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ABSTRACT. Noether's Theorem relating symmetrles and con-
servation laws is refined to provide a one-to-one corres-
pondence between nontrivial variational symmetry groups and
nontrivial conservation laws for "normal" systems of Euler-
Lagrange equations. Besides these, 'underdetermined" systems
admit nontrivial depencies among the equations, and thus

by Noether's Second Theorem admit infinite-dimensional
groups -of nontrivial variational symmetries with corres-
ponding trivial conservation laws, while "overdetermined"
systems have nontrivial 1ntegrab111ty conditions, adding
further complications.

1. INTRODUCTION AND HISTORY. In 1916, inspired by recent develop-
ments in classical mechanics and relativity, E. Noether, [1k],

- formulated and proved two'remarkable theorems relating symmetry

- groups and conservation laws for conservative systems arising

from variational principles. The first of these résults, Justly
famous as Noether's Theorem; providesg an effective‘general means

of computing conservation laws when used in conjunction with Lie's

theory of symmetry groups of différential equations,‘[l9]. With
the refinement of Bessel-Hagen, [4], then, all the tools were
available to conduct a systematic investigation into the symmetry
properties and correspondiﬁg conservation laws of the equations of

mathematical physics, but, amazingly, such did not occur. On the
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contrary, this important result went unappreciated for 30 years
until Hill, [10], popularized a limited, special version of
Noether's general theorem among the physics community. As a
result, a sizable proportion of subsequent theoretical work in
this area has unfortunately been devoted to proving various
special cases of Noether's Theorem, followed by rediscoveries of
more or less general versiong, despite the fact that Noether's
original paper provides the most general connection between
(generalized) symmetries+ and conservation laws. In contrast,
although many authors have looked at the conservation laws
associated with geometrical symmetries, only very recently have
there been attempts to completely classify conservation laws for
some equations of importance in mathematical physics, [3],[15],
[16],[23],[25]. Much work remains to be done in this practical
" direction, and it can be safely said that Noether's Theorem
remains the most widely quoted butmost under-utilized result in
the entire mathematical physics literature.

On the theoretical side, far less attention has been payed to
the role played by trivial conservation laws and trivial symmet-
ries in the Noether correspondence, triviality in each case
referring to the fact that no new information on the equations
or their solutions is provided by the relevant object. Indeed,
Noether's Theorem will provide a truly effective means for
computing and completely classi fying conservation laws only
when nontrivial symmetries give rise to nontrivial conservation
laws and conversely. For conservation laws, there are, in fact,
two distinct kinds of triviality, a fact that causes much of the
complication in this aspect of the theory. In the first kind,

the conserved density itself vanishes for all solutions of the

T As far as I can determine, Noether herself was the first to
intvoduce and study generalized symmetries (also mis-named "Lie-
Bicklund transformations™, [2]), which have since been rediscov-
ered many times..
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system in questiony in the second kind the law holds not just for
solutions but for all functions. In either case, from the stand-
point of the solution set of the system, no new information
results. Similarly a trivial (generalized) symmetry is one whose
infinitesimal generator vanishes on all solutions, and hence has
correspondingly trivial group action. In both cases, symmetries
and conservation laws, one is really only interested in equi-
valence classes of such objects, two of them being equivalent if
they differ by a trivial one. The most desirable and effective
form of Noether's Theorem, then, would determine a one-to-one
correspondence between equivalence classes of conservation laws
and equivalence classes of variational symmetries. (As is well
known, not every symmetry of the Euler-Lagrange equations gives
rise to a conservation law-only those leaving the variational pro-
blem itself invariant, called "variational symmetries", are relevant)
For such a result to hold, one must improve certain non-
degeneracy conditions on the system in question, including a
"local solvability" criterion, which naturally leads one to
consider systems for which the Cauchy-Kovalevskaya existence
theorem is applicable. The requisite class of differential
equations is the normal systems, which are characterized by the
existence of at least one noncharacteristic direction at each
point, and include practically every system of importance in
physical applications. For such systems, one can indeed prove
the above refined version of Noether's Theorem. The first person
to recognize the importance of such a normality condition is
Vinogradov, who in very recent work, [27], [28], [29] uses a
closely related condition to prove a similar correspondence using
complicated cohomological machinery.The proofs in the present case
are entirely elementary and will appear in [18]. (Incidentally,
the correct concept of triviality in the case of conservation
laws apparently first appeared in [22], but no attempt to incor-

