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1. Introduction
The application of the theory of local transformation groups to the study of

partial differential equations has its origins in the original investigations of
Sophus Lie. He demonstrated that for a given system of partial differential
equations the Lie algebra of all vector fields (i.e., infinitesimal generators of
local one-parameter groups transforming the independent and dependent
variables) leaving the system invariant could be straightforwardly found via
the solution of a large number of auxiliary partial differential equations of an
elementary type, the so-called "defining equations" of the group. The rapid
development of the global, abstract theory of Lie groups in the first half of
this century neglected these results on differential equations for two main
reasons: first the results were of an essentially local character and secondly,
except for the case of ordinary differential equations, the symmetry groups
did not aid in the construction of the general solution of the system under
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consideration and thus appeared to be of rather limited value. The early
investigators had failed to discover the concept of a group invariant or self
similar solution, and it was not until after 1940, beginning with the work of L.
I. Sedov [21] and G. Birkhoff [2] on a general theory of dimensional analysis,
that essentially new research into this area was begun. While Birkhoff and
Sedov first considered only scale invariant solutions, it was soon realized that
group invariant solutions could be found for arbitrary local transformation
groups, and their construction involved the solution of partial differential
equations in fewer independent variables. (The terms self-similar, symmetric
and automodel solutions have all been used in the literature to describe the
concept of a group invariant (or G-invariant, if G is the particular group)
solution.) Finally, in the early 1960's the fundamental work of L. V. Ovsjan-
nikov on group invariant solutions demonstrated the power and generality of
these methods for the construction of explicit solutions to complicated
systems of partial differential equations. While only local in nature, Ovsjan-
nikov's results provided the theoretical framework for commencing a sys-
tematic study of the symmetry groups of the partial differential equations
arising in mathematical physics. This work is being pursued by Ovsjannikov,
Bluman, Cole, Ames, Holm and others, and has provided many new explicit
solutions to important equations. In another direction, the recent deep
investigations of Goldschmidt and Spencer [26] find general conditions for
the solvability of the defining equations of a symmetry group, a question
which will not be dealt with here.

The primary purpose of this paper is to provide a rigorous foundation for
the theory of symmetry groups of partial differential equations, and to
thereby prove the global counterparts (and counterexamples) of the local
results of Ovsjannikov. This will be accomplished primarily in the language of
differential geometry, utilizing a new theory of partial differential equations
on arbitrary smooth manifolds, which generalizes the theory of differential
equations for vector bundles. Let Z be a smooth manifold representing the
independent and dependent variables in the equations under consideration;
in the classical case Z will be an open subset of the Euclidean space Rp X R*
with coordinates (x, u) = (x\ , xp, w\ , uq\ where the JC'S are the
independent and the M'S the dependent variables. We shall construct a fiber
bundle /*(Z, /?) —> Z called the extended fc-jet bundle, which corresponds to
the various partial derivatives of the M'S with respect to the x's of order < k.
In the special case that Z is a vector bundle, the extended A:-jet bundle will be
the "completion" of the ordinary jet bundle JkZ in the same sense that
projective space is the "completion" of affine space. In this context, a &-th
order system of partial differential equations will be described by a closed
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subvariety ΔQ of J£(Z,p). A solution of Δo will be a ̂ -dimensional submani-
fold of Z, called a /^-section, whose extended A>jet, a /^-dimensional submani-
fold of J*(Z, p) lying over the original submanifold of Z, is entirely contained
in ΔQ. If G is a local group of transformations acting on Z, there will be an
induced action of G on J£(Z,p), called the k-th prolongation of the action of
G, which comes from the action of G on /7-sections. The corresponding
prolongation of the infinitesimal generators of G has a relatively simple
expression in local coordinates, and can be used to check via the standard
infinitesimal criteria whether a system of partial differential equations ΔQ is
invariant under the prolonged action of G, which implies that G transforms
solutions of ΔQ to other solutions. Here this local coordinate expression will
be derived using the techniques of symmetric algebra; it does not seem to
have appeared previously in the literature. It allows for a much more unified
and straightforward derivation of the symmetry groups of higher order partial
differential equations.

Now suppose that G acts regularly on Z in the sense of Palais [19] so that
there is a natural manifold structure on the quotient space Z/G. If ΔQ is a
system of partial differential equations on Z which is invariant under G, then
the problem of finding all the G-invariant solutions to Δo is equivalent to
solving a "reduced" system of partial differential equations Δ^/G c
J£(Z/G,p - /), where / is the dimension of the orbits of G. In other words,
the solutions of ΔQ/G are (p — /)-dimensional submanifolds of Z/G, which,
when lifted back to Z, provide all the G-invariant solutions to the original
system ΔQ. The important point is that the number of independent variables
has been reduced by /, making the reduced system in some sense easier to
solve. (Although this does not always hold in practice; there are examples
where ΔQ is linear, whereas ΔQ/ G is a messy nonlinear equation.) It is this fact
which makes the symmetry group method so useful for finding exact solutions
to complicated differential equations. Note that since we must consider the
quotient space Z/ G, which cannot be guaranteed to possess any nice bundle
properties due to the arbitrariness of the action of G on the independent and
dependent variables, we are forced to develop the aforementioned theory of
partial differential equations over arbitrary smooth manifolds which have no
a priori way of distinguishing the independent and dependent variables. The
question of when the distinction can be maintained is discussed in some detail
in the author's thesis [16].

A few brief comments on the organization of the material in this paper are
in order. §2 reviews the theory of symmetric algebra of vector spaces and its
applications to the derivatives of smooth maps between vector spaces. The
most important result is Theorem 2.2, the Faa-di-Bruno formula for the
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higher order differentials of the composition of maps; it forms the basis of
many of the subsequent calculations, in particular providing a useful explicit
matrix representation of the prolongations of the general linear group. §3
develops the concept of the extended jet bundle over an arbitrary manifold
and gives both the bundle-theoretic and local coordinate descriptions of these
objects in detail. In §4 we show how the concepts of differential operators
and systems of partial differential equations are incorporated into the ex-
tended jet bundle theory, and discuss the concept of prolongation.

§5 applies the theoretical concepts of the preceding three sections to the
prolongation of local transformation group actions. In particular, the local
coordinate expression for the prolongation of a vector field is derived. In §6
we show how this formula is applied in practice to find the symmetry group
of a system of partial differential equations, and illustrate this with the
derivation of the symmetry group of Burgers' equation, an important evolu-
tion equation arising in nonlinear wave theory. §7 takes up the problem of
equivalent systems of partial differential equations, the prototypical example
being an n-th order partial differential equation and the first order system
obtained by treating all the derivatives of order < n as new dependent
variables. It is shown that, barring the presence of "higher order symmetries,"
the groups of two equivalent systems are isomorphic under a suitable prolon-
gation. An example of an equation with higher order symmetries is discussed.
Finally, in §8 the fundamental theorem on group invariant solutions is proven
and is applied to deriving some interesting group invariant solutions to
Burgers' equation.

The results of this paper form a part of my doctoral dissertation written
under Professor Garrett Birkhoff at Harvard University. I would like to
express my profound gratitude to Professor Birkhoff for his constant help,
suggestions and encouragement while I was writing my thesis.

2. Symmetric algebra and derivatives

Since this paper is concerned with partial differential equations which
involve several independent and dependent variables, a simplified and com-
pletely rigorous treatment of the derivatives of smooth maps between vector
spaces is a necessary prerequisite. This theory has been developed using the
machinery of symmetric algebra, most notably in chapters one and three of
H. Federer's book [9]. The advantages of this abstract machinery become
clear in the crucial "Faa-di-Bruno formula" for the higher order partial
derivatives of the composition of two maps. This section briefly reviews the
relevant definitions, notations and results from symmetric algebra, most of
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which are discussed in much greater detail in [9]. A key new idea is the
definition of the Faa-di-Bruno injection, which was motivated by the above
mentioned formula, and is applied to provide an explicit matrix representa-
tion of the prolongations of the general linear group. To conclude this
section, the notion of a total derivative is defined and discussed within the
context of symmetric algebra; this will become important in later computa-
tions.

Let V be a real vector space. Let

Θ Φ K = Θ Θ,K
i-O

denote the graded symmetric algebra based on V. The product in Θ^F will
be denoted by the symbol o. Thus, if v G Θ, F and υ' E ΘjV, then their
symmetric product vov' = υ'oυ G Qi+JV. If W is another real vector space,
then let

Θ*(K, W) = Θ Θ'"(K, W)
ι = 0

denoted the graded vector space of W-valued symmetric linear forms on V.
In other words, Θ'(F, W) is the vector space of all /-linear symmetric

functions A: V X X K-> W. There is a natural identification

©'•(K, W) β Hom(Θ,.K, if).

Definition 2.1. Let

§2 = i1 = ('i» , ιn): 0 < iσ G Z, σ = 1, , Λ;

Σ / = / 1 + •• +/„ = *}

be the set of n-multi-indices of rank k > 0. Let

s- = U sjί
Λ = 0

be the set of all w-multi-indices. Given I ^ ξ>n

k9 J E: ξ>1 let I -\- J G ξ>l+ι be
the multi-index with components iσ + j σ . Introduce a partial ordering on Sπ

by defining / < J iff iσ < j σ for all σ = 1, , n. In case / < J, let J - I be
the multi-index with components^ - iσ. Define

Let δJ G §ί be the multi-index with components δjj, the second δ being the

Kronecker symbol.
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Now suppose V is a finite dimensional real vector space with basis

{ev , en). In this case Θk V has a corresponding basis given by

{ef: I G §£}, where e7 = e[xo oe^.

(The powers are of course taken in the symmetric algebra of V.) If W is a real

algebra, then there is a naturally defined product on Θ*(F, if) making it

into a graded commutative algebra. This product can be reconstructed from

the following fundamental formula:

(2.1)

for φ G Θ*(K, W), Ψ e © ' ( ^ **0> ^ e §*+/• M o r e generally, it can be
proven by induction from (2.1) that if iv i2, * , im are nonnegative integers
and φσ G Qio(V, W), σ = 1, , m, then for any / 6 §J, k = î

+ +'m,
(2.10

φ ^ φ() 2 ' φ ( ) Φ ( )φ,©^© oφm(ej) = 2 MM Γ T φ i ( ^ i ) Φ « ( * Λ . ) '
Jλ.J2- ' ' ' Jm'

the sum being taken over all ordered sets of multi-indices (Jv J2, * , Jm)

with/σ G S£ and7, + 7 2 + + 7 m = J.

Now suppose that V and JF are real normed vector spaces, and f: V—> W

is a smooth function. The A>th order differential of / at a point x G V, which

we will denote by the symbol dkf(x), is that symmetric /c-linear W-valued

form on V whose matrix entries are just the A -th order partial derivatives of/.

(The reason for the symbol dkf rather than the more standard dkf or Dkf will

become clearer in what follows. Suffice it to say that dkf will be reserved for

the action of a smooth map on the Λ>th order tangent bundle of a manifold,

and Dkf will be reserved for the total derivative.) In other words, we have

dkf(x) G Ok(V, W\ and if {ev , en) is a basis of V, then

Here θ7 = d{ιd2'
2 θ^, 9f. denoting the partial derivative in the et direction.

