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1 Introduction

One of the most basic constructions of modern physics is the formulation of field equations (or
variational principles) admitting a known symmetry group. This can be done, in the regular case,
by assembling suitable combinations of differential invariants of the group. A more subtle question,
the problem of classifying invariant differential equations of a specified form admitting a prescribed
symmetry group, cannot be systematized so directly. For example, the classification of geometric
diffusion equations admitting symmetry groups of visual significance is a problem of importance in
computer vision and image processing, [4].

In this work, we have considered the classification of wave equations in both one and several space
variables; and a single time variable admitting a prescribed finite-dimensional symmetry group. We
determine a complete set of conditions that a transformation group admit an invariant evolutionary
or wave equation. Differential invariants completely characterize all possible invariant equations
admitted by a symmetry group of the prescribed type. In the planar case (one independent spatial
variable and one dependent variable), we then give directions in how to use Lie’s complete classifi-
cation of groups of point and contact transformations in the plane [1], [2] to find a complete list of
invariant wave equations. We further study possible equivalence relations between these equations,
completing the information given in [3].

We make extensive use of the theory of differential invariants, as presented in [2], [5]. We
assume that the variables are, in general, complex-valued. The present work can be viewed as a
start towards the classification of differential invariants for surfaces under transformation groups
in three-dimensional space, where the group acts completely trivially on the time coordinate. An
important task awaiting completion is the complete classification of the differential invariants of
Lie’s three-dimensional transformation groups.

2 Notations

All our considerations are local, so we can work in Euclidean space. The total space E~Xx U,
where U ~ R has coordinate u, the scalar dependent variable, whereas X ~ RP*t! has coordinates
z = (2%, ... zP), representing one temporal (zg) and p spatial independent variables. E represents
E considering only spatial variables (2!, ... 2P). We use two jet spaces, the nth jet space J"E with
coordinates (z, u(")), where u(™) stands for all partial derivatives
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and the space J® E| with spatial derivatives only. We consider both point and contact transformation
groups G acting on F. An infinitesimal generator of the group action
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corresponds to the Lie algebra element v € g, where g denotes the Lie algebra of G. The group
consists of affine bundle maps if it consists of transformations (z,u) — (®(2), A(z)u+ B(z)) which
are fiber-preserving and affine in the dependent variable u at each point; the infinitesimal generators
have ¢ = £(x), ¢ = a(x)u+ f(x). For instance, most linear partial differential equations have affine
bundle symmetry groups. The infinitesimal generator
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defines the nth prolongation of v to J"E, whose coefficients are given by the standard prolongation
formula

P
P = DkQ+Y_ Eux.
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Here Dg is the total derivative corresponding to the multi-index K, and we use the notation
UKi = Uk+4e;, = Dijugk, €; being the multi-index corresponding to z;. @ = ¢ — Ele &y is the
characteristic function of v. We will denote by v(?) the corresponding prolongation of v in J*E.
We are going to consider evolutionary differential equations of the form

ug = F ko > 1
where F' is a differential function in J? £, i.e. without ¢ derivatives, and the left hand side ug
contalns at least one time derivation: kg > 1.
3 Invariance Conditions
We begin with the standard infinitesimal criteria for invariance, [2]:

Theorem 1 An evolutionary-type equation ug = F admits a connected transformation group G as
a symmetry group if and only if

v["](uK —-F)=0 whenever ug = F.

A relative invariant is a differential function R such that v(”)(R) =R, for all v € g, where 7 is
a multiplier differential function.

Theorem 2 A regular partial differential equation A(aj,u(”)) = 0 admits G as a symmetry group
if and only of A is a relative differential invariant for some differential multiplier of G.

Applying these criteria to the families of equations of our interest, we find restrictions to their
possible symmetry groups:

Theorem 3 Let G be a connected spatial transformation group, and suppose that ug = Fl[u],
ko > 0, is an evolutionary-type equation admitting G as a symmetry group. Assume that x', ... z°
appear in the derivative ug (k; > 1,i=1,...,s), and z**' ... 2P do not (k; =0,i=s+1,...,p).