porate this into the Noether correspondence was made until
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Vinogradov's work.)
From this new vantage point, a natural question to appear is
the range of validity of this refined version of Noether's

theorem, or, to put it another way, how does one characterize

normal systems, meaning systems, which under a change of
variables are in Kovalevskaya form. Bourlet, [6], was the first
to ascertain the existence of "un-normal" systems, but it was
not until the under-appreciated work of Finzi, [7] (see also [9])
that the true nature of these systems was revealed. Finzi proved
the striking result that a system has the property that every
direction is characteristic if and only if it has same kind of
"integrability condition". The un-normal systems split naturally
into two further distinct classes; the over-determined case,
where this integrability condition prescribes further relations
amongst lower order derivatives,and the under-determined case, in
which there is a nontrivial differential relation emong the
Euler-lagrange equations. This.latter case is precisely that
dealt with by Noether's Second Theorem, which states that such
a relation exists if and only if there is a infinite-dimensional
group of variational symmetries depending on an arbitrary function.
These nontrivial variational symmetries give rise to conservation
laws using the original version of Noether's Theorem, but the
resulting laws are readily seen to be trivial. Thus under-
determined systems of Euler-Lagrange equations are uniquely
prescribed by the property that they have nontrivial symmetries
giving rigse to trivial conservation laws.

The overdetermined case is harder to fathom, and, as yet I
know of no counterexample to the refined version of Noether's
Theorem relating nontrivial symmetries with nontrivial conserva-
tion laws. In particular, does there exist a system of Euler-
Lagrange equations which has a nontrivial conservation law coming
from a trivial variational symmetry? The answer to this question

remains unclear, but as indicated at the end of section 5, if
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such an example exists it must be quite complicated. (In [8],
it is remarked that there is such an example, but the paper
referred to, [11l], does not actually contain one.)

Lack of space precludes the inclusion of proofs in this paper;
these will appear in the forthcoming book, [18]. For the same
reason, indications of the vast range of applications of Noether's
Theorem for producing new and interesting conservation laws for
equations of mathematical, physical and engineering applications
must be foregone in this brief summary. Suffice it to say that
the methods are completely constructive, to the extent that one
could envision symbol-manipulating programs systematically
computing conservation laws directly by these techniques. The
interested reader can refer to [2], [18], [19] and the other
papers referred to in the bibliography for some indication of
the range of possibilities.

Tt is a pleasure to thank the organizing committee of this

conference for a most enjoyeble and productive stay in Santa Fe.

2. SOLVABILITY FOR SYSTEMS OF PARTTAL DIFFERENTTAT EQUATIONS.
We will be concerned with systems of partial differential

equations

AJxmﬁﬂ)=o , V=1,00.0,d (1)

involving p independent variables x= (xl,. .. ,xp) €x ~ R’ and
q dependent variables u= (ul,. .. ,uq) €U ~ R defined over an
open subset MC X X U . Here u{n) denotes all the partial
derivatives ug = bkuQ,/bx%L...bek of the u's up to order n ,
and the functions Av are smooth or even analytic in their
arguments. All our considerations are local, justifying restric-
tions to Euclidean space, but extensions to vector bundles and
smooth manifolds are immediate. By solution u=f(x) we mean

a smooth (Cw) solution for convenience, although with care

the differentiability requirements on both the equations and

their solutions can be considerably weakened. Since, in our
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final analysis, the system (1) appears as the Euler-Lagrange
equations of some variational problem, we can justifiably
restrict our attention to systems having the same number of
equations as unknowns, although extensions can, in some instances,
be easily envisgioned.