Let

Qk+ι(V, W) c O'(F, O*(

be the natural inclusion given by

<t>, <©', w>> = <t?0t?/, w>, t? G O/K, ϋ' G QkV, w G

It can be shown that under this inclusion,

= dk+lf(χ),xe v.
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Theorem 2.2 {The Faa-di-Bruno formula). Let F, W, and X be normed real
vector spaces, and let f: V —» W and g: W^> X be smooth maps. Given any
x G V,lety= f{x) G W. For any positive integer k,

ie&k L / !

where

k

6 § λ : Σ σ/

σ

 = ^
σ = l

Note that in formula (2.2) the powers and symmetric products of the
differentials of/ are taken in the algebra Θ*(F, Θ+W). The proof of this
theorem may be found in [9, p. 222].

For notational convenience, define

Θ £ K = 0 Q,V,

k

, W) = Θ Θ'(F, W).
/ l

There is a natural projection

given by composition with the projection Q+W^> QXW =
Definition 23. The Faa-di-Bruno injection is the map

such that for a matrix A e Θ£( F, Ŵ ) with A \ Θ. V

(2.3) eΛ(^) = Σ Σ TΓ^ί o^ί'o * *

Note that mk ° εΛ is the identity map of Θ*(F, W).
Example 2.4. To get some idea of what the matrix εk(A) looks like in

block format, consider the case k = 4. Given A G Θ^( K, W), then A has the
block matrix form

A=(Aι A2A3 A4).

Note that

e4(A): QiV-*Θ;W,

by the definition of the set of multi-indices 6E4. Using formula (2.3), we see
that ε4(A) has block matrix form



504

0

0

0

XΘAX

0

0
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A3

AXQA2

ΛXQAXQAX

0

A

AXQA3 +

4

\A2QA2

4XQA2

QAXGAX

where the (/,/)th entry is the part of ε4(A) taking Θj V to Θf. if.

Returning to our discussion of the differentials of smooth functions be-

tween vector spaces, define

€= Θ*(K, W

Then the Faa-di-Bruno formula (2.2) can be restated concisely as

(2-4) 9ί(g »/)(*) =

Define

(The reason for this notation will become clear in the context of higher order

tangent vectors on manifolds; cf. Lemma 3.2.) Applying εk to (2.4) yields

(2.5) d\g ° f){x) = dkg(y) ° dkf{x).

Definition 2.5. Let V be a real normed vector space of dimension n, and

let A: be a positive integer. Let

Ok*(KV)o= {A e Θ£(K, V): A\V (Ξ GL(V)}

be the set of symmetric linear functions from V to itself of order < k which

are invertible when restricted to Θj V = V. Define the k-th prolongation of the

general linear group of V to be

which is a matrix subgroup of GL(Θ% V).

Note that this definition coincides with that given in [13, p. 139], since

GL(k\ V) can be realized as the set of all matrices dkf(O) corresponding to all

local diffeomorphisms / of V with /(O) = 0, the group multiplication being

induced by composition of diffeomorphisms according to (2.5). In addition,

we have given an explicit matrix representation of GLSk\V). In fact, given

A G GL(*>(F), let (Aj) be the block matrix form of A so that Aj: QjV-^>

Θ V. By the definition, A has the following properties:

(i) A is block upper triangular; i.e., Aj = 0 for i >j.
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(ii) Let

<$ = { / £ &/. ΣI = /} = {/ G S>: ΣI = / , 2 σισ - y ) .

Then

(iii) If A G GL(k\ V), then for / < k, A \ Θ * V G GL(/)( V).

In particular, if A = dkf(x), then we will abbreviate Λ/ = djf(x). This gives

9//C*) = dJf(x\ which is a little confusing, but the symbol θ, has been

reserved for the partial derivative in the xj direction.

Definition 2.6. Let Z b e a fixed real normed vector space. Let U and W

be normed vector spaces and let Z = X X U. Suppose F: Z —» W is a

smooth function. The k-th order total differential of F is the unique map

DkF:Z X Q*(X, U) -* Θk(X, W)

such that for any smooth/: X —> £/,

(2.7) DkF(x,f{x), dkj(x)) = dk[F°(lxx / ) ] ( * ) ,

where 1Ύ denotes the identity map of X.

Existence and uniqueness of the total differential follows from the Faa-di-

Bruno formula. In fact,

DkF(xJ{x\ dkj(x)) = Σ dkF(xJ(x)) 9*(1 X /)(*),

where 3/(1 X /) are the matrix blocks in dk{\ X f) and are thus expressed in

terms of d£f(x). Let

Z>ί:F = D ιF + / ) 2 F + + Z)*F: ZjcΘ*(Jf, U) -> Θ*(Jf, ^ ) .

In the case that X and U are finite dimensional, with respective bases

{el9 - - - ,ep) and {*;,-••, <}, the matrix elements of D ^ z , uik)) where

z G Z, M(A:) G Θ*(X, (/), are given by

D Fiz, MW) = <e7, Z)^F(z, «<*>)>, / G SΛ,.

Given an element u(k) G O * ^ , U) we will let M('> G Θ ^ * , ί/) denote its

restriction to ΘfX. The coordinates of u{k) are given by
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Lemma 2.7. Let F: X X U -» W be smooth. Then the matrix entries of

Dk+ιF are given recursively by

(2.8) DI+&JF(x, u, t/* + 1>) = DjlDfix, u, w(*>)]

for I G ξ>k, 1 < j < />, x E Xy u E U, w(/c+1) e Θ * + \X, U). Here D} is the

total derivative operator in the e, direction, given by

(2.9) Z > . a + 2
/=

(Note that for any fixed k only finitely many terms in the expression for Dj are

necessary.)

This lemma provides the means for actually computing the total derivative.
The proof is a straightforward induction argument; cf. [16, p. 98].

3. Extended jet bundles

The first step in the development of a comprehensive theory of systems of
partial differential equations over arbitrary smooth manifolds representing
both the independent and dependent variables is the construction of an
appropriate fiber bundle over the manifold whose points represent the partial
derivatives of the dependent variables of order < k, called the extended k jet
bundle of the manifold. To give some motivation for the definitions to follow,
the construction of the jet bundles of a vector bundle will be briefly recalled
following [10]. Then some preliminary definitions for the more general case
will be made; the machinery needed to fully explore these ideas will be
developed in subsequent sections.

Suppose π: Z -^ X is a vector bundle over a /^-dimensional base manifold
X, representing the independent variables, with ^-dimensional fiber £/, repre-
senting the dependent variables. Sections of Z are usually defined to be
smooth maps /: X —> Z such that π ° f = lx, the identity map of X. It will be
more convenient, however, to view sections geometrically as /^-dimensional
submanifolds of Z which satisfy a condition of transversality to the fibers of
Z. In addition, for the submanifold to truly be a section, it must satisfy a
further global condition of intersecting each fiber exactly once; in the
construction of the jet bundles, this condition can be safely ignored, since
only local sections are needed. The /c-jet bundle JkZ is given by the equiva-
lence classes of sections of Z having λ>th order contact.

Definition 3.1. Let M be a smooth manifold and let m e M. Let
C°°(M, R)|m denote the algebra of germs of smooth real valued functions on
M at the point m. Let Im c C°°(M, R)|m be the ideal of germs of functions
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which vanish at m, and let l£ denote its λ>th power, which consists of all
finite linear combinations of /c-fold products of elements of Im. The k-th order
cotangent bundle of M at m is

%*M\m = Im/I*+1.

The k-th order tangent bundle to M at m is the dual space

In local coordinates, the fibers of the bundle ^kM are

<5kM\m^O*kTM\m= ®Q,TM\m.

(The details of this construction are given in [24, §1.26].) If {9^ , dn] is a
basis of ΓAf|m, then

{θ7: / = 0 V , O , Σ / = * ! + • • • + ί n < * }

forms a basis of ?ΓΛΛ/|m.
Submanifolds S and S' of M have /c-th order contact at /n e 5 Π 5 ' if

ί̂k l̂m = ί̂k ^Ίw ^ c a n be ^adily checked that in the case of sections of a
vector bundle this definition of /c-th order contact agrees with other defini-
tions, and has the advantage of an immediate geometrical interpretation.

Suppose M and M' are smooth manifolds, and F: M -> Mf is a smooth
map. There is an induced bundle morphism dkF: ^kM —» 5* Af' given by the
formula dkF(\)(f) = v(/ ° F) for v 6 ^ M a n d / E C^ίΛ/', R). It is readily
verified that if G: Mf -+ M" is another smooth map, then

(3.1) dkG o dkF = dk(G o F).

Lemma 3.2. Let F: V -^ W be a smooth map between finite dimensional
real vector spaces. Let x E V and w = F(x). Then the map

dkF\x:%V\x-+%W\w,

under the identification (SkV\x~ Θ£ V, is the same as the map

dkF(x) = ek[dkF(x)]: Q*V^Q*kW.

Proof Let {el9 , en) and {e'v , e'm} be bases of V and Ĥ  respec-
tively. The identification (5kV\x^Qk

¥V takes 3/|JC to e7 for any multi-index /.
Now suppose/ G C°°(W, R). Then

^(3/L)/=3/(/°^)W= Σ ^jfM'\ekd
kF(x)]J

which follows from the Faa-di-Bruno identity. (For a matrix A: Q^V-^
ΘIW, Af is the matrix entry given by A(ej) = Σ Afej.) Therefore
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Notice that d*F(x) has matrix entries djFJ(x) for j = 1, , m and
1 < ΣI < k showing that dkF is uniquely determined by the partial deriva-
tives of F of order < k. If F: Z—> Z' is a smooth map between smooth
manifolds then the local coordinate descriptions of Z and Z' identify them
with open subsets of real vector spaces, so the local coordinate description of
dkF is given by the Faa-di-Bruno formula.

Definition 33. Given a smooth manifold Z and a point z e Z, ap-section
of Z passing through z is an arbitrary smooth /^-dimensional submanifold of
Z containing z. The space of germs of /^-sections of Z passing through z,
C°°(Z,/?)|Z, is the set of all smooth p-dimensional submanifolds of Z passing
through z modulo the equivalence relation that s and sf define the same germ
at z iff there is a neighborhood V of z with ί f l K = s' Π K.

Definition 3.4. The space of extended k-jets of p-sections of Z at a point
z EL Z, J£(Z,p)\2, is given by the space of germs of/^-sections of Z passing
through z modulo the equivalence relation of λ>th order contact.

A /^-section s of Z can be described locally by a smooth imbedding /:
U —» Z, where ί/ is an open subset of R*7, called a local parametrization of s .
In general, since all considerations here are of a local nature, we will be a bit
sloppy notationally and write f:Rp-*Z even though / might only be defined
on an open subset of R .̂ Note that two embeddings / and g are parametriza-
tions of the same germ at z iff there exists a (local) diffeomorphism ψ:
R^ -^ Rp such that / ° ψ = g near the point z. The notation j*f\z will mean
the extended &-jet of the/7-section given by im/at z.

Define the extended Λ>jet bundle of ^-sections of Z to be

Ji(z,p) = U Jl(z,P)\,.
z<ΞZ

For any smooth p-dimensional submanifold s c Z, define its extended /c-jet
to be

7** = U j*s\z>

which will subsequently be shown to be a smooth /^-dimensional submanifold
of J£(Z,p). The next step is to describe the fiber bundle structure and local
coordinate description of J£(Z,p); its fibers are "prolonged Grassmann
manifolds", which we proceed to define and characterize.