(1) If the equation is an evolution equation, u; = F', then there are no conditions on G.

(i) If the equation is a potential evolution equation, uyy = F, where x = z!, then G can be
a contact transformation group whose characteristic has the form Q(I,u(l)) = O(x,u1) +
C@?, .. aP)yu— P ¢ (a?, ... aP)u,.



(iii)

In all other cases, the group is necessarily a group of affine bundle maps, whose characteristic
has coefficients of the form & = &zt 5%l . 2P), i = 1,...,s, & = (L. 2P),
i=s+1,....p, p = Ele(kl/Q)ﬁfi/ami + (2T, .. 2P). Moreover, if ki > 2,1 > 1,
then the corresponding coefficient has the form & = a'(2")? + fz’ + ¢, where o, B, ' are
functions of 251, .. xP only.

In all cases, a group G of the prescribed form does admit a nontrivial invariant evolutionary type
equation u = Fo with Fy # 0 a relative invariant of weight Q, — > _, k;D;€'. Moreover, the most
general G-invariant equation of this form s ug = IFy, where I is an arbitrary absolute differential
mvariant of G.

Applying this general result to the planar case we obtain the following.

Theorem 4 Let G be a connected spatial transformation group acting on E = X x U ~ R? which
1s a symmetry group of an evolutionary-type equation

(i)

(i)

(iii)

(iv)

(v)
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m = 0,n = 1: If the equation is an evolution equation, uy = F, then there are no conditions

on (.

m = 0,n > 2: If the equalion is purely evolutionary, i.e., of the form 0"u/Ot" = F, then the
infinitesimal generators of G have the form v(®) = &(2)0, + [n(x)u+ f(x)]0w, where £, 1, f are
arbitrary functions of x.

m = 1,n = 1: If the equation is a potential evolution equation, uyy = F', then G can be a contact
transformation group whose infinitesimal generators have the form v(®) = &(x,u)0, + [ku +
0(z, uz )]0y, where k is a constant.

m = 1,n > 2: If the equation is the potential form of a higher order purely evolution equation,
Ugn = F with n > 2, then the infinitesimal generators of G have the form v(®) = &(x)0y +
[ku + f(2)]0u, where k is a constant and &, f are arbitrary functions of x.

m > 2: In all other cases, the infinitesimal generators have the form v(® = [azz? + ajz +
agldz + [(m — Dasu + bglOy,where ag, a1, as, by are constants, and thus the symmetry group is
at most four-dimensional.

The right hand side of the equations is characterized as follows:

Theorem 5 If an evolutionary-type equation
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admits a spatial transformation group G, then its right hand side satisfies

vI¥(F) = (Qu — mD,€)F,

and hence is a relative differential invariant of the form

Lm+1

= (L) 1.

Here I is an arbitrary differential invariant of G, and w = L(z, u(”)) dz is a G-invariant one-form
having nontrivial Euler-Lagrange ezpression E(L) # 0.

In [3] we give tables of all the differential invariants involved in the construction of invariant
equations, for all of the finite-dimensional planar transformation groups in Lie’s list.



4 On changes of variables

Lie’s list of algebras acting on the plane is given by representative elements of classes up to a
point transformation (or contact transformation in the case of contact algebras). These equivalence
transformations can transform the representative invariant equations we obtain into other equations,
invariant under the transformed algebra. The type of equation, though, is not generally respected
by arbitrary transformations.

Consider a change of variables & = x(z,u), u = ¥(z,u). We first can observe that according to
theorems 3 and 4 all families of equations, except the evolution one, admit only symmetry groups
that are imprimitive, i.e. the fibration £ = ¢ is an invariant foliation. If the transformed group
admits an invariant equation, it must be generated by vector fields of the form

v = §(2)0z + [k(z)u + f(2)]0a = ()0 + [k()¥ + f(0))0,

so the new independent variable z = y(z,u) must be given by an invariant foliation y = ¢. Con-
ditions on the new dependent variable are found differentiating the equations v(x) = &(x) and

V() = E¥o + 0y = kOO + f(X).