In the study of algebraic properties of such a system,
including symmetries and conservation laws, a persistent question

that arises is the characterization of all differential functions,

meaning a function P(x,u(m)) depending on x,u and derivatives
of wu , which vanish for all solutions of the system. The
answer to this question rests on certain nondegeneracy hypo-

theses.

DEFINITION. A system of differential equations (1) is of
maximal rank if the Jacobian matrix (bAV,/bUQ) with respect to

(n) J

all variables u has rank g whenever (x,u'™) is a
solution. The system is locally solvable if for every point

(xo,ugn)) solving (1) there exists a solution u=f(x) defined
in a neighborhood of X whose ‘derivatives have the prescribed
values uén)= f(n)(xo)

The maximal rank condition is purely algebralc in nature,
which reflects the fact that (1) determines a smooth submanifold
of the "jet space" M(n)

solvability condition addresses the differential properties of

, with coordinates (x,u(n)) . The local

system, reflecting the discovery of H. Lewy, [12], of systems of
differential equations which have no solutions. For systems of
ordinary differential equations, the local solvability problem
is the same as the usual initial value problem, whereas for
partial differential equations it ig of a quite different
character from the usual Cauchy or boundary - value problems since
the "initial data' (xo,ugn)) is prescribed merely at one point
X, rather than on a whole submanifold of the gpace X . It is

closely related to the Riquler existence theory discussed in
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Ritt, [21], also Nirenberg, [13], considers this problem in the
context of elliptic systems.

Beside the Lewy-type counter-examples having no solutions, the
principal source of systems of differential equations which fail
to be locally solvable are those with integrability conditions.

For example, the system

w +v_4+v. =0 , u_+v._-u =0, (2)
XX Xy X xy  yy X

which forms the Fuler-Lagrange equations.for the variational
problem

Ifﬁ%(qx4-vy)2-uvx]dxdy
is not locally solvable. Indeed, differentiating the first
equation with respect to x , the second with respect to y and
subtracting, we find WtV =0 , hence v_=0, etc. Thus

Xy~

any assignation of initial data (x°,y°,u°,v ,u;,u;,vi,v;,uix,
o o o0 _0 .0 . oo . 0 .

uxy’uyy’vkx’vky’vyy) satisfying (2), but with ‘WX%(), will

fail the local solvability test.

The appearance of integrability conditions suggests that we
should not only look at the system (1) itself, but also all
prolongations of it obtained by differentiation. To discuss

these we introduce the total derivative operators Dl""’Dp s
which @ifferentiate differential functions P(x,u'™) with
respect to xl,...,xp , treating u as a function of x

for instance D_(u 4'u2):=uxxy*'2uux . The m-th prolonged

) X\ XY

system A n corresponding to (1) is the system of differential

equations
DJA\)=O ’ \)=l,.‘.,n ,#J~<_m
obtained by differentiating (1) in all possible ways up to

order m so D_ =D, D, where 1<j < k=#J<m .
om0 Dy=Dy Dy <4 SP s <
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DEFINITION. A system of differential equations is non-
degenerate if it and all its prolongations A<m) are both of

maximal rank and locally solvable.

THEOREM 1. Let A be a nondegenerate gystem of differential
equations. Let P(x,u(m)) be a differential function. Then
P(x,u<m))==0 for all solutions u=f(x) to A if and only if
there exist differential operators ﬂv==ZQ§DJ with

P= 81A14—...-+®qu .

The principal tool available to prove the nondegeneracy of
a given system is the Cauchy-Kovalevskaya theorem, which is

concerned with analytic systems in Kovalevskaya form, [20],

n\) AV L
) n
" PV(Y9t3u( )) s V=l,00050 (3)
Ot
in which (y,t) = (yl,. yp l are the independent variables,

each dependent variable u appears up to some order n, in o

each of the equations, with the particular derivatives

bna du//btna appearing only on the left-hand side of the o-th
equation. (This is the meaning of the symbol u' in (3).)
More generally, an arbitrary system of differential equations
(1) can be transformed into one in Kovalevskaya form by a suit-
able change of variable provided we can find a noncharacteristic

direction.