Let V be a real normed vector space and let 0 denote the origin in V. The
identifications TV\0 = V, %V\0^Q*V will be used without further com-
ment.
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Definition 3.5. The k-.th order prolonged Grassmann manifold of prolonged
p-planes in Kis Grass(Ac)( V,p) = {^ lo C Θ*V : s is a smooth/? dimensional
submanifold of V passing through 0).

Lemma 3.6. Let Θ+(RP, V)o denote the open subset of QkJRp, V) consist-
ing of those maps A: Θ*RP —» V whose restriction to QXR

P has maximal rank
equal to p. There is a natural action of GLSk\p) on Θ*(RP, V)o given by right
multiplication of matrices, and

Grass<*>(K,/0 ^ ©

Proof. Given a/? dimensional submanifold s c V passing through 0, let/:
Rp -* V be a local parametrization of s near 0 with /(0) = 0. Since / is an
embedding,

dkA%K"\o] = Vlo. 9^(0) e Θ*(R', F)o.

Therefore it suffices to show that if / and / ' are smooth embeddings of Rp

into V with/(0) = /'(0) = 0, then

(•) im rf*/|0 = im dkf\

iff there exists a matrix A G GL^k\p) satisfying

First, given such a matrix A, (*) follows immediately since A is invertible on
Q£RP = ^R' lo Conversely, given (*), let V C K be an (Λ - /?)-
dimensional subspace such that in a neighborhood of the origin Γ(im/) n V
= Γίim/') n K' = {0}. Let 77: F-> V/V = R7' be the projection, so by the
inverse function theorem both π ° / and π ° f are invertible in a neighbor-
hood of the origin in Rp. Now since (*) holds, there exists a linear transforma-
tion A: © 'R' -> Θ^RP satisfying

Therefore

dk7T'dkfΆ = dkπ dkf\

A = dk(<πof)\0.d

k(πofyχ,

proving that A e GL{k\p).
For positive integers A: > / there is a canonical projection

flτ7*: Grass(*>( K, ,p) -»Grass(/)( K, p),

given by
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It will be shown that πf makes Grass(Ar)( F, p) into a Euclidean fiber bundle

over Grass(/)( V,p). Suppose Λ G Grass(*}(F,p) and {ev , ep) is a basis

for the/7-ρlane Λj = ττf(Λ) G Grass(F,/?). (Given Λ as an abstract subspace

of Θ£ V, Ax is the unique/?-ρlane in V such that QkAι = Λ π ©A:^ ) Let ττΛ:

F—> F/Λ, be the projection. It is claimed that there is a unique set of

elements

{e'j G V/Aλ\ J G S*, 1 < ΣJ < k]

which have the property that for any ey G F with πA(ej) = eJ9 the vectors

(3.2) έj = 2 y |y I . . . y | e/,° * * * oeJ,

for 1 < ΣJ < / form a basis for Λ. The summation in (3.2) is taken over all

unordered sets of nonzero multi-indices {/,, , /,} with 7, + J2

+ +Jt = J. The proof of this claim is a direct consequence of the

Faa-di-Bruno formula. Namely, if/: Rp —> F is an embedding such that

then let

We conclude that

by applying formula (2.Γ) to the Faa-di-Bruno formula.

Conversely, given a basis {ev , ,̂} of a/?-ρlane Λ! c Fand elements

e) G K/Aj for / e ^ with 1 < Σ7 < A:, it is not hard to see that the

subspace spanned by {ey: 1 < Σ/ < k) as given by (3.2) is an element of

Grass(A:)(V,p). In fact, if {εv , εn} is a basis for F and ey = Σ cjεl? then

the polynomial/: R^ -+ V,

satisfies ?ΓΛ(im/)|0 = Λ. Moreover Λ is uniquely determined by the e'j once

ev , ^ are prescribed. Let

(3.3) J V i t , 0 i (

We have thus proven the following.

Proposition 3.7. Let Q denote the standard quotient bundle over

Grass(F,/?). Then

(3.4) Gτ^k\V,p)

are diffeomorphic as smooth manifolds.
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Remark. If U denotes the universal bundle over Grass( K, p\ whose fiber
over a /7-plane Λ is just Λ itself, and / denotes the trivial bundle V X
Grass( V, p), then Q is given as the quotient bundle

whose fiber over a/7-ρlane Λ is the quotient space V / A. The notation jQ ϊoτj
an integer just means Q θ ®Q j times.

In particular, this proposition shows that the bundle

mf: Grass(*>( V,p)-» Grass(/)( V, p)

has Euclidean fiber of dimension Nkψ — Nljf. These bundles are not neces-
sarily trivial. For instance

Grass(2)(2, 1) -> Grass(2, 1) - Sι

is the Mόbius line bundle over the circle Sι.
For computational purposes, some natural - coordinate charts on

Grass(/c)(«,/>) similar to the standard coordinate charts on Grass(rt,/?) will be
introduced. Given a matrix A e ©t(Rp, R")o let Aj = A\QjRp so that A has
the block matrix form

A =(AιA2 Ak\

where each Aj is an n X (P+Jj~ι) matrix. Let {A^} denote the set of all minors
of the matrix A1, where for a = (α 1 ? , otp) the minor A\ is the p X p
matrix consisting of rows al9 , otp of Aι. Similarly, let Aa and AJ

a denote
the matrices consisting of rows α,, , ap of A and Aj. Let

Π: O

be the projection as given in Lemma 3.6. Let

Ua =

which is an open subset of Grass(/c)(n, p). The ί/α's cover Grass(A:)(/i, p).
Given A E Q\(RP, Rp)0 with Aλ

a nonsingular, there is a unique matrix
K G GLSk\p) such that the matrix B = AK is of the form

Λβ = ( 1 , 0 0 - ••(>).

In fact, A: is found by recursion as follows. Suppose

K= ek(Kx K2 - Kk).

Then the Faa-di-Bruno formula shows that
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K2 = -KιA2 \κιoK\

(3.5)

-*1 2 ^ Σ yr ίκk

(Note that no term on the right hand side of the last equation actually
contains Kk.) This procedure gives a well-defined map

ha: Ua~>RN^

where ΛJΠΛ] is the matrix Ba consisting of the rows of B not in Ba.
Moreover, it is easy to see using (3.5) that the transition functions hβ ° A"1 are
smooth maps, so the ί/α's do indeed form a coordinate atlas on Grass^Ai, p).

The preceding construction of local coordinates is just a special case of the
trivialization of the prolonged Grassman manifolds.

Lemma 3.8. Let W c V be an (n — p)-dimensional subspace. Then the
trivialized prolonged Grassmannian with respect to W is

Grass^K,/*; W) = [%s\0: Ts\Q nW= {0}},

and is diffeomorphic to RNk*.

The trivialized Grassmannian Grass(A:)( V, p W) is just the space of λ>th
order tangent spaces of sections transversal to W. For the above coordnate
charts, Ua = Grass(/c)(F,/?; Wa) where Wa is the orthogonal complement to
the subspace spanned by {eαj, , e }.

There is a natural action of the Lie group GL(k\ή) induced by the action of
diffeomorphisms of R" on sections. Namely, if A G GL(k\n) and Λ e
Grass(A°(«,/?), then given any/?-section s G C°°(RΠ, p)\0 with %s\Q = Λ and a
local diffeomorphism G: Rn -» RΛ with G(0) = 0, ^^(0) = A, then

A A=%[G(s)]\0.

This just corresponds to left matrix multiplication

A-A = ΐί(A-B) = R(πk(A • εkB)), B G O*(R', R")o,

where πk is the projection inverse to the Faa-di-Bruno injection ek and B is
any matrix such that Π B = Λ. (Note that the action of GL{k\ή) commutes
with the action of GL(k\p) on Θ*(RP, Rπ).) GL(k\n) acts transitively on
Gmss(k\n,p).
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Now suppose that Z is a smooth manifold, and £ - ^ Z i s a bundle with
fiber Θ*Rn and group GL{k\n). (For example, E = %kZ.) By the general
theory of fiber bundles, for 0 < p < n there exists a unique bundle
Grass(*}(E,p) -> Z having fiber Gmss(k\E\z,p) over z E Z such that if
Eo c E is any smooth (local) subbundle of prolonged /7-planes, then Eo

defines a smooth (local) section of Grass(fc)(E,p). If the transition functions
of E are given by Aaβ E GL(k\n), then the transition functions for
Grass(A:)(£, p) are given by the images of the Aaβ in PGL(k\n), the λ>th
prolongation of the projective linear group, which is obtained as the quotient
group of GL(k\n) by its center-the group consisting of all nonzero multiplies
of the identity map of Θ*RΛ. Actually, to do the preceding construction, we
need the following lemma.

Lemma 3.9. The action of PGL{k\ή) on Grass(/°(n, p) for 0 <p <n is
effective; i.e., if A E GL^k\n) is such that A Λ = Afar all prolonged p-planes
A E Gmss(k\n, p), then A = λlfor some λ E R.

The proof is a direct consequence of the corresponding statement for
ordinary Grassmannians and the following elementary lemma from symmet-
ric algebra.

Lemma 3.10. If V is a real finite dimensional vector space, then

[VQVQ - ot) E QkV: v E V)

spans OkV.
As a corollary of these more abstract considerations, we obtain an alternate

characterization of the extended jet bundles of a smooth manifold as ap-
propriate prolonged Grassmann bundles. This is perhaps the most convenient
characterization of the bundle structure of the extended jet bundles.

Proposition 3.11. There is an identification

giving J*(Z, p) the structure of a fiber bundle over Z with fiber Grass(A:)(«, p)
where n = dim Z, and group PGLSk\ή), such that if s c Z is any smooth

p- dimensional submanifold, thenj*s c J*(Z,p) is also a smooth p-dimensional
submanifold.

Proposition 3.12. Let k > I be positive integers. Then

πk:Jί(Z,p)->Jr(Z,p)

is a fiber bundle with Euclidean fiber of dimension Nkψ — Nlψ.

Suppose that % is an involutive (n — /?)-dimensional differential system on
the rt-dimensional manifold Z. The trivialized extended A -jet bundle of Z
with respect to % is the open subbundle
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consisting of the λ>th order tangent spaces of sections transverse to βll. By
Lemma 3.8, J£(Z,p; %) is a bundle with Euclidean fiber of dimension Nkj).
We now propose to introduce "canonical" coordinates on J£(Z,p; %) as-
sociated with a coordinate system on Z which is flat with respect to %.

Let χ: Z -* R^ X Rq be a local coordinate system on Z with the coordi-
nates on Rp X R* denoted by (x, ύ) = (x\ , xp, u\ , uq) so that the
differential system ^ is spanned by {3/θw1, , d/duq). The case to keep
in mind is when Z —> X is a vector bundle and % is the differential system
given by the tangent spaces to the fibers, so that (xι, , xp) are the
coordinates on the base manifold X (independent variables) and
(w1, , uq) are the fiber coordinates (dependent variables). In this case we
can identify the trivialized jet bundle with the ordinary jet bundle correspond-
ing to the vector bundle Z, since both are constructed by consideration of
/7-sections transverse to the fibers.

