames are obtained by prolonging the group action to the nth order
(extended) jet bundle J* = J"(M,p) consisting of equivalence classes of p-dimensional
submanifolds S C M modulo nth order contact; see [39; Chapter 3] for details. The nth
order prolonged action of G on J" is denoted by G,

An nth order moving frame p(™:J" — G is an equivariant map defined on an open
subset of the jet space. In practical examples, for n sufficiently large, the prolonged action
G(™) becomes regular and free on a dense open subset V* C J*, the set of regular jets.

Theorem 1.6. An ntt order moving frame exists in a neighborhood of a point
2™ € J" if and only if 2™ € V" is a regular jet.

Although there are no known counterexamples, for general (even analytic) group ac-
tions only a local theorem, [46, 41], has been established to date.

Theorem 1.7. A Lie group G acts locally effectively on subsets of M if and only if
for n > 0 sufficiently large, G™ acts locally freely on an open subset V™ C J".

We can now apply our normalization construction to produce a moving frame and a
complete system of differential invariants in the neighborhood of any regular jet. Choosing
local coordinates z = (x,u) on M — considering the first p components x = (z!,...,2P) as
independent variables, and the latter ¢ = m —p components v = (u!,...,u?) as dependent
variables — induces local coordinates z(") = (m,u(”)) on J" with components u§ repre-
senting the partial derivatives of the dependent variables with respect to the independent

variables. We compute the prolonged transformation formulae
w™(g,z2M) =g 2o (y,0™) = g™ (2, ™)
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by implicit differentiation of the v’s with respect to the y’s. For simplicity, we restrict
to a coordinate cross-section by choosing r = dim G components of w(™) to normalize to
constants:

w, (g, 2™) = ¢, e w,(g,2™) = c,. (1.3)

Solving the normalization equations (1.3) for the group transformations leads to the explicit
formulae g = p(™(2(™) for the right moving frame. Moreover, substituting the moving
frame formulae into the unnormalized components of w(™ leads to the fundamental nth
order differential invariants

I (20 = (™) (p) (2(M)) 2(M)) = p() (z(M)) . 5 (), (1.4)
In terms of the local coordinates, the fundamental differential invariants will be denoted
H(z,u™) =y (p" (&, u(™), z, ), I8 (z,u®) = 0% (p™ (2, u™), z,u®).  (L5)

In particular, those corresponding to the normalization components (1.3) of w™ will be
constant, and are known as the phantom differential invariants.

Theorem 1.8. Let p(™):J* — G be a moving frame of order < n. Every nth order
differential invariant can be locally written as a function J = ®(I™) of the fundamental
nth order differential invariants. The function ® is unique provided it does not depend on
the phantom invariants.

The invariantization of a differential function F:J" — R with respect to the given
moving frame is the differential invariant J = ((F) = F oI, As before, invariantization
defines a projection, depending on the moving frame, from the space of differential functions
to the space of differential invariants.

Example 1.9. Let us illustrate the theory with a very simple, well-known example:
curves in the Euclidean plane. The orientation-preserving Euclidean group SE(2) acts on
M = R2, mapping a point z = (z,u) to

y =xcosf —usinb + a, v=xsinf +ucosf + b. (1.6)
For a parametrized curve z(t) = (z(t), u(t)), the prolonged group transformations

. 2
B dv oz, sin 6 + u, cos d“v Tylyy — Tyl

V= — = , v, = —— = - , 1.7
Y dy x,cosf —u,sinf YW dy?  (z,cosf —u,sing)3 (L17)
and so on, are found by successively applying implicit differentiation operator
1
D, = D (1.8)

Y x,cos6 —u,sinf t

to v. The classical Euclidean moving frame for planar curves, [20], follows from the cross-
section normalizations

y:O’ /U:07 v :O. (19)
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Solving for the group parameters g = (6, a, b) leads to the right-equivariant moving frame

L u TU, — UT
=—tan"!t L h= 1 ¢

Q= - —F/, T 1.10
Ty z? 4 u? Va? +u? (1.10)

b) is the classical left moving frame, [12, 20]:

The inverse group transformation g~ ! = (5, a,
one identifies the translation component (@,b) = (z,u) = z as the point on the curve, while
the columns of the rotation matrix R = (t,n) are the unit tangent and unit normal vectors.
Substituting the moving frame normalizations (1.10) into the prolonged transformation

formulae (1.7), results in the fundamental differential invariants

TyUy — TyyUy dk d*k
v — K= —5——5—7n , v _ —, v —_— —
Yy (22 + u2)3/2 yyy ds Yyyy ds2

+3x3, (1.11)
where D, = (22 +u2)~'/2 D, is the arc length derivative — which is itself found by sub-
stituting the moving frame formulae (1.10) into the implicit differentiation operator (1.8).
A complete system of differential invariants for the planar Euclidean group is provided by

the curvature and its successive derivatives with respect to arc length: s,k , K ... .

The one caveat is that the first prolongation of SE(2) is only locally free on J! since
a 180° rotation has trivial first prolongation. The even derivatives of kK with respect to s
change sign under a 180° rotation, and so only their absolute values are fully invariant.
The ambiguity can be removed by including the second order constraint v,, > 0 in the
derivation of the moving frame. Extending the analysis to the full Euclidean group E(2)
adds in a second sign ambiguity which can only be resolved at third order. See [42] for
complete details.

As we noted in the preceding example, substituting the moving frame normalizations
into the implicit differentiation operators D, .,...,D,, associated with the transformed
independent variables gives the fundamental invariant differential operators D,,...,D
that map differential invariants to differential invariants.

p

Theorem 1.10. If p(:J"» — G is an nt* order moving frame, then, for any k >
n + 1, a complete system of kt order differential invariants can be found by successively
applying the invariant differential operators Dy, ..., D, to the non-constant (non-phantom)

fundamental differential invariants I("*1) of order at most n + 1.

Thus, the moving frame provides two methods for computing higher order differen-
tial invariants. The first is by normalization — plugging the moving frame formulae into
the higher order prolonged group transformation formulae. The second is by invariant
differentiation of the lower order invariants. These two processes lead to different differ-
ential invariants; for instance, see the last formula in (1.11). The fundamental recurrence
formulae

D;H* =¢; — L}, DI =TIy ; — Mg, (1.12)

connecting the normalized and the differentiated invariants (1.5) are of critical importance
for the development of the theory, and in applications too.
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A remarkable fact, [15, 30], is that the correction terms L%, M ; can be effectively
computed, without knowledge of the explicit formulae for the movmg fmme or the normal-
1zed differential invariants. Let

P
prv, = &
i=1

be a basis for the Lie algebra g(™ of infinitesimal generators of G(™. The coefficients
5 (7, u(*)) are given by the standard prolongation formula for vector fields, cf. [39], and
are assembled as the entries of the nth order Lie matriz

0

(k)
(,u )3u0"

k=1,...,7r

a=1 k=#J>0

& o & et ool ©51
L, (z™) = O . (1.13)

51% f? 80}- 90? (pg,r

The rank of L, (2(™) equals the dimension of the orbit through z(™). The invariantized Lie
matriz is obtained by I = «(L, ) = L_(I™), replacing the jet coordinates z(™) = (z,u(™)
by the corresponding fundamental differential invariants (1.4). We perform a Gauss—Jordan
row reduction on the matrix I, so as to reduce the r xr minor whose columns correspond to
the normalization variables z,,..., 2, in (1.3) to an r x r identity matrix — let K, denote
the resulting matrix of differential invariants. Further, let Z(x,u(™) = (D,z,) denote
the p x r matrix whose entries are the total derivatives of the normalization coordinates
Z0y..0y 2, and W = ((Z) = Z(I™) its invariantization. The main result is that the
correction terms in (1.12) are the entries of the matrix product

LY ... LY Mo M. MR,
W-K, =M, =[: -. : Do : . (1.14)
LY ... Ip M} ... Mg ... Mg,

These formulae are, in fact, particular cases of the invariant differential form recurrence
formulae described in [29, 30], and now extend to infinite-dimensional pseudo-groups in
44, 45].

Example 1.11. The infinitesimal generators of the planar Euclidean group SE(2)
are
v, =0,, vy, =0, vy = —ud, + x0,,.