DEFINITION. Let the point (x u(n)) en™ pe & solution
to (1). The system of differential equatlons 4 1is normal at
(xoauén) if it has at least one non-characteristic direction
there. The system is normal if it is normal at every such point.
Recall that a p-tuple w= (wl,. . .,cnp) determines a

characteristic direction (and gives the normal direction to a
(n))

0

characteristic surface) if the qXq matrix M(w)==M(w;xo,u

with polynomial entries



NOETHER'S THEOREMS AND SYSTEMS OF CAUCHY-KOVALEVSKAYA TYPE 9

dA
Mv(w) = I ag'——x-(x u(n)) (1)
(0 o4 o’ o
#J1=na buJ

is singular, i.e. det M(w)=0 . 1In (4), the sum is over all
multi-indices J=(,jl,...,jk) , 1<3, <p , of order k=#J equal
to the maximal order of derivativesof W which appear in (1),
J jl j2 jk

and o = ® ... . Otherwise, if -det M(w) #0, ® deter-
mines a noncharacteristic direction, and we can apply the Cauchy-
Kovalevskaya existence theorem to any noncharacteristic surface
through X with o as its normal direction there. Thus the

(n))

whereby there is no way to apply the Cauchy-Kovalevskaye theorem

only way for a system to fail to be normal at a point (xo,u s

there in any direction, is for the matrix M(w) to be singular

for all directions . Such systems exist; for instance the
matrix for (2) is
2
£ EN
M(w) = M(E,M) = o
En M

which is singuler for all values of w=(E,N) , so every direction
for (2) is characteristic.

Tn the case of analytic systems, the Cauchy-Kovalevskaya
theorem immediately implies that an analytic, normal system is
nondegenerate in the sense of the above definition. Surprisingly,
the converse of this statement is also true - an analytic system
which is not normal either fails the maximal rank condition or
the local solvability condition. (The ¢® case is more delicate
owing to the appearance of Lewy-type exanples there, and little

is known in general.)

THEOREM 2. ILet A be an analytic system of differential
equations. Then A is nondegenerate if and only if it is
normal.

The proof rests on a remarkable result due to Finzi, [T],

culminating the historical investigations into the algebraic




10 PETER J. OLVER

nature of characteristics. In essence, Finzi's theorem says that
a system of differential equations is not normal if and only if

it has some kind of integrability condition such as (2).

THEOREM 3. Let A be a system of differential equations.
Then A is not normal if and only if there exist homogeneous
differential operators. &l,...,ﬂq of some order k such that

the linear combination
D0+ +@qu = R (5)

depends on derivatives of & up to order q14~k-l only, for
A=lye..,q

Since o appears in Al,...,Aq to order n, s if

ﬁl,...,ﬂq were any old k-th order differential operators, one
would expect W to appear in (5) up to order n,+tk . Finzi's

theorem says that for unnormal system, one can find special
operators such that (5) depends on derivatives of order at
least one less than might otherwise be expected. (Such indeed
was the case with (2) where k=1 .)

The operators §, in (5) are k-th order, so’the combination
R would appear as a consequence of the equations in the k-th
(and higher) order prolongations of 4 . On the other hand, the
derivatives of & up to order n_+k-1 already appear in

[0
(k1) At this stage there are two

the previous prolongation A
possibilities: a) either R vanishes as a consequence of the
equations in the previous prolongation, in which case the inte-
grability condition (5) is illusory, or b) R=0 introduces new rek
" ations among the (n +k-1)st order derivatives not appearing in
A(k_l), thereby inéioducing new integrability conditions into the
system. These are called respectively under-determined and over-

determined systems, and have the formal definition:

DEFINITION. A system of differential equations (1), in which

& appears up to order n, s is under-determined if there exist
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homogeneous k-th order differential operators sl,...,sq , not

all zero, such that the combination (5) vanishes as a consequence

1) In the contrary case

of the (k-1)st prolongation A(k—
(k-1)

that the combination (5) does not vanish as a result of A

the system is called over-determined. (Note that a system can

be both under- and over-determined if it has several relations
of the form (5) holding.)
For example, the system (2) is over-determined, whereas the

closely related system

1=uxx+vxy=0 ’ A2=qu+vyy=O (6)

is under-determined since DyAl-DxA2==O for all solutioms.