Proposition 3.13. Let Z -+ X be a fiber bundle over a p-dimensional mani-
fold X, and let ^ denote the involutive differential system of tangent spaces to
the fibers of Z. Then

J£(Z,p; % ) ^ ^ Z .

This shows that the extended jet bundle can be regarded as the "comple-
tion" of the ordinary jet bundle in the same manner that projective space is
the completion of affine space. In this case the completion is obtained by
allowing sections with vertical tangents.

Let s be a /^-section of Z transverse to the differential system βH. The
normal parametrization of s relative to the coordinate system x is that map /:
Rp -> Z with im / = s and χ ° / = \p X / for some (uniquely determined)
smooth/: R' -* Rq. Then

\p 0 0

f(x) d2f(x) ••• 9 */(*),

so that Θ£/(JC) can be regarded as the local coordinates of the extended /c-jet
of s at the point/(x).

Proposition 3.14. Let χ: Z —»Rp X Rq be a local coordinate system on the
smooth manifold Z, and let % denote the local differential system (dχ)~ιTRq.
Then there is an induced local coordinate system

-,(&). Ί*( 7 „. G)\ \ ^ Έ>P v W? v f?\k ίTiP W ^

such that if f: Rp —> Z is the normal parametrization of a p-section of Z with

X ° / = lp Xf,then
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If (x, ύ) are the local coordinates on Z, then the local coordinates on
J£(Z,p) will usually be denoted by (x9 u, w(/c)). Here M(Λ) is a matrix with
entries uι

κ for 1 < i < q and K e §>p, 1 < ΣK < k, so that if w' = f(x% then
MA: = dκf(x)- Note that if g: R^ —• Z is any parametrization of a/?-section of
Z transversal to % so that x ° g = gi X g2' ^en gλ is locally invertible, so
the normal parametrization of im g is given by χ"1 ° (1^ X g2 ° gj"1), and

x<*> oy g = \p x g2 o g Γ i x a^( g 2 o g Γ i ) .

4. Differential operators and equations

The next step in our theory of extended jet bundles over smooth manifolds
is to describe what is meant by a differential operator and a differential
equation in this context. These concepts should be direct generalizations of
the corresponding objects for vector bundles and should include as special
cases what are classically meant by systems of partial differential equations.
First, a differential operator on an extended jet bundle will be defined and
some important properties described. Next, we proceed to a discussion of
differential equations, which will be connected with the previously mentioned
differential operators. Recall that a differential operator in the category of
vector bundles is given by a smooth fiber-preserving map from a jet bundle to
another vector bundle. In strict analogy we make the definition of a differen-
tial operator on an arbitrary smooth manifold.

Definition 4.1. Let Z be a smooth manifold of dimension/? + q. A k-th
order differential operator (for/?-sections) is a fiber bundle morphism

Δ:JZ(Z,p)->F,

where p: F -* Z is a fiber bundle over Z, such that p ° Δ is the projection TTQ :
Jt(Z,p)-*Z.

Proposition 4.2. Let Δ: J£(Z,p) —» F be a k-th order differential operator,
and let I be a nonnegative integer. Then there exists (k + l)~th order differential
operator

called the l-th prolongation of Δ, such that for any p-section parametrized by f:

Kp —> Z the following diagram commutes:
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In terms of local coordinates (x, u) on Z and (x9 u, w) on F9

DΓ̂  Δίx u u I ̂  I x u Δfjc u u i D Δfjc u u

for (x9 u) e Z, (x, u, w(* + /)) e J£+ι(Z,p) with (x, u, w(*>) =

The proof is a straightforward generalization of the proof of the corre-

sponding proposition for ordinary jet bundles.

Corollary 4.3. Let

Δ-l:Jt(Z,p)-*Jt(Z,p)

be the identity map. Then for nonnegative integers I there is a natural embedding

t *
+ / = pr^l: Jt+ι(Z,p)^J*{J*k{Z,p),p).

In terms of local coordinates (x, ύ) on Z and the induced coordinates

(x,u,u^k+ί)) on Jί+ι(Z,p) and (x, u, u«\ ι/(/), (t/*>)(/)) on J*(J*(Z,p),p)9

J*+ι(Z,p) is the subbundle of Jf(J£{Z,p),p) given by

0 < Σ/, ΣΓ < k9 0 < ΣJ9 ΣJ' < /, i = 1, , q)9

where u$ denotes the coordinate uι

9 and (u})0 the coordinate uj.

Corollary 4.4. // Δ, k, I are as in the proposition, and Γ is another

nonnegative integer, then

pr ( Γ )pr ( / )Δ = ι/+/' o pr ( / + Γ ) Δ.

Corollary 4.5. If Φ: Z -> Z' is a smooth diffeomorphism, then there is a

unique smooth diffeomorphism

called the k-th prolongation of Φ, such that for any parametrization f: Rp —* Z

of a p-section of Z, the following diagram commutes:

>J*(Z',p)

Moreover

p r(*')p r(*)φ = t

The last corollary will be especially important when the prolongation of

transformation group actions to extended jet bundles is discussed in §5.
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We now proceed to describe the concept of a system of partial differential
equations for an extended jet bundle. Recall that in the category of vector
bundles a differential equation is usually given as Δ'^O} where Δ is a
differential operator and 0 denotes the zero cross-section of the image bundle.
In the case of fiber bundles, there is no such intrinsically defined cross-sec-
tion. (Indeed, the bundle may have no smooth global sections.) Even if we
restricted our attention to bundles with a distinguished cross-section, there
would be problems in relating the prolonged differential equation to the
prolonged differential operator. In view of these observations, the following
definition can be seen to give an appropriate generalization of the notion of a
system of partial differential equations.

Definition 4.6. Let Δ: J*(Z, p) —» F be a smooth differential operator, and
let F o c F b e a subbundle over Z. Then the differential equation correspond-
ing to F o is the subvariety Δ~ι{F0) c J*(Z,p).

Note that if ΔQ = Δ"]{0} c J*(Z,p) is a subvariety of J*(Z,p) given by
the zero set of some smooth map Δ: J£(Z,p) -» Rα, then ΔQ is the differential
equation corresponding to the zero cross-section of the trivial bundle Z X Rα

under the differential operator π£ X Δ. Therefore any closed subvariety of
J£(Z,p) can be viewed as the differential equation corresponding to some
smooth differential operator. Suppose

Δ'(x, u, «<*>) = 0, i = 1, , α,

is a system of partial differential equations in some coordinate system on Z.
Then the closure of the subset of J*(Z, p) given by these equations (which are
only defined on an appropriate trivialized jet bundle) will be the differential
equation corresponding to this system. Thus all classical systems of partial
differential equations are included in our definition, with the added feature
that solutions with "vertical tangents" are allowed, provided these tangents
are in some sense the limits of "tangents" which satisfy the system of
equations. In general, the interesting object will be the subvariety in the
extended jet bundle and not the particular differential operator used to define
it. Therefore a A -th order system of partial differential equations over a
smooth manifold Z will be taken to mean an arbitrary closed subset ΔQ C
J*(Z, p). A solution to a system of equations is a /7-section s c Z satisfying

JU C Δo.
Given a subset S c Z, let J*(S,p) c J*(Z,p) denote the subset of all

extended λ>jets of /^-sections of Z wholly contained in S. Note that this set
will be empty if S contains no/?-dimensional submanifolds.

Definition 4.7. Let ΔQ C /*(Z,/?) be a λ>th order system of partial dif-
ferential equations. Then the l-th prolongation of ΔQ is the (k + /)-th order
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differential equation

where J£+ι(Z,p) c J*(J*(Z9 p\p) via the injection given in Corollary 4.3.

The next proposition shows that PΓ(/)ΔQ is indeed a differential equation and

corresponds to the prolongation of the differential operator defining ΔQ,

providing that this operator is in some sense "irreducible".

Proposition 4.8. Let Δ: / * ( Z , /?) —» F be a smooth differential operator, and

let FQ C F a subbundle such that Δ is transversal to Fo. Let ΔQ = Δ~ι{F0) be

the differential equation corresponding to Fo. Then

Recall that a smooth map /: M —> N is transversal to a submanifold

N0GNif for srnyy G f(M) n No with/(x) = y, TN\y = TN0\y + df[TM\x].

The transversality of Δ of Fo is necessary for the proposition to hold. For

instance, if the differential equation ux — 0 is defined by the operator Δ = u\,

then pr(1)Δ = (ux, 2uxuxx), so the equation in the second jet bundle given by

pr(1)Δ is just ux = 0, which is not the prolonged equation-w^ = 0 = uxx. It can

be seen that for polynomial operators, transversality is related to irreduci-

bility.

Given a fiber bundle F over Z, a/?-section of F will be said to be vertical at

a point if its tangent space at that point has nonzero intersection with the

tangent space to the fiber of F. Define V* C J*(J£{Z, p), p) to be the subset

given by all /-jets of vertical sections of /*(Z, p).

Lemma 4.9. For each k, /,

Lemma 4.10. If s is a smooth p-section of J£{Z,p) such that y*j | y G

J*+ι(Z>P) for some j e J%{Z,p), then for any smooth differential operator Δ:

Lemma 4.11. Suppose F: Z —» Z ' is a smooth map between manifolds, and

ZQC Z' a submanifold transversal to F. Given z e Z with F(z) = z' G ZQ and

a P'section s G C°°(Z,p)\z such that

then there exists another p-section s G C°°(Z,/?)|Z with <^ιs\z = %s\z and

F(s) C Zί.

Proof Choose local coordinates (x, y, t) around z such that s = {y = 0,

/ = 0} and dF(d/dy*) form a basis for TZ'\Z,/TZ^Z,. Choose local coordi-

nates (£, η) around z' such that ZQ = {η = 0}. Let
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F(x,y, t) = (Fλ(x,y, t\ F2(x9y, /))
in these coordinates, and, using the implicit function theorem, let y = y(x) be
the smooth solution to the equation F2(x, y(x), 0) = 0 near z = (0, 0, 0).
Then s = {(x,y(x), 0)} satisfies the criteria of the lemma. Indeed, differenti-
ating the equation which implicitly defines ^(Λ:) gives

— F2(0, 0, 0) + " ^ y W -ξ- F2(0, 0, 0) + Aκ = 0,

where Aκ is a sum of terms involving derivatives of thcyJ(x) of orders < ΣK.
Hence by induction all derivatives of y(x) up to and including λ>th order
vanish.

Proof of Proposition 4.8. Let Δ£7) = [pr(l)Δ]-ι{J*(Fφp)}. To show that
Δ^7)

 D PΓ(/)ΔQ let s be a p -section contained in ΔQ with jfs Π V* = 0. This
means that (locally) π£[s] is a smooth/?-section of Z, hence Δ[J] is a smooth
/7-section of Fo since p ° Δ[̂ ] = TΓof̂ ]. Therefore j*Δ[s] c J*(F0,p). In partic-
ular, if y*j|y E J£+ι(Z,p), then by Lemma 4.10 we have

Now Lemma 4.9 implies Δ̂ ° D pr(/)Δ0.

