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The aim of this note is to survey the recent literature on the new equiv-
ariant theory of moving frames developed by the author and Mark Fels'#15.
The classical Cartan theory'!:18, as well as its more rigorous later revival'”-22,
has a fairly limited range of geometrical applications. In contrast, the new
equivariant theory can be systematically applied to completely general trans-
formation groups, including infinite-dimensional Lie pseudo-groups. The full
range of new applications is surprisingly broad, including complete classifi-
cation of differential invariants and their syzygies, general equivalence and
symmetry problems based on differential invariant and joint invariant sig-
natures, classical invariant theory and algebra, computer vision and object
recognition, the calculus of variations, Poisson geometry and solitons, and
symmetry-based numerical approximation theory.

This note begins with a very brief outline of the key construction in the
finite-dimensional Lie group context, illustrated by a very simple, classical
example. The second part of the note lists all current references for the various
applications. There are several more detailed surveys available!6:36:37:38:41 = A
very elementary introduction can be found in Chapter 8 of my recent book35.
The full details of the method can be found in the original paper with Fels!®.
Further important developments of the general construction can be found in
the recent paper with Kogan?%. All of my papers are available on my web
site.

The Basic Construction: Let G be an r-dimensional Lie group acting
smoothly on an m-dimensional manifold M. The crucial idea is to decouple
the moving frame theory from reliance on any form of frame bundle. In other
words, in general Moving frames # Frames! A careful study of Cartan’s
analysis of projective curves!!, reveals that he was well aware of this distinc-
tion, that, unfortunately, was not properly appreciated by most subsequent
developers of the method.

Definition 1 A moving frame is a smooth, G-equivariant map p: M — G.

The group G acts on itself by left or right multiplication. If p(z) is any
right-equivariant moving frame then p(z) = p(z)~! is left-equivariant and
conversely. In geometrical situations, one can identify left-equivariant moving
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frames with the geometrical frame-based versions, but these identifications
break down when dealing with more general group acctions.

Theorem 2 A moving frame exists in a neighborhood of a point z € M if
and only if G acts freely and regularly near z.

Recall that G acts freely if the group element that fixes a point of M is the
identity, i.e., g - z = z for some z € M if and only if g = e. This implies that
the orbits all have the same dimension as G itself. Regularity requires that, in
addition, each point z € M has a system of arbitrarily small neighborhoods
whose intersection with each orbit is connected.

Of course, most interesting group actions are not free, and therefore do not
admit moving frames in the sense of Definition 1. There are three basic meth-
ods for converting a non-free action into a free action. The first is to look at
the product action of G on several copies of M, leading to joint invariants, also
known as “semi-differential invariants” in the computer vision literature!'?32,
The second is to prolong the group action to jet space, which is the natural
setting for the traditional moving frame theory, and leads to differential in-
variants. Combining the two methods of prolongation and product will lead
to joint differential invariants. In applications of symmetry constructions to
numerical approximations of derivatives and differential invariants, one re-
quires a unification of these different actions into a new common framework,
called multispace®C.

The practical construction of a moving frame is based on Cartan’s method
of normalization'!-23.

Theorem 3 Let G act freely and regularly on M, and let K C M be a
(local) cross-section to the group orbits. Given z € M, let g = p(z) be the
unique group element that maps z to the cross-section: g-z = p(z) -z € K.
Then p: M — G is a right moving frame.

Given local coordinates z = (24, - ., z,,,) on M, let w(g, z) = g-z be the explicit
formulae for the group transformations. The right moving frame g = p(2)
associated with a coordinate cross-section K = {2z, = ¢;,...,%, = ¢, } is
obtained by solving the normalization equations

wl(gaz)zcla wT(g,z)ch, (1)
for the group parameters ¢ = (gy,...,9,) in terms of the coordinates
z=(z,...,%,). Substituting the moving frame formulae into the remaining

transformation rules leads to a complete system of invariants for the group ac-
tion. These are, in fact, the local cross-section coordinates of the cross-section
representative or normal form k= p(z)-z€ K of z € M.
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Theorem 4 If g = p(z) is the moving frame solution to the normalization
equations (1), then the functions

L(2) = w4 (p(2),2), ... I, .(2) = wy,(p(2),2), (2)
form a complete system of functionally independent invariants.
Example 5 Let us illustrate the theory with a very simple, well-known
example: curves in the Euclidean plane. The orientation-preserving Euclidean
group SE(2) acts on M = R?, mapping a point z = (z,u) to

y =xzcosf —usinf + a, v==xsinf + ucosd +b. (3)
the action is not free, and so to construct a moving frame we prolong to the jet

space. (Alternatively, one could “prolong” by taking Cartesian products.) For
a parametrized curve z(t) = (z(t), u(t)), the prolonged group transformations

: 2
_dv _ = sin @ + u, cos 0 v = v Ty — Ty )

v = —
v dy 1,c080 —u,sing’ W dy?  (z,cos6 —u,sinf)3’

and so on, are found by successively applying implicit differentiation operator

- 1 D (5)

Vo z,co86 —u,sinf

to v. The classical Euclidean moving frame for planar curves'®, follows from
the cross-section normalizations

y =0, v =0, v, = 0. (6)

Solving for the group parameters g = (6,a,b) leads to the right-equivariant
moving frame

u T, +uu TU; — UT
§=—tan"' L a:—i’d_ ¢ b= A=t (7)