b

Finzi's result bthus gives a complete trichotomy for analytic
systems of differential equations; either the system is normal,
in which case it satisfies both nondegeneracy criteria and is in
a well-defined sense precisely determinedy or it is under-deter-

mined and some prolongation violates the maximal rank conditions

or it is over-determined and some prolongation fails to be locally

solvable. For a purely under-determined system, one can go
further and prove that there is at least one arbitrary function
in the general solution to the system. Conversely, for an
over-determined system, one can prove that it is not possible to
prescribe Cauchy data or boundary data arbitrarily and expect to
have a solution. Only for normal systems are the natural Cauchy

and boundary-value problems well-posed.

3. CONSERVATION LAWS. Consider a system of partial differential

equations (1). By a conservation law we mean a divergence

expression

Div P = Dy P+ ...+DpPp = 0 (7)

with the p-tuple P==(Pl,...,

tives of u , which vanishes for all solutions u=f(x) of the

Pp) depending on x,u and deriva-

given system. (If one of the independent variables is time t ,
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"so that (7) takes the form D,T+DivX = O , the corresponding
entry of P is called the conserved density and has the property
that fT dx is constant for all solutions u=f(x,t) which
decay sufficiently rapidly as |x| -« .) There are two types of

trivial conservation laws which hold for any system.

1) If P=0 for all solutions to A , then its divergence
(7) also vanishes on solutions.
2) If Div P =0 for all functions u=f(x) then ('7)

automatically holds for all solutions. For example,
Dx(uy)q—Dy(-gx)=:o

is a conservation law for any system involving u=f(x,y) . Such

trivial conservation laws, known as null divergences, [17], have

been characterized as "total curls" using the variational
complex that arises in the global theory of the calculus of

variations on manifolds, [27], [25], [1].

THEOREM 4. A p-tuple (Pl""’Pb) is a null divergence if
and only if there exist differential functions Qij s 1,J=1,...,P

so that

S (8)

A conservation law is trivial if it is the sum of trivial
laws of the above two types, i.e. (8) holds for all solutions of
the system of differential equations in question. Two conserva-
tion laws are equivalent if they differ by a trivial conversation

law, P-P=P_, where P is trivial.

Now suppose the system of differential equations is nondegen-~
erate, so that by theorem 1 (7) vanishes for all solutions if and

only if there exist function Qi(x,u(n)) 50 that




NOETHER'S THEOREMS AND SYSTEMS OF CAUCHY-KOVALEVSKAYA TYPE 13 R

Div P = T QDA - (9) ,

A simple integration by parts shows that there is an equivalent

conservation law P in characteristic form

Div P = QA = QA+ ...+Q,qu R | (10)
where the characteristic Q::(Ql,...,Qq) is given by
_ J
Q,=Z(-D)Q, - For example ,
QD A= (-D,Q)-A+D, (a-A)

and the second term is a trivial conservation law of the first
kind. The characteristic Q is uniquely determined only up to

the addition of a trivial characteristic, meaning one which

vanishes for all solutions u=f(x) , owing to an elementary

algebraic lemma.

IEMMA 5. If A is nondegenerate, and Q-A=Q-A , then

~

Q 'Qv=0 for all solutions u=f(x) to A .

v

Two characteristics are equivalent if they @iffer by a trivial
charac%eristic. For normal systems of differential equations,
each conservation laws is, up to equivalence, uniquely determined
by its characteristic and vice versa. This result is fundamental
to the systematic study of conservation law and their ultimate

connection with symmetries in the case of variational problems.

THEOREM 6. Let A Dbe a normal, nondegenerate system of
partial differential equations. The conservation laws Div P=0 ,
piv P=0 are equivalent if and only if their o rresponding
characteristics @ and @ are equivalent.

Tn other words, there is a one-to-one correspondence between
(equivalence classes of) conservationlaws and (equivalence classes
of) characteristics provided the underlying system is normal.

The case of "unnormal" systems will be taken up in section 5.