Conversely, suppose j G Δ̂ ° and let π£*ι(J) = Jo a n d ^o+ /θ') = z Let
j E C-ίZ,/;)!, represent y so pr^ΔO) = y;(Δ[Λ^])|ΔOo), hence rf'^^C/f j)|yJ
C %F0. By Lemma 4.11 there exists s E C^ί/^Z,/?),^)^ with %S\JQ =
9/̂ ly and s c Δo. In addition j*s\Jo = y, hencey E PΓ(/)ΔQ.

5. Prolongation of group actions

Let Z be a smooth manifold of dimension/? + q, and suppose that G is a
smooth local group of transformations acting on Z. (The relevant definitions
and results may be found in Palais' monograph [19].) Basically this means
that there is an open subset Uo with {e} X Z c UQ c G X Z and a smooth
map Φ: U0-*Z which is consistent with the local group structure of G.

Define
Zg= {z £ Z: (g, z) E t/0} forg E G,

G: = { g £ G: (g,z) E Uo] forz E Z.

Let Q C TZ denote the involutive "quasi-differential system" spanned by the
infinitesimal generators of the actions of one-parameter subgroups of G. (The
adjective "quasi-" is used since the dimension of g|z may vary depending on
z. However, since the subsets of Z where dim Q\Z is constant are invariant
under G, it may be assumed without significant loss of generality that all the
orbits of G have the same dimension.)
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Theorem 5.1. A submanifold S c Z is locally invariant under the group
action of G iff TS\Z D Q\Z for all z G S. A closed submanifold S C Z is
invariant iff it is locally invariant.

Usually we shall be interested in the local invariance of subvarieties of Z
which are given by the vanishing of a smooth function F: Z —» R*. Recall that
F is a submersion if dF has maximal rank everywhere.

Theorem 5.2. Let S = F-1{0} for F: Z -+ Rk a smooth submersion. Then S
is invariant under G iff

dF[%\z] = 0
for all z <Ξ S.

This theorem is usually what is meant by the infinitesimal criterion for the
invariance of a subvariety. In local coordinates (z1, , zn) on Z, suppose Q
is spanned by the vector fields

j-\ ΰzJ

If F(z) = (F\z% , Fk(z)\ then S = F~ι{0} is invariant under G iff

whenever F^z) = = Fk(z) = 0.
Given a local group of transformations G acting on Z, Corollary 4.5 shows

that there is an induced action of G on the extended jet bundle /*(Z, p),
which will be called the prolonged action of G. The construction of this
prolonged action shows that if ΔQ is a system of partial differential equations
which is invariant under the prolonged action of G, then the elements of G
transform solutions of Δo to other solutions of ΔQ. The infinitesimal criterion
of Theorem 5.2 will provide a practically useful method of determining when
a system of partial differential equations is actually invariant under a pro-
longed group action. To implement this, we need to find a local coordinate
expression for the prolongation of the infinitesimal generators of G. Note that
it suffices to consider the case when G is a one-parameter group with
infinitesimal generator given by a vector field v.

Definition 53. Given a vector field v on Z, let exρ(ίv) denote the local
one-parameter group generated by v. The k-th prolongation of v is the vector
field on J*(Z, p) given by

The next theorem provides the explicit local coordinate expression for
pr(*V. The coordinate charts on J*(Z, p) are those provided by Proposition
3.14.
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Theorem 5.4. Let χ: Z -> R' X Rq be a local coordinate chart on Z with

induced coordinates

χ(k): J£(Z,p; <?L) -> R' X R« X Θ*(R*, R«)

on the extended jet bundle. Let v be a smooth vector field on Z given in these

local coordinates by

where (x, ύ) = (x\ , xp, uι, , uq) are the coordinates on Rp X Rq.

Then in the induced coordinates (x, w, , MJ, ) we have

(5.1) Φ/ = zvίφ, - Σ «JίΛ «j = 3«'/3x',

and Dj is the total derivative from Lemma 2.7.

Proof. Let Φ,: Z-> Z denote the local transformation exp(/v). In local

coordinates, for t sufficiently small,

Φ,(x, u) = (Φ,(x, ύ), *t(x, u))

with

—
at

J(Λ;, M) = ξJ(x, u), j = 1, ,/?,

j(x, M) = φi(x, M), Ϊ = 1, , q.

Lctj = (z, u(k)) = O, M, , MJ, ) G Λ*(Z,/?; % ) , and let/: R* -» Z be

the normal parametrization of a section representing j . In local coordinates,

/(•*) = (χ>f(x)) a n d w(/:) = dζf(x). Let gt = Φt ° f for / sufficiently small so

that the sections im gt are transversal to Gll. Let^: R^ ^> Z,ft(x) = (x,/ f(x)),

be the renormalized parametrization of im gr It follows that

for ί sufficiently small so the inverse exists. Therefore

pr<*>Φ,(z, MW) = (Φ,(z), 8 * [ Ϋ , o / o ( Φ / o/)

We must compute the derivative of this expression with respect to / at / = 0.
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Making use of the fact that

for any differentiable matrix valued function of /, we have

P r ( * H = ί pr(*>Φ,(z, W<*>)
dt

dt
k k d

/=o * ' dt

since Ψo ° / = / and Φo ° / = \p. The second term in (*) is just the total
derivative matrix Dkφ(x, w, u^k)) of φ = (φv , φq) since the entries of
d*(^t ° /) a r ^ just the various partial derivatives dκ(Ψt ° f). We are thus
allowed to interchange the order of differentiation:

, u,

The third term requires more careful analysis since the matrix entries do not
depend linearly on functions of t. Let (djg) be the block matrix form of dkg
given in (2.6). We have

Moreover

d_
It tJ

ιJL% "D = i [ 0 Σ ̂ ,i
=0

o3*(Φ,

where ξ = (I1,
the fact that

(i - 1)!

). The proof of the last equality is a consequence of

Φo of = ip9 so d(Φ0of) = \p and Θ2(ΦO of) = 0.

Therefore the only multi-indices in @!m contributing anything to the sum upon
evaluating the derivative at / = 0 are (/ - \)δι + δ m ~ / + 1 and /δ1. Recall that
for / > 1,

— I —
(/- 1)!
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is just the identity map of Θ ^ R Λ Therefore, by (2.1),

- Σ ί
/>/<: σ=i

Now the matrix entries of (*) are
(***) Φf = Djφ, - Σ <CjL.

The sum in (•**) is taken over all multi-indices L with ΣL = / < j = Σ7,

and C/ is the coefficient of eL in (•*). Leibnitz' formula for the derivatives of

a product completes the proof of (5.1).

Example 5.5. Consider the special case p = 2, q = 1 with coordinates

(x,>>, w) and vector field ζdx + ηθ^ + <j>du. The second prolongation of this

vector field is given by

€3, + ηdy + φdu + φxdUχ + φ ' θ ^ + φxxdU

where

φ^ = i)Λφ - uxDJ - uyDxη

φ^ = Z^φ - uxDyi - uγDyη

= Φy + «κ(Φu - ^ ) ~ Uylu - Uχiy ~

Φxx = »xxΦ ~ lUχχDχt ~ 2»xyDχV - uxDxxξ - uyDxxη,

φ*y = D^φ - uxxDyξ - UxyDyV - UχyDxζ - uyyDxη

- uxD^ - iiyD^η,

φ»> = Dyyφ - 2UχyDyζ - 2uyyDyη - uxDyyi - uyDyyη.

The next corollary can be found in [8, p. 106] and provides a useful

recursion formula for computing the functions φf.

Corollary 5.6. The coefficient functions in Theorem 5.4 satisfy the recursion

relation

(5.3) Φ,J+sk = Dkφf - 2 uj+δ.Dkξ°.
σ = l

Finally, we may use Theorem 5.4 to show that the prolongation operator

preserves the Lie algebra structure of the space of vector fields. An alternate

noncomputational proof of this fact may be found in reference [16].
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Theorem 5.7. Let v, v' be smooth vector fields on Z, and let a, b be real

constants. Then for any k > 0,

pr(k\a\ + b\') = a pr(*>v + b pr(*V,

pr<*>[v, v'] = [pr(/c)v,pr(*V].

6. Symmetry groups of differential equations

Consider a &-th order system of partial differential equations ΔQ C
J*(Z, p). The "symmetry group" of ΔQ will be loosely taken to mean the local
group of all smooth local transformations of Z whose fc-th prolongation to
J£(Z,p) leaves ΔQ invariant. The algebra of infinitesimal symmetries of ΔQ
will be the space of smooth vector fields on Z whose /c-th prolongations leave
Δo infinitesimally invariant. Note that by Lemma 5.7, the infnitesimal symme-
tries form a Lie algebra. In general, it is to be expected that the symmetry
algebra exponentiates to form the connected component of the identity of the
symmetry group. A technical problem arises in the case the symmetries form
an infinite dimensional algebra: a Lie pseudogroup type condition (cf. [22])
must be imposed to maintain the correspondence between the group and the
algebra. It shall be seen that the infinitesimal symmetries must satisfy a large
number of partial differential equations so that under some appropriate weak
conditions on ΔQ the Lie pseudogroup criteria will be satisfied. However, as
these are rather technical in nature and shed little additional light on the
subject, they will not be investigated here. Besides, we will usually be
concerned with finite dimensional subgroups of the symmetry group, and
problems of this nature will not arise.

In practice, ΔQ will not be given as a subvariety of J£(Z,p), but will be
given, in local coordinates (x, ύ) on Z, as a system of equations

(6.1) Δ'Oc, u, uw) = 0, / = 1, ,α,

where the Δ"s are smooth real valued functions on J£(Z,p; c?l). Here %
denotes the differential system spanned by (θ/θw1, , d/duq} and the uik)

are the induced coordinates on the trivialized jet bundle. In the classical case
Z = Rp xRq and (6.1) are given on Jk(Rp, R«) = J£(Z,p; <?L). Then ΔQ will
denote the closure of the subvariety of J£(Z,p; ^i) given by (6.1) in /*(Z,p).
Note that to check the invariance of ΔQ it suffices to check the local
invariance of the subvariety defined by (6.1), so we can effectively restrict our
attention to the trivialized jet bundle.

Let Δ: J£(Z,p; %)—>Rα denote the map with components Δ1. If Δ is a
submersion, then the infinitesimal criterion of invariance shows that ΔQ is
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invariant under the group G iff

(6.2) pr(*V[Δ] = 0 whenever Δ = 0

for all infinitesimal generators v of G. In the case that ΔQ is "irreducible,"
meaning that any real valued function / vanishing on ΔQ must be of the form
/ = Σ \Δ', where the λ/s are smooth real valued functions on J£(Z,p), then
condition (6.2) becomes

(6.3) pr<*>v[Δ] = Σ \ Δ '

In practice (6.3) is the condition most frequently used-note that a priori the
λ/s can depend on all the derivatives as well as the dependent and indepen-
dent variables. To calculate the symmetry group of such a system of equa-
tions, v is allowed to be an arbitrary vector field:

duJ

where the £"s and φ,'s are unknown functions of the variables (A:, U). Using
the prolongation formula (5.1) the vector field pr(/c)v is computed in terms of
the £', φj and their derivatives. Then condition 6.3 provides a large system of
partial differential equations which these functions must satisfy, the general
solution of which is the desired (infinitesimal) symmetry group.