2 2’ 2 2’
Ty VA T \V xp + ui

The inverse group transformation g=! = (6,a,b) is the classical left moving
11,18,

frame one identifies the translation component (a,b) = (z,u) = z as
the point on the curve, while the columns of the rotation matrix R; = (t,n)
are the unit tangent and unit normal vectors. Substituting the moving frame
normalizations (7) into the prolonged transformation formulae (4), results in
the fundamental differential invariants

TyUyy — Tyl dk d’*k
W , Vyyy m T5 Vyyyy — S5 T 33, (8)

ds?
where D, = (2? +u?)~'/2 D, is the arc length derivative — which is itself
found by substituting the moving frame formulae (7) into the implicit dif-
ferentiation operator (5). A complete system of differential invariants for

'Uyy'—>l"v}:
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the planar Euclidean group is provided by the curvature and its successive
derivatives with respect to arc length: &, k, K, ...

The one caveat is that the first prolongatlon of SE( ) is only locally free
on J! since a 180° rotation has trivial first prolongation. The even derivatives
of k with respect to s change sign under a 180° rotation, and so only their
absolute values are fully invariant. The ambiguity can be removed by includ-
ing the second order constraint v,, > 0 in the derivation of the moving frame.
Extending the analysis to the full Euclidean group E(2) adds in a second sign
ambiguity which can only be resolved at third order3®
We now survey of the current applications of this basic construction.

Classification of Differential Invariants and Syzygies: The moving frame
method was used to completely solve the main classification problems for
differential invariants!®. The recurrence formulae relating the differentiated
invariants and the normalized invariants, as in (8), are constructed by purely
infinitesimal methods, using only linear algebra and differentiation. The recur-
rence formulae lead to a complete solution to the problem of classifying syzy-
gies (functional relations) among differential invariants. The moving frame
construction was used to clarify the singularities and geometric structure of
prolonged group actions on submanifolds®”. These ideas were extended?%:27
to construct a group-invariant version of the full variational bicomplex!»?-42,

Inductive Construction: Kogan?42% establishes a useful inductive method
for building a moving frame for a large group based on a moving frame for a
subgroup. The inductive algorithm leads to the general formulae relating the
differential invariants of groups and their subgroups.

Joint Invariants and Joint Differential Invariants: The moving frame
method provides a direct route to the classification of joint invariants and
joint differential invariants'®3?. Further developments appear in Boutin’s
thesis®6.

Equivalence, Symmetry and Rigidity: The fundamental differential in-
variants, as specified by the recurrence formulae, serve to parametrize the
signature manifold associated with a given submanifold. For example the
Fuclidean signature of a plane curve is the curve parametrized by the first
two differential invariants k,k,. The signature completely solves the basic
equivalence problem: Two submanifolds be mapped to each other by a group
transformation if and only if they have the same signature!®-10:35. Exten-
sions to noise-resistant joint invariant signatures are extensively developed3®.
Applications include general rigidity theorems for submanifolds under group
actions!s.

Calculus of Variations: Most modern physical theories begin by pos-
tulating a symmetry group and then formulating field equations based on a
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group-invariant variational principle. As first recognized by Sophus Lie?®, ev-
ery invariant variational problem can be written in terms of the differential
invariants of the symmetry group. The associated Euler-Lagrange equations
inherit the symmetry group of the variational problem, and so can also be
written in terms of the differential invariants. The moving frame construc-
tions were applied to establish a general group-invariant formula that enables
one to directly construct the Euler-Lagrange equations from the invariant
form of the variational problem?%:27. These results are based on the invariant
variational bicomplex construction and the resulting recurrence formulae. An
alternative foundation of the subject, based on a new approach to symme-
try reduction of exterior differential systems and variational problems, can be
found in Itskov?°.

Classical Invariant Theory: The moving frame theory was applied to pro-
duce new, practical algorithms for solving the basic symmetry and equivalence
problems of univariate polynomials (binary forms) that form the foundation
of classical invariant theory3®:3:24. An early version of the required signature
was based on a fortuitous connection with a Cartan equivalence problem in
the calculus of variations®®34. Extensions to polynomials in several variables
can be found in Kogan’s thesis?*.

Poisson Geometry and Solitons: Moving frames have been used to classify
the differential invariants of projective curves and surfaces, and applied to
generate integrable Poisson flows in soliton theory3!. A similar construction
for space curves under the conformal group appears in Mar{ Beffa®.

Computer Vision: FEarlier work on applications of the Cartan moving
frame theory can be found in Faugeras'3. The general characterization of sub-
manifolds via their differential invariant signatures was applied to the problem
of object recognition and symmetry detection in digital images'®. Boutin®"
applies moving frame methods to the problems of polygon recognition and
symmetry detection. Extensions to projective actions appear in the recent
thesis of Hann'®.

Numerical Methods and Geometric Integration: The approximation of
higher order differential invariants by joint invariants underlies the formulation
of fully invariant finite difference numerical schemes®'%4:5. Applications of
moving frames to the construction of invariant numerical algorithms and the
theory of geometric integration®?! are under development0-28,

Infinite-dimensional Pseudo-groups: The moving frame algorithm has
been extended to several examples of infinite-dimensional pseudo-group
actions'*. However, a full, rigorous foundation for the theory has yet to be
completed. Once completed, the theory will produce pseudo-group versions
of all of the preceding applications.
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