The direct proof of theorem 6 is quite tricky owing to the
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two types of triviality for conservation laws. Details will

appear in [18]; see also [28].

L. SYMMETRIES AND NOETHERS THEOREM. By & geometrical symmetry
group of a system of differential equatibons we mean a local
group of transformations acting on the space MC XX U of
independent and dependent veriables which transforms solutions
of the system to other solution. The group transformations

g: (x,u) = (%,14) act on functions u=f(x) by a point-wise
transformation of their graphs. There is thus an induced action

(n)

n P O
group action and denoted pr( )g:(x,u(n)) - (X, n)) determined

on the derivatives u of such functions, called the prolonged

o that if g transforms u=f(x) to A=T(%) , then it takes
the derivatives 20 = ey o w at the point x to the
corresponding derivatives ﬁ(n) = ?(n)(i) at the image point X .

For a connected, local Lie group of transformations, we can

explicitly determine symmetries by looking at their infinitesimal

generators, which are vector fields

P q
ve T oEGem e T oglon) S5

i=1 DX o=1 du

on M, the corresponding one~-parameber group being found by

integrating the system of ordinary differential equations

i . o
ax i du
ae g (Xau) > ge Cpa(X,U.) (11)
determining the flow for Vv . There is a corresponding prolonged

vector field

pr(n)v =v+ I wJ(x,u(n)) d (12)
- = (04 04

C,Jd buJ
on the Jet space M(n) generating the one parameter group of
prolonged transformations. The coefficient functions of pr(n)z

have the explicit form

ey
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P .
J e ' !
Por = Pg * iflg Y1 ‘
: . (o Ao T -
in which up, =du;/dx" , and Q=(Qp,---,Q) >
P . i
L i o _ Qi
% = 9 151 E%vuy , u=du V4 SN (13)

is the characteristic of the given symmetry. The basic Lie-

Ovsiannikov technique for computing symmetry groups of different-

ial equations hinges on the basgic result:

THEOREM 7. A connected Lie group of transformetions G forms
a symmetry group of the nondegenerate system of differential
equations (1) if and only if

pr_X(Av) =0 , wv=l,...,q (11)

for all solutions u=f(x) and all infinitesimal generators v
of the group G .

In practice, (14) forms a large system of elementary different-
ial equations for the coefficients Ei > @, of v whose
general solution gives the most general symmetry group of the
given system of differential equations. See [5], [19], [18]
for examples and applications thereof.

Noether, [14], generalized the notion of symmetry by allowing
the coefficients §i 5 @a of the infinitesimal generator to
depend on derivatives of u also. The resulting generalized
symmetries have the same formuls (12) for their prolongations
and criterion (14) to be symmetries of some system of differential
equationsy; however the group transformations themselves no longer
have an elementary geometric interpretation.

An easy computation shows that any (generalized) vector field
v can always be replaced by one in evolutionary form

Yy = g Qa-b/bua )
o=1
Q Dbeing the characteristic (13), which is a symmetry if and only
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if v itself is. In this case, the group transformations are

recovered by solving a system of evolution equations
(04
du n
e Qa(X,U-( )) s A=1,..050 , (15)

which replaces the flow equations (11)in the geometrical case;
here the symmetries are "non-local'. Again generalized symmetries
can be systematically determined thrbugh an analysis of the
symmetry criterion (14), [2].

If the characteristic @ of the vector field v wvanishes on
all solutions of the system A , then (14) trivially holds and

we obtain a trivial symmetry. The corresponding group trans-

formations do not change solutions at all, and hence shed no new
light on the system. Two symmetry groups are equivalent if their
infinitesimal generators v and i. differ by a trivial symmetry
Xb==2:—§:, and, as with conservation laws, we really need only be
interested in nontrivial inequivalent groups.