Example 6.1 (Burgers' equation). Let Z = R2 X R with coordinates (x, t, u)
and consider the second order quasi-linear equation

(6.4) u, + uux + uxx = 0,

known as Burgers' equation. It is important in nonlinear wave theory, being
the simplest equation which contains both nonlinear propagation and diffu-
sion. See, for instance, [25, Chapter 4] for a fairly complete discussion of its
properties. Let v = ξdx + rθ, + φdu be a smooth vector field on Z, with
second prolongation

pr(2)v = v + φxdUχ + φ\ + φxxdUχχ + φxtdUχt + φ " ^ ,

where the coefficient functions are given by (5.2).
Using Criterion 6.3, we have that

(6.5) φ* + uφx + uxφ + φxx = λ(w, + uux + uxx)

must be satisfied for some function λ which might depend on (x, t, w, wx, w,,
uxx, uxr utt). However, as the second order derivatives uxx, uxV utt occur only
linearly in φxx, λ can only depend on (x, t, w, ux, ut). The coefficient of uxt in
(6.5) is

-2DX r = 0,
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implying that τ is a function / alone. The coefficient of uxx is

(6-6) *„ - Άx ~ 3 « A = λ,

which determines λ. The coefficient of ut is, since λ is independent of un

Φu~ r t - Uχiu = λ >

which implies that £, = 0, τt = 2ξχ9 so ξxx = 0 and λ depends only on (7, w).

The coefficient of ux is now φuu = 0, hence

φ(x, /, u) = a(x, t) + uβ(x, t).

The coefficient of ux is now

-ξt + u(β - ξx) + a + >SM + 2 ^ = λ,

hence (6.6) shows

£ = -ix, βx = 0, a = ς .

Finally, the terms in (6.5) not involving any derivatives of u are

φ, + wφx + φXJC = 0.

Thus α, = 0, βt + α x = 0, which implies £„ = 0. Therefore the general solu-

tion to (6.5) is given by

ξ = cλ 4- c3x + c4/ + c5xi,

T = c 2 + 2c3ί + c5/
2,

φ = c 4 + c5x - (c 3 + c5ήu,

λ = -3c 3 - 3c5/,

where c1? c2, c3, c4, c5 are arbitrary real constants. The infinitesimal symmetry

algebra of Burgers' equation is five dimensional with basis consisting of the

vector fields

(6.7) V l = dχ9

v2 = 8,,

v3 = xdx + 2tdt — udu,

v4 = tdx + du9

v5 = xtdx + ί2^ + (JC - ίw)3M.

The commutation relations between these vector fields is given by the

following table, the entry at row / and column j representing [vy, vy]:
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Vj

V
2

v
3

V
4

V
5

v
i

0

0

0

-v
4

0

0

-2v
2

-v,

-v
3

V
3

Vj

2v
2

0

-v
4

-2v
5

V
4

0

Vj

V
4

0

0

V
5

v
4

v
3

2v
5

0

0

(6.8)

Let (7, denote the one-parameter local group associated with v;. Then Gx and

G2 are just translations in the x and / directions respectively:

Gλ: (x,t,u)\-+(x + λ, ί, w),

( 6 9 a ) G2: (JC, /, u) h* (x, t + λ, t/), λ e R,

and represent the fact that Burgers' equation has no dependence on x or /.

The group G3 consists of scale transformations:

(6.9b) G3: (JC, /, u) -> (eλx, e2λt, e~λu\ λ e R.

G4 is a group of Gallilean type:

G4 : (x, ί, M) -» (JC + λ/, /, M + λ),

( 6 9 c )

5 : (x, u u) -> ( y ^ , Γ^X7' M + λ ^ - to)), λ

These will be discussed in more detail in Example 8.10.

7. Groups of equivalent systems

Given an Az-th order partial differential equation, there is a standard trick

used to convert it into an equivalent system of first order partial differential

equations. For instance, in the case of the heat equation ut = uxx, the

equivalent system is

(7.1) ux = v, ut = w, ϋ, = wx, vx = w.

In the author's thesis [16], the symmetry groups of both the equation ut = uxx

and the system (7.1) were computed, and it was shown that the symmetry

group of the first order system can be viewed the first prolongation of the

symmetry group of the second order equation. It is the aim of this section to

investigate in what sense this phenomenon is true in general. It will be shown

that, barring the presence of "higher order symmetries," the symmetry group

of a first order system is the prolongation of the symmetry group of an

equivalent higher order equation (at least locally). The higher order symme-

tries are groups whose transformations depend on the derivatives as well as

just the independent and dependent variables in the equation. At the end of
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this section, an example of an equation which possesses higher order symme-

tries-the wave equation-will be considered.

We first need to describe what exactly is meant by the equivalent first order

system of a partial differential equation in the language of extended jet

bundles. Suppose ΔQ C J*{Z,p) is a λ>th order system of partial differential

equations. If (w1, , uq) denote the dependent variables corresponding to

some coordinate system (JC, ύ) on Z, then the dependent variables in the

equivalent first order system will be the induced coordinates uι

κ for all

multi-indices ^ G ^ with 0 < ΣK < k. (Here we identify uι

0 with w1.) In

other words, we are considering ΔQ as a first order system of equations over

the new manifold J£_x(Z,p), i.e., as a subvariety of /f (/£_ ^Z,/?),/?). Using

the embedding ι£_ X given in Corollary 4.3 it is not hard to see that this first

order system is nothing but

Example 7.1. Consider the manifold Z = R2 X R with coordinates

(x, /, w), and let k = 2. Suppose ΔQ C J*(Z, 2) is given by the equations

Δ'(x, t, M, ux, ut, uxx, uxr utt) = 0, i = 1, , a.

The local coordinates of J*(Z, 2) will be denoted by (x, t, u, υ, w), where v

corresponds to ux and w to « r Then the local coordinates on J\*(Jf(Z, 2), 2)

are (x, t, M, V, W, UX, UV VX, vn wx, wt), and the subbundle J*(Z, 2) (which we

will henceforth identify with ι\\j*(Z, 2))) is given by the equations

(7.2) ux = v, ut = w, υt = wx.

Therefore the first order system corresponding to ΔQ is given by (7.2) and the

additional equations

Δ'(x, t, u, v, w, vx, wx, wt) = 0, / = 1, , α.

More generally, we can replace a system of λ>th order partial differential

equations by an equivalent system of (k — /)th order equations for some

1 < / < k. This is accomplished via the embedding if from Corollary 4.3:

Δo c JZ(Z,p) C Jt^JftZtplp).

Lemma 7.2. Let ΔQ C J*(Z,p) be a k-th order system of partial differential

equations. Let 1 < I < k, and suppose s' c /*(Z, p) is a p-section such that

j*-ιs' C Δo. Then locally sf = j*s for some p-section s c Z which is a solution

toΔ0.

Proof. Let s = πfa'). Since j*-ts' c J*(Z9p), Lemma 4.9 shows that

locally s is a /?-section of Z. The local coordinate description of y*_/.s'

demonstrates that s' = jfs, which proves the result.
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Note that the projection KQ(S') is not necessarily a global /^-section of Z

since there might be self-intersections. This lemma justifies the use of the

word "equivalent", since the smooth solutions of the higher and lower order

equivalent systems are in one-to-one correspondence via the extended jet

map. Now we are in a position to consider the symmetry groups of the

equivalent systems. Suppose G is a local group of transformations acting on Z

whose k-th prolongation leaves ΔQ invariant. Corollary 4.4 demonstrates that

J*(Z, p) is an invariant subvariety of pr (*~7 )[pr ( / )G] acting on

J*_μf{Z,p),p). Moreover

We conclude that if G is a symmetry group of a λ>th order system of partial

differential equations, then pr(/)G is a symmetry group of the equivalent

(k — /)-th order system.

Conversely, suppose G' is a local group of transformations acting on

Jf{Z,p) such that ΔQ is an invariant subvariety of the prolonged action

pΓ(£-/)£' An obvious necessary condition for G' to satisfy in order to be the

prolongation of some group G acting on Z is that it be projectable, i.e., if

<U) = <W) tor jj' E Jf{Z,p), then π&gj) = irfaj") for aUgG GJ Π GJ,

The non-projectable groups will be called higher order symmetries, since while

they do transform solutions of ΔQ to solutions of ΔQ, the transformations

depend on the derivatives of the solutions as well as the solution values

themselves. They can be considered a special case of nonpoint transforma-

tions; cf. [18].

A second criterion that the group G' must meet in order to be a prolonga-

tion is that ΔQ is really a λ>th order equation. For instance, if ΔQ = (TΓ/T^ΔQ]

for some /-th order equation ΔQ, then any transformation of J*(Z, p) leaving

ΔQ invariant will preserve ΔQ, and the projectable ones are not expected to

necessarily be prolonged group actions. What can be proven is summarized in

the next theorem.

Theorem 73. Let 1 < / < k be integers, and let

Δo C J£(Z,p) C JZ-,(Jr(Z,p),p)

be a k-th order system of partial differential equations. If G is a local group of

transformations acting on Z such that ΔQ is invariant under the prolonged group

action pr(/c)G, then ΔQ is invariant under pr^'^pr^G]. Conversely, let G be a

local group of transformations acting projectably on Jf{Z,p) with projected

group action G on Z. //"Δo is invariant under pi^k~nG\ then pr(/)G agrees locally

with G' on TΓ/^ΔQ], which is a G' invariant subvarity of Jf(Z,p).

Proof. The first result has already been demonstrated in the remarks

preceding the statement of the theorem. To prove the converse, note that it
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suffices to show g', the algebra of infinitesimal generators of G\ agrees with
pr(/)g, the /-th prolongation of the algebra of infinitesimal generators of G. To
do this, it suffices to check that if v' is any projectable vector field on Jf(Z,p)
with projection v on Z such that ΔQ is invariant under p r ^ ' V , then

p r ( ' ) v = V ' o n 9ΓΛ[Δo]#

Choose local coordinates (x, ύ) on Z with induced local coordinates
( c, u9 u

{k)) on J£(Z,p) and (x, u, w(/)) on Jf{Z,p) so that *,*(*, U, u(k)) =
(x, w, w(/)). The induced local coordinates on J*-ι(J*(Z,p),p) are given by
(JC, w, u(l\ u(k~°, (w(/))(*~7)), the individual matrix entries given by (u})κ for
all 1 < i < q,J, K G S ,̂ with 0 < ΣJ < I, 0 < ΣK < k - I, where as usual
we identify I/Q with M ' a n d (wj)0 with wj. By Corollary 4.3, J£(Z,p) is given by
the equations

Now let v' be given in local coordinates by

so that

and

The (φ/)^ are given by the prolongation formula. Note that since V is
projectable, ζJ and φi are functions of (x, ύ) only.

Applying the infinitesimal criterion of invariance to ΔQ considered as a
(A: — /)-th order system, we must have

(φf)K(f) = (φfYΌ)> i=l, ' ,q,J+K = J' + K'9
whenever j E ΔQ. In particular, let K = δ°, K' = 0 for some 1 < σ < p. The

prolongation formula implies that

on ΔQ for all 0 < ΣJ < I — 1. Note that these are precisely the recursion
relations for the prolongation of vector fields as given in Corollary 5.6 since

Note that the theorem does not imply that G' and pr(/)G agree everywhere
on Jf(Z,p). For instance, in the coordinates of Example 7.1, an equation
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might be invariant under the transformation (x, /, u, v9 w) —»(x, /, w, w, t>),

but this projects to the identity transformation on Z = R2 X R, so is not a

prolongation.