Prolonging these vector fields to J®, we find the fifth order Lie matrix

1 0 0 0 0 0 0
L.=( 0 1 o0 0 o o0 o0 |, (1.15)
—u x 1+ ui 3uyu,, My M, M,
where
MS - 4umuwacac + 3uacac7 M4 = 5uac TTTTT + 10ummuxacx7
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Under the normalizations (1.9), the fundamental differential invariants are

y — J =0, v — I =0, v, +— I, =0, Vyy F— Iy =k, (1.16)
and, in general, v, = D’;v — I; see (1.11). The recurrence formulae will express each
normalized differential invariant I, in terms of arc length derivatives of k = I,. Using
(1.16), the invariantized Lie matrix takes the form

1000 0 0 0
L) =L =[0 10 0 o0 0 0
0 0 1 0 3x%2 10kI; 15k, + 1012

Since our chosen cross-section (1.9) is based on the jet coordinates x,u, u, that index the
first three columns of I is already in the appropriate row-reduced form, and so Ky = I.
Differentiating the normalization variables and then invariantizing produces the matrices

Z=(1 u, wu,,), (Z)=W=(1 0 L)=(1 0 k).
Therefore, the fifth order correction matrix is
M;=W-K;=(1 0 0 0 3x* 10s°I; 15x°I, + 10xI3),

whose entries are the required the correction terms. The recurrence formulae (1.12) can
then be read off in order:

D,J=D,(0)=1-1, DJI=D,0)=0-0,
DsIIZDs(O):O_()? DsI2:D5K/:I3_O7
DI, =1, —3K*, DI, = I, — 10x%15, DI =I5 —15x%1, — 10K I3,

We conclude that the higher order normalized differential invariants are given in terms of
arc length derivatives of the curvature k by

I, =&, I, = Ky, I4:I{ss—i—3/i3,

Iy = Kyyy + 19 KK, Iy = Kyges + 34 K2k, + 48 kK2 + 45Kk,

and so on. The direct derivation of these and similar formulae is, needless to say, consid-
erably more tedious. Even sophisticated computer algebra systems have difficulty owing
to the appearance of rational algebraic functions in many of the expressions.

A syzygy is a functional dependency H( ... D,I, ...) = 0 among the fundamental
differentiated invariants. In Weyl’s algebraic formulation of the “Second Main Theorem”
for the group action, [50], syzygies are defined as algebraic relations among the joint
invariants. Here, since we are classifying invariants up to functional independence, there
are no algebraic syzygies, and so the classification of differential syzygies is the proper
setting for the Second Main Theorem in the geometric/analytic context. See [15,42] for
examples and applications.



Theorem 1.12. A generating system of differential invariants consists of a) all non-
phantom differential invariants H* and I® coming from the un-normalized zeroth order jet
coordinates y*, v*, and b) all non-phantom differential invariants of the form I 3.; where
I¥ is a phantom differential invariant. The fundamental syzygies among the differentiated
invariants are

(i) D;H =6 - Li,
(i1) Dylg =c— Mg ;, when If is a generating differential invariant, while I§ ;- = c is a

phantom differential invariant, and

when H' is non-phantom,

(i43) DyIfy —Dply; = My, o — M5y ;, where I} and I{; are generating differential
invariants and K N J = & are disjoint and non-zero.
All other syzygies are all differential consequences of these generating syzygies.

Therefore, the structure of the algebra generated by the moving frame differential
invariants can be completely determined via purely linear differential algebra, based on
the formulae for the prolonged infinitesimal generators. An efficient non-commutative
Grobner basis theory for handling such algebras is of paramount importance for further
analysis, particularly when dealing with large-scale applications.

Two submanifolds S, S C M are said to be equivalent if S = ¢ - S for some ¢g € G.
A symmetry of a submanifold is a group transformation that maps S to itself, and so is
an element g € Gg. As emphasized by Cartan, [12], the solution to the equivalence and
symmetry problems for submanifolds is based on the functional interrelationships among
the fundamental differential invariants restricted to the submanifold.