The connection between symmetry groups and conservation laws
holds only for systems with some form of variational structure.
In the present discussion, we presume the existence of a

variational principle

Zu] = IQL(x,u(n))dx

for which our system of differential equations are the Euler-

Lagrange equations

A, =B (L) E§ (-D)J(bL/bu;)——-O , v=l,eee,a . (16)‘

The variational problem is normal or nondegenerate insofar as its
Euler-Lagrange equations are. As for symmetries, thoseof the
variational problem are of principal importance, where we define
a connected local Lie group of symmetries or generalized symmet-

ries to be a variational symmetry group if for every infinitesimal

generator v ,

pr v(L) +L-Div § = Div B (17)

S i
t
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for some p-tuple Bzi(Bl""’Bp) of differential functions, and
where DivEg =X Digl . In essence, the criterion (17), which
is due to Bessel-Hagen, [4], says that the variational integral
is unchanged under the group action, except for the addition of
boundary terms due to the integral of B over ?0Q . Again, we
can replace a generalized vector field v by its evolutionary
representative without loss of generality, for which (17)

gimplifies to

dL Y
pr v.(L) =% DQ = Div B (18)
J (04
< a,J abuJ

for some p-tuple B . The connection between variational
symmetries and symmetries of the Euler-Lagrange eqiations is as
follows:

THEOREM 8. If VvV generates a one-parameter group of
variational symmetries for £ = dex , then it generates s
symmetry group of the Euler-Lagrange equations E(L) =0 .

The converse is not true, the principle source of counter-
examples being groups of scaling tramsformations. The easiest
means of computing variational symmebries is usually to first
determine symmetries of the Buler-Lagrange equations and then
determine which groups satisfy the additional wvariational
criterion (17). 1In particular, a variational symmetry group is
trivial if it generates a trivial symmetry group of the Euler-
Lagrange equations, and two variational symmetries v and .i
are equivalent if their characteristics agree on all solutions
of the Euler-Lagrange equations.

Noether's theorem relating symmetry groups and conservation
laws arises through an simple integration by parts on (18),
which shows that

pr _\_rQ(L) = @-E(L) +Div A (19)
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for some well-defined p-tuple A depending on Q and L .
Combining (18), (19) and (10) we see that the characteristic @

of a variational symmetry is the characteristic of a conservation

law and vice-versa.

THEOREM 9. ILet A=E(L)=0 be the system of Euler-Lagrange
equations for a variational problem. A g-tuple Q is the
characteristic of a conservation law for this system if and only
if @ is the characteristic of a variational symmetry. In
particular, if the Euler-Lagrange equation are normal, non-
degenerate, there is a one-to-one correspondence between
(equivalence classes of) conservation laws and (equivalence
classes of) one-parameter groups of generalized variational
symmetries. |

In other words, to each nontrivial variational symmetry there
corresponds a nontrivial conservation law and conversely. Thus
an effective and systematic means of computing conservation laws
for a system of Euler-Lagrange equations is to first determine
all variational symmetry groups by checking which symmetries of
the system satisfy (17) (actually, this can be done directly,
[18]) and then computing the resulting conservation laws using
(19). Explicit formulae are available to this latter task, but
are not particularly enlightening. This is then, for normal

systems, our refined version of Noether's Theorem.

5. NCETHER'S SECOND THEOREM. The connection between variational
symmetries and conservation laws for unnnormal systems is less
transparent. Although theorem 9 still yields a variational
symmetry for each conservation law and .vice versa, there is no
guarantee that nontrivial symmetries will result in only trivial
conservation laws, or trivial symmetries might give rise to non-
trivial laws. For over-determined systems, the camplete answer
to this problem has yet to be found. Underdetermined systems,

however, fall within the scope of Noether's Second Theorem,
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which deals with infinite-dimensional groups of wvariational

symmetries depending on arbitrary functions.

THEOREM 10. Let £h=dex be a variational problem with
Euler-Lagrange equations E(L)=0 . This problem admits an
infinite-dimensional group of variational symmetries depending on
an arbitrary function h(x) if and only if there is a nontrivial

dependency between the Euler-Lagrange equation of the form

alel(L) F o +a§qEq(L) =0 (20)

holding identically, the Sv's being differential operators, not
all zero.