Example 7.4 (The wave equation). Let Z = R2 X R with coordinates

O, t, u), and consider the second order equation ΔQ C J*(Z, 2) given by

(7.3) utt = uxx.

The equivalent first order system for ΔQ is given by

(7.4) ux = v, M, = H>, υt = vt̂ , υx = κ>,,

where (x, /, w, t>, W) are local coordinates on J*(Z, 2). Through some tedious

calculations similar to those in Example 6.1, we derive the fact that the

infinitesimal symmetry algebra of (7.4) is the space of all vector fields

ξdx + τ3, + φdu + ψdv + xθ^ with

€ = fι(v + w,x+ t) + gx(v - w, x - /),

τ = fι(v + w, JC + 0 " ^ i ( ϋ ~ ^ x ~ 0>

φ = (ϋ + w)fx(v + w, x + /) - f(v + w, x + ί)

' ^ + (l? - w)g!(ϋ - W, X - t) -g(v - W, X - t)

+ cu + α(t) + w) + b{υ - w),

Ψ = -fl(υ + W> X + 0 " #2(ϋ ~ W> X ~ 0 + Cϋ>

X = -Λ(« + w, x -I- 0 + 8i(v - w, x - /) + cw,

where / and g are arbitrary functions of two variables (the subscripts

indicating partial derivatives with respect to the variables), a and b arbitrary

functions of a single variable, and c an arbitrary constant.

To see what is going on with the higher order symmetries, let us consider a

specific example. Let

/(«,η)=i«2, g(β,ζ)=Σ

4β
2, a = b = c = 0,

so the vector field under consideration is

The one-parameter group generated by v'o is

GQ: (X, /, w, υ, w) ̂  ( x + λϋ, / + λ>v, M + - ( D 2 + w2), v, w\, λ e R.

Suppose u = F(x, ί) is a solution to the wave equation (7.3). Invariance of

(7.4) under pr(1)Gό implies that if we solve the implicit equations

v = Fx(x + λϋ, t + λw), w = Ft(x + λϋ, / + λw>)
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for v, w, then

u = F(x + λv, t + λw) - ^ ( ϋ 2 + w2)

gives a one-parameter family of solutions. This may be verified directly by
taking derivatives.

8. Group invariant solutions

Again suppose that Z is a smooth manifold of dimension/? + q, and G is a
local group of transformations acting on Z. Under some mild regularity
conditions on the action of G, the quotient space Z/ G can be endowed with
the structure of a smooth manifold. Suppose further that ΔQ is a system of
partial differential equations in p independent variables on Z, i.e., a closed
subset of J*(Z, p), which is invariant under the prolonged action of G. The
fundamental theorem concerning G-invariant solutions to Δo is that there is a
system of partial differential equations ΔQ/G C J*(Z/G,p — I), where / is
the dimension of the orbits of G, whose solutions are in one-to-one correspon-
dence with the G-invariant solutions of ΔQ. The local form of this general
result is essentially due to Ovsjannikov [17], although special cases may be
found in the work of Birkhoff and Sedov on dimensional analysis; cf. [2] and
[21]. Morgan [15] gives another early version of this theorem. Note that the
important point is that the number of independent variables in the new
system of equations ΔQ/ G is / fewer than those in ΔQ, making it in some sense
easier to solve. The practical application of this method will be illustrated by
the example of Burgers' equation at the end of this section.

Definition 8.1. An orbit Θ of G is said to be regular if for each z G 0
there exist arbitrarily small neighborhoods V containing z with the property
that for any orbit 0 ' of G, 0' n V is pathwise connected. The group G acts
regularly on Z if every orbit has the same dimension and is regular.

Definition 8.2. Given a subset S c Z, the saturation of S is the union of
all the orbits passing through S.

Given a local group of transformations acting on a smooth manifold Z, let
Z/G denote the quotient set of all orbits of G, and let πG: Z -> Z/G be the
projection which associates to each point in Z the orbit of G passing through
that point. There is a natural topology on Z/G given by the images of
saturated open subsets of Z under the projection τrG. As usual, let g denote
the involutive differential system spanned by the infinitesimal generators of
G.
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Theorem 8 3 [19, p. 19]. If G acts regularly on the smooth manifold Z, then

the quotient space Z/ G can be endowed with the structure of a smooth manifold

such that the projection πG: Z —» Z/G is a smooth map, the null space of dπG\z

is g|z, and the range is T(Z/' G)\πc{z).

It should be remarked that the quotient manifold Z/ G does not necessarily
satisfy the Hausdorff topological axiom. For instance, let Z = R2 — {0}, and
let G be the one-parameter group generated by the vector field

v = (x2 + u2)dx,

which is a local regular group action on Z. The quotient manifold Z/ G can
be realized a copy of the real line with two infinitely close origins, which are
given by the orbits {(x, 0): x > 0} and {(*, 0): x < 0}. It is, however,
entirely possible to develop a theory of smooth manifolds which does not use
the Hausdorff separation axiom, with little change in the relevant results in
the local theory. All the results of this paper hold in the non-Hausdorff case;
after consulting Palais' monograph [19], the interested reader may check this.

Definition 8.4. A local G-invariant p-section of Z is a /^-dimensional
submanifold s c Z such that for each point z G s there is an open e G Nz c
Gz with the property that any transformation g G Nz satisfies g- z G s. A
global G-invariant p-section is a ^-dimensional submanif old s c Z which is
invariant under all the transformations in G.

Since G acts regularly, any local G-invariant /^-section can be extended to a
global G-invariant p -section simply by taking its saturation. Note that a
necessary condition for G to admit invariant p -sections is that p > I and in
this case, the global invariants-sections are in one-to-one correspondence via
the projection mG with the (p - /)-dimensional submanif olds of Z/G.

Let us look at the construction of the quotient manifold Z/G from a more
classical viewpoint. The regularity of the action of G implies the existence of
regular coordinates χ\ V —»RΛ, where V is an open subset of Z and for any
orbit 6 of G

χ ( K Π 6) = [z = (z\ , z«): z ' + 1 = c l + l f , zΛ = cn)

for some constants c/+1, , cn. Now suppose that z = (z1, , z") is any
system of local coordinates on Z. A real valued function F: Z -> R is called
an invariant of G if F(gz) = F(z) for all z G Z, g G Gz. By the existence of
regular coordinate systems on Z, we know that locally there always exist
n - I functionally independent invariants of G, say F\ , Fn~ι. Let
F = (Fι, , Fn~ι): Z ->R"~'. The functional independence of these in-
variants is another way of saying that the Jacobian map dF: TZ -> TRn~ι has
maximal rank. We conclude that these invariants provide local coordinates on
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the quotient manifold Z/G. The reader should consult Ovsjannikov [17,
Chapter 3] for an exposition of the subject from this viewpoint, although no
explicit reference is made to the quotient manifold.

The main goal of this section is to provide an easy characterization of the
subbundle of J*{Z, p) given by the extended Λ>jets of G-invariant /^-sections
of Z and to show how this subbundle is related to J£(Z/G,p — I). This in
turn will yield as a direct corollary the fundamental theorem on the existence
of (^-invariant solutions to systems of partial differential equations invariant
under the prolonged action of G.

Lemma 8.5. If s c Z is a global G-invariant p-section, then its projection
s/G = πG(s) c Z/G is a (p - I)-section of Z/G. Conversely, ifs/GcZ/G
is a (p — I)-section of Z/G, then π^ζs/G) is a global G-invariant p-section of
Z. Moreover, dkmG maps ($ks\z onto ̂ k(s/fG)\ z.

Given a section ω of the A>th order tangent bundle ^kZ, for each z ELZ
there is a well-defined map

depending smoothly on z and given by the formula

voω\z{f) = v[ω{f(z))}, v G %Z\2, f e C"(Z, R).

In future, the dependence of this map on z will be suppressed, so the above
formula is more succinctly written voω{f) = v[ω(f)]. If Ω is a λ>prolonged
differential system, i.e., a vector subbundle of ^k Z, and Λ a vector subspace
of ?Γ/Z|Z, then ΛoΩ will denote the vector subspace of ($k+ιZ\z spanned by
all λoco for λ G Λ and ω SL section of Ω. If Ω' is an /-prolonged differential
system, then ΩoΩ' is a (A: + /)-ρrolonged differential system. Note that ΩoΩ'
and ΩΌΩ are not necessarily equal. Define

Lemma 8.6. Suppose A G GτsiSSik\%Z,p)\z and Q(k)\2 c Λ. Then there
exists a locally G-invariant submanifold s c Z with ($ks\2 = Λ.

Definition 8.7. Define the G-invariant k-jet subbundle of/^-sections of Z:

Inv(k\G9p) = {Λ G Orassw(%Z9p): Λ, D g, A i + 1 D Λ/Θg,

i - l , . , * - l }

C GT3LSS(k\%Z,P) - Jt(Z,p).

The next theorem shows that ln\^k\G,p) actually does represent the
subbundle of G-invariant ^-sections, and gives its "identification" with the
extended Λ>jet bundle of (p — /)-sections of Z/G.
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Theorem 8.8. There is a natural map

with the following properties:

(i) π^ : Inv(A:)(G, p)\z -> / * ( Z / G , p - l)\VcZ gives an isomorphism of fibers.

(ii) Given a p-section s c Z, there exists a (p — l\section s/G c Z / G with

<rτG(s) = s/G iffj*s c Inv<*>(G,/0, i* wAicA cαrc ir^C/M = Jt(s/G).

Proof. First suppose that j£s c Inv(A0(G,/>) In particular, this implies that

for each z G s, Ts\z D g|z, which shows that s is locally G-invariant.

Conversely, suppose s is a G-invariant /^-section of Z with image πG(s) =

s/G. Choose local coordinates (z1, , z / 7 + 9 ) centered at z G s so that Q is

spanned by {3,, , θ,} and s is given by (z: z^"1"1 = = zp+q = 0}.

Thus %s\z is spanned by (9 7 | z : ΣI < /, ι̂ ,+ 1 = = ip+q = 0}. Hence

%+ϊs\2 D ?Γ^|zog for all i. Finally, given Λ e lnv(k\G,p)\2, by Lemma 8.6

there exists a locally G-invariant /?-section s of Z with S .̂̂ 1̂  = Λ. Define

4A )(A) = dkπG(A), so that by Lemma 8.5, ^\j*s\z) = JRs/G)\9QI.

Theorem 8.9. Let ΔQ be a k-th order system of partial differential equations

on Z. Let Δ^ = Δo π Inv(/c)(G,/?) &e /Ae corresponding system of partial dif-

ferential equations for G-invariant solutions to Δo. If Δ^ is invariant under the

prolonged group action pr(A:)G, then a p-section s of Z is a G-invariant solution

to Δo iff s/G is a solution to the reduced differential equation ΔQ/G = T Γ ^ Δ ^ ) .

In particular, if ΔQ is G-invariant, then Δ^ is also G-invariant.