Theorem 6 A change of variables & = x(x,u), u = (x,u) is an equivalence transformation of an
invariant evolutionary equation (1) if the following is satisfied:

(i) The new independent variable must be chosen as the function x defining an invariant foliation
x(z,u)=c, = x.

(ii) The new dependent variable u = (x,u) must be such that (a) if T # u, then ¥y — YuXu/Xs
must be a relative invariant of weight @y — xXu/Xz; (b) if 2 = u then Yy must be a relative
mvariant of weight o .

We find thus the following classes of changes of variables:
1. Changes of variables that change the principal invariant foliation, z = c.

2. Changes of variables that do not change the principal invariant foliation, merely rescaling
the independent variable Z = x(x). These class admits two subclasses: (a) affine changes of
variables, with u = ¢(z)u + d(z); (b) non-affine changes of variables in u.

3. Any composition of the above.

We have found that only the algebras point-equivalent to {0, 0, — ud,, 20, — 2zud,} admit
a non-affinechange of variables respecting the form of its invariant equations, namely the inversion

ﬂ:l/u.

5 Generalizations

So far we have restricted our attention to evolutionary-type equations in which the right hand side
is purely a function of the spatial variables and spatial derivatives of the dependent variable. In this
section, we relax this condition by permitting the right hand side to also depend on time derivatives
of u.

Proposition 1 If the general equation ug = Flu] admits a spatial symmetry group G, then the
right hand side satisfies

P
vy = (Qu—zki&&i) F+

i=1

P
D@ — (Qu—zk’iDi&i) UK] , (2)
i=1

for all infinitesimal generators v € g.



Our first result characterizes those equations that impose an affine symmetry condition on its
symmetry group.

Proposition 2 Consider a differential equation
ug = F(t, o, u,up, ur, ..., Up, ..., uL, .. .), (3)

with right hand side depending on variables uy with temporal derivatives of lower order than the one
in the left hand side. That is to say, if K = (ko,k1,...,kp) and L = (lo,lh,...,1,), then ly < ko
for all variables ur in F'. If K is not a purely temporal multi-indez, K # koeg, then any connected
spatial symmetry group of equations (3) is composed of affine bundle maps.

For planar equations we have
Theorem 7 Let G be a connected spatial symmetry group of an equation of type
omtny
daxm ot

t.e., with right hand sides that can depend on temporal derivatives of order | < n.

N
= F([E,U( )au‘t) = F(‘[E,U,Ux,u-[,uxx,ux-[,...,Uk],..-), l< n.

(i) If the equation is purely evolutionary, i.e., of the form 0"u/0t™ = F, then there are no
restrictions on G.

(ii) If the equation is the potential form 0" F1u/0zdt™ of a purely evolutionary equation, then G
can be a contact transformation group whose infinitesimal generators have the form v(® =
E(z,ugp)0p + (ku+ f(x,uy))0y, where k is a constant.

(iil) All the remaining equations, with m > 2, have the same type of symmelry groups as the
corresponding evolutionary-type equations.

Theorem 8 In one spatial variable, if an equation (3) admits a spatial transformation group G,
then its right hand side satisfies

vI¥(F) = (Qu — mD,&)F = H,

where the form of H follows from (2). Thus F is an inhomogeneous relative differential invariant

of the form
Lm+1

F=——1T+4F
E(L) + Iy,

where I is an absolute differential invariant of G depending on temporal derivatives of u of order less
than n, w = L(J;,u(")) dz 1s a G-invariant one-form having nontrivial Euler-Lagrange expression
E(L) #0, and Fy is a particular inhomogeneous differential invariant of the same weight as F.
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