A submanifold S C M is called regular of order n at a point 2z, € S if its nt? order jet
inS|., € V" is regular. Any order n regular submanifold admits a (locally defined) moving
frame of that order — one merely restricts a moving frame defined in a neighborhood
of 2, to it: p™ o jnS. Thus, only those submanifolds having singular jets at arbitrarily
high order fail to admit any moving frame whatsoever. The complete classification of such
totally singular submanifolds appears in [41]; an analytic version of this result is:

Theorem 1.13. Let G act effectively, analytically. An analytic submanifold S C M
is totally singular if and only if G ¢ does not act locally freely on S itself.

Given a regular submanifold S, let J*) = 1(®) | § = (*) 0j,S denote the kth order
restricted differential invariants. The k*t order signature S®) = S*)(8) is the set param-
etrized by the restricted differential invariants; S is called fully reqular if J*) has constant
rank 0 < ¢, < p = dimS. In this case, S*) forms a submanifold of dimension t, —
perhaps with self-intersections. In the fully regular case,

tn <tn+1 <tn+2 < - <tS:tS+]. :"':t§p7
where t is the differential invariant rank and s the differential invariant order of S.

Theorem 1.14. Let S,S C M be regular p-dimensional submanifolds with respect
to a moving frame p(™). Then S and S are (locally) equivalent, S = g - S, if and only if
they have the same differential invariant order s and their signature manifolds of order
s + 1 are identical: S©+1)(8) = S+1)(9).



Example 1.15. A curve in the Euclidean plane is uniquely determined, modulo
translation and rotation, from its curvature invariant x and its first derivative with respect
to arc length .. Thus, the curve is uniquely prescribed by its Fuclidean signature curve
S = §(C), which is parametrized by the two differential invariants (k, ;). The Euclidean
(and equi-affine) signature curves have been applied to the problems of object recognition
and symmetry detection in digital images in [11].

Theorem 1.16. If S C M is a fully regular p-dimensional submanifold of differential
invariant rank t, then its symmetry group Gg is an (r —t)-dimensional subgroup of G that
acts locally freely on S.

A submanifold with maximal differential invariant rank ¢ = p is called nonsingular.
Theorem 1.16 says that these are the submanifolds with only discrete symmetry groups.
The index of such a submanifold is defined as the number of points in S map to a single
generic point of its signature, i.e., ind.S = min {# o~ {¢}|¢ € SETD } where o(2) =
J(+1) (%) denotes the signature map from S to its order s+1 signature S+, Incidentally,
a point on the signature is non-generic if and only if it is a point of self-intersection of
SGH) . The index is equal to the number of symmetries of the submanifold, a fact that
has important implications for the computation of discrete symmetries in computer vision,
[5,8,11], and in classical invariant theory, [6, 40].

Theorem 1.17. If S is a nonsingular submanifold, then its symmetry group is a
discrete subgroup of cardinality # G ¢ = ind S.

At the other extreme, a rank 0 or mazimally symmetric submanifold has all constant
differential invariants, and so its signature degenerates to a single point.

Theorem 1.18. A regular p-dimensional submanifold S has differential invariant
rank 0 if and only if it is an orbit, S = H - z,, of a p-dimensional subgroup H = G¢ C G.

For example, in planar Euclidean geometry, the maximally symmetric curves have
constant Euclidean curvature, and are the circles and straight lines. Each is the orbit of a
one-parameter subgroup of SE(2), which also forms the symmetry group of the orbit.

In equi-affine planar geometry, when G = SA(2) = SL(2) x R? acts on planar curves,
the maximally symmetric curves are the conic sections, which admit a one-parameter
group of equi-affine symmetries. The straight lines are totally singular, and admit a three-
parameter equi-affine symmetry group, which, in accordance with Theorem 1.13, does not
act freely thereon. In planar projective geometry, with G = SL(3,R) acting on M = RP2,
the maximally symmetric curves, having constant projective curvature, are the “WW-curves”
studied by Lie and Klein, [26, 34].

In this paper, I have only surveyed some of the basics of the equivariant moving frame
method. However, I hope that the reader is now convinced of the effectiveness and wide-
ranging applicability of these methods, which, I believe, will finally realize a significant
fraction of Cartan’s grand designs for his moving frame theory. Details, additional results,
and a wealth of applications can be found in the references.
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