Note that if the differential operators ¥  in (20) are
homogeneous, we recover (5) with R=0 , meaning that the system
of Euler-Lagrange equations is under-determined. 1In the general
under-determined case, presuming the (k-1)st prolongation is of
maximal rank, we necessarily have R =2 ﬁ\ﬁ\ﬂL) for certain
(k-1)st order differential operators ﬁ\), so (5) changes into
(20) by replacing 8, by 39\)-:!5\) .

Second Theorem says that a system of Buler-lagrange equations is

In other words, Noether's

under- determined:if and only if the associated variational problem
admits an infinite dimensional group of symmetries depending on
an arbitrary function. '

The proof of the theorem proceeds in outline as follows. One
multiplies (20) by an arbitrary function h(x) and integrates
by parts, yielding

&i(h)-El(L) + ...+;9:(h)Eq(L) = Div P , (21)

where ﬂf) is the (formal) Lg-adjoint of the differential operator
S\), and P 1is some well-determined p-tuple of differential
functions depending linearly on h and E(L) , whose precise
form is unimportant. If we set Q\)=83(f) , and use (19) we

find that Q:=(Ql,...,Qq) is the characteristic of a variati onal
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symmetry of £ depending linearly on an arbitrary function

h(x) . The calculation clearly works in reverse provided the
characteristic @ of the group of varisti onal symmetries depends
linearly on the arbitrary function ; otherwise we can replace it

by its Prechet derivative

9
Q! lush ,h] = § ﬁ;

(evaluated at any convenient ho(x) ) without losing the symmetry

[u;ho]DJh (hJ==DJh) |

property. The proof is thereby completed - see Noether, [1h4],
for the details.

Now return to the key intermediary relation (21). Defining
Q as above, we see that (21) is precisely of the form of a
conservation law with characteristic q , (10). However, P
depends linearly on E(L) , and hence vanishes whenever u=f(x)
is a solution to the Euler-lagrange equations. In other words
Div P=0 is a trivial conservation law (of the first kind), but
whose characteristic Q is, in general, nontrivial and hence
corresponds to a nontrivial symmetry group. Since the arbitrary
function h(x) apears in both P and Q , we have, in fact, an
entire infinite family of trivial conservation lws which arise
from nontrivial symmetries whenever the system of Euler-Lagrange i

equations is underdetermined. In fact, more than this is ture. ;

THEOREM 11. Let £ be a variational problem. Suppose there
exists a nontrivial variational symmetry of #£ such that the
corpesponding conservation law obtained via Noether's Theorem
is trivial. Then the Euler-Lagrange equations for £ are under-
determined and there in fact exists an infinite dimensional
family of such conservation laws depending on an arbitrary
function.

As an example, the system (6) arises from the variational
problem iﬁzjf-%(gxd-vy)edxdy s which admits the infinite

dimensional group of variational symmetries generated by
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¥ = b (x,)2, - b, (5,100,

for h an arbitrary function, i.e. the one-parameter group
(u,v) ~ (u4—ehy,v-—ehx)

leaves s unchanged. The corresponding family of trivial

conservation laws are

Dx[h(uxyi-vyy)] -Dy[h(uxxi-vxy)] =0,

with characteristics (hx,-hy)

As for overdetermined systems, one might conjecture the
possibility of there being systems with trivial symmetry groups
corresponding to nontrivial conservation laws. If such an example
exists, it must be quite complicated, and I have been unable to
produce it. One reason for the complication is the following
result, proved with the aid of the homotopy operator for the
variational complex, [1], [18].

THEOREM 12. Suppose A is a homogeneous system of

differential equations, meaning
n a n
Av(x,hu( )) = A Av(x,u( )) , V=1,..0,4

for all x,u , and all A€ R, where Q is some nonzero constant.
Then every trivial characteristic of a conservation law corres-
ponds to a trivial conservation law.

Thus for homogeneous systems of differential equations, in
particular linear systems, nontrivial conservation law necesgsarily
have nontrivial characteristics. Then, by Theorem 12, if a
homogeneous'system is not under-determinéd, Noethers Theorem 9
holds as stated for normal systems. In particular, any example
exemplifying the above phenomenon must be at least a nonhomo-

geneous polynomial system!
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