Proof. If s is a G-invariant solution to ΔQ, then j£s C ΔQ n lnv(k\G,p) by

the previous theorem, and therefore π^Xj'Zs) =j*(s/G) c Δ o /G. Con-

versely, given s/G, a solution to ΔQ/G, let s be the corresponding G-invariant

p-section of Z. By the isomorphism given in (i) of Theorem 8.8, j*(s/G)\^GZ

G Δ Q / G | ^ C Z implies j£s\z G Δ 0 | z c ΔQ|Z, giving the result. Finally, the last

statement of the theorem follows from the fact that lnv(k)(G,p) is a pr(A:)G

invariant subbundle of J*(Z, p).

To show that this theorem is the optimal result on the existence of a system

of partial differential equations ΔQ/G on Z/G whose solutions give the

G-invariant solutions to ΔQ, we briefly consider a few elementary examples.

On the manifold Z = R3 with coordinates (x, y, ύ) consider the first order

equation ΔQ = {xux + uy = 0}. Let G be the one-parameter group of transla-

tions in the x-coordinate. The equation ΔQ is not G-invariant, but ΔQ = {ux =

0, uy = 0} is and admits the G-invariant solutions u = constant. With G and

Z the same, consider the equation ΔQ = {uy - xu - x2ux = 0}, which is

again not G-invariant. ΔQ is also not G-invariant, but it admits the solution

u = 0. In this case ΔQ|{M = 0} is G-invariant. However, even this is not

necessarily true as the example ΔQ = {uy - xu = xuz} on R4 with G being
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translation in the c-coordinate shows. Again u = 0 is a G-invariant solution
to Δo, but ΔQ|{W = 0} is not G-invariant.

For an example of a case when ΔQ is not G-invariant, but ΔQ is and
interesting solutions are obtained, see Bluman and Cole [3].

It remains to demonstrate how the reduced equation ΔQ/G of Theorem 8.9
is found in practice. Let (ξ, ζ) = (£\ , ξp, ζ \ , ξq) be local coordi-
nates on Z/G. Let (x, ύ) = (x\ , xp, u\ , uq) be local coordinates
on Z. The projection ττG is described by the equation

τrG(x, u) = (l(x, w), ζ(x9 w)),

where the £"s and ξj9s form a complete set of functionally independent
invariants of G. Assume for convenience that the orbits of G are all transver-
sal to the fibers x = constant. Since p > /, the transversality condition allows
us to find a smooth function ω(x, £, ζ) such that the orbits of G are just

*G (& 0 = {(*> «) : « = «(*, fc £)}, (& f) e Z/G.

Suppose J = (M = /(JC)} is a G-invariant /^-section of Z with s/G = {ξ =
Φ(ί)}> where we have assumed that s/G is transversal to the fibers ξ =
constant. Therefore

/(*) = ω{x, l(xj(x)), φ(l(x,f(

Differentiating this equation with respect to x yields

dj(x) = dxω + [3{ω 4- dζω 3{φ] ( θ j )

where the subscripts on the θ's indicate with respect to which set of variables
the partial derivatives are being taken. Again the transversality conditions
allow us to solve for df:

Continuing to differentiate, we compute

(8.1) dkj = «<*>(*, I φ(l), aίφ(€)), k = 1, 2,

We conclude from part (ii) of Theorem 8.8 that

Now suppose that ΔQ C J*(Z,p) is a system of partial differential equa-
tions which is invariant under the prolongation of the action of G, and that in
local coordinates the subvariety ΔQ is described by the equations

Δ'"(JC, u, uw) = 0, i = 1, , a.



SYMMETRY GROUPS 537

The equation ΔQ/G is found by substituting the expressions (8.1) for the

derivatives of w, giving

Δ'(x, u, fc f, f<*>) = 0, i = 1, , a.

Now Theorem 8.9 assures us that these equations are equivalent to a system

depending solely on the variables of the quotient manifold:

Δ''(fc ?, f<*>) = 0, i = 1, , α.

This final system is the reduced equation Δ Q / G . This process will become

clearer in the following example.

Example 8.10 (Burgers9 equation). Consider the equation

Δo : ut + uux + uxx = 0,

whose symmetry group was calculated in Example 6.1.

Various one-parameter subgroups of this group will be considered, and the

invariant solutions corresponding to them will be derived. As a first example,

the traveling wave solutions will be found. These correspond to the vector

field cdx + dt, where c is the wave velocity. This exponentiates to the group

action

Gc : (x, t, u) ι-> (x + λc, t + λ, w), λ G R,

which has independent invariants u and ξ = x — ct. We have

w, = -cu\ ux = w', MXJC = M",

where the primes mean derivatives with respect to ξ. The equation ΔQ/ GC on

R 3 / G c ^ R2 for the Gc-invariant solutions is then

u" + (M + C)M' = 0.

This has a first integral

u' +\u2 + cw + A:o = 0.

Let /̂ = 2&0 — c2. Then the Gc invariant solutions are

Vd idiΏ^\Vd (ct - x + fi)] - c, </ > 0 ,

2(x - cί + δ)" 1 - c, rf = 0,«(Λ, 0 =

- ct + 8)] - c, d < 0,

where 8 is a constant.

Next consider the vector field v4 = tdx + 3tt whose one-parameter group is

given in (6.9c). Coordinates on R 3 / G 4 c~ R2 are given by the invariants t and

ξ = u - x/t. Then

ut = Γ - x/Λ "x = 1//, «« = 0.
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The equation Δ 0/G 4 is just

tf' + S - 0,

which is of first order. Therefore the general G4-invariant solution to ΔQ is

u(x, /) = (* + *α)A

for some constant k0. Similarly it can be shown that the invariant solutions

for the infinitesimal operator (a + t)dx + 3M are

u(x, t) = (x + k0)/ (/ + a).

A more interesting case arises when the scale invariant solutions are

considered. The vector field here is v3 = xdx + 2/9, - udu, corresponding to

the group G3 given in (6.9b). To let G3 act regularly, we must restrict our

attention to the submanifold Z' = R3 — {0}. The quotient manifold Z'/G3 is

non-Hausdorff. It can be realized as a cylinder Sι X R together with two

exceptional points L+ and L_, which correspond to the two vertical orbits

L+ = {x = / = 0, u > 0}, L_= {x = t = 0, w < 0}.

If (θ, h) are the coordinates on Sι X R, then neighborhood bases of L + and

L_ are given by

{L+} u {(0, A) : 0 < h< e}, {L_} u {(0, A) : -e < h < 0}, ε > 0,

respectively. A G3-invariant solution of Burgers' equation corresponds to a

curve in Z'/G3 which is a solution to ΔQ/G3. Note that if the curve passes

through either of the exceptional points, the corresponding G3-invariant

solution is not a single valued function of (x, t), so we will concentrate on the

Hausdorff submanifold Sι X R c Z'/G3. Using the local coordinates

I = Γιx2, w = xu,

and treating £ as the new independent variable, we see that

ux = -JC"2^ + 2 r V ,

wXJC = 2JC"3W - 2r1x"1w/ + 4Γ2JCW".

In these coordinates, the equation Δ o / G3 is

4{ V + £(2w - 2 - €)w' + w(2 - w) = 0.

If w = 4ξφ'/φ where φ is a smooth positive function of £, then the above

equation reduces to
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or, upon integration,

4£φ" + (2 - £)φ' - kφ = 0

for some constant k. This is (up to multiplication by a constant) the confluent
hypergeometric equation and has general solution

φ(€) = c ,/*,(*, 1/2; ξ/4) + c'V« xFx{k + 1/2, 3/2; ξ/4).

(See for instance [27, Chapter 6].) From any particular φ we may reconstruct

local G3-invariant solutions of Burgers' equation via the formula

, , Ax Φ'(x2/t)

t φ(x2/ή

Finally, consider the vector field v5 = xtdx + ί2dt + (x — tu)du with one-

parameter group G5 which acts regularly on Z " = R3 ~ (JC = / = 0). Then

Z"/G5 ^ Sι X R. (A cross-section to the orbits of G5 is provided by a line

bundle with two twists over the circle {(x, t, u): u — 0, x2 + t2 = 1}.) Con-

venient local coordinates are given by the invariants

> x
ξ = — , w = tu — x.

The reduced equation ΔQ/ G5 is

wr/ + ww' = 0,

which gives the G5 invariant solutions

x -h k/ . -k\ I kx + k't\ 1 , .
u(x,t) = — tan|̂  j + jcl, u(x, i)

where k and k' are arbitrary real constants. Other G5-invariant solutions can

be found by using different coordinate patches on Z"/G5.

Symbol index

symbol
Qk v k-th symmetric power of a vector space V

k

O V symmetric algebra of a vector space V 501

O*( V, W) space of JF-valued ^-symmetric linear functions on V 501
k

O*(K, W) = 0 Θ'(K, W) 503
* /-i

Θ*( K, FF) space of symmetric fF-valued linear functions on V 501
o (i) product in ΘφK 501

(ii) product in Θ*( K, W) when W is an algebra 502
<§k M A:-th order tangent bundle of manifold M 507
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ΣI

S"

a*
9/

a*/

*k

d
k
f

Ψ

D
k
f

D
k
J

GL<
k
\V)

PGLS
k
\ή)

Grass
(
*>(K,

k-th order cotangent bundle of manifold Λf

rank of multi-index /
set of /i-multi-indices of rank k

set of all /j-multi-indices
σ

Kronecker multi-index-(O, , 0, 1, 0, , 0)

Factorial of multi-index /

Binomial coefficient for multi-indices /, J

/c-Faa-di-Bruno set of multi-indices

A>Faa-di-Bruno set of multi-indices of rank/

dimension of OjfRp

partial derivative in xk direction

partial derivative corresponding to multi-index /

k-th order differential of map / between vector spaces

= 3/-I- 3 2 / + + 3 * /

Faa-di-Bruno injection

projection inverse to εk

J
k
*(M,p;

(ii) induced map on k-th order tangent bundles

matrix blocks of dkf

total derivative in xk direction

total derivative corresponding to multi-index /

A>th order total differential of function/

= Z)/+ Z)2/+ +Dkf

identity map of a space X

identity map of Rp

A:-th order prolonged general linear group of V

k-ih order prolonged linear group of R"

λ>th order prolonged projective linear group of Rπ

p) k-th order prolonged Grassmannian of prolonged

p -planes for vector space V

W) trivialized prolonged Grassmannian

space of germs of smooths-sections of Λf passing

through m

k-th order extended jet bundle of p-sections of Λf

trivialized k-th order extended jet bundle

k-th order extended jet of /^-section

(i) canonical prolonged Grassmannian projection

(ii) canonical extended jet bundle projection

canonical extended jet bundle injection

k-th prolongation of differential operator Δ

507
501
501
501

501
501

501

503
505
510

502
502
502
504

503

503

504

507
505

506
505

505
505

504
504
513

509

512

506

508

513

508

509

513

516

515
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k-th prolongation of differential equation ΔQ 518

k'th prolongation of dif feomorphism Φ 516

k-th prolongation of vector field v 520

p) bundle of extended A>jets of G invariant /^-sections 534
projection to quotient space under action of G 532

induced projection on λ>jet bundle level 535
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