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Almost all the methods devised to date for constructing particular solutions to a partial differential equation can be viewed 
as manifestations of a single unifying method characterized by the appending of suitable "side conditions" to the equation, and 
solving the resulting overdetermined system of partial differential equations. These side conditions can also be regarded as 
specifying the invariance of the particular solutions under some generalized group of transformations. 

In the study of partial differential equations, the 
discovery of explicit solutions has great theoretical 
and practical importance. In the case of  linear systems, 
general solutions can be built up by superposition 
from separable solutions; for nonlinear systems, ex- 
plier solutions are used as models for physical or 
numerical experiments, and often reflect the asymp- 
totic behavior of  more complicated solutions. Over 
the years, a variety of methods for finding these special 
solutions by reducing the partial differential equation 
to one or more ordinary differential equations have 
been devised. Included are the method of group-in- 
variant solutions popularized by Ovsiannikov [1 ] ,  but 
due originally to Lie [2] (see also ref. [11] ),the "non- 
classical method" for group-invariant solutions due to 
Bluman and Cole [3], and its recent generalization by 
the authors [4], the method of partially invariant solu- 
tions of Ovsiannikov [1 ],  and the general method of sep- 
aration of variables, for both linear systems as well as cer- 
tain nonlinear equations such as Hamilton-Jacobi equa- 
tions. The one common theme of  all these methods 
has been the appearance of some form of group in- 
variance. 

1 Supported in part by NSF Grant MCS 81-00786. 

The purpose of this note is to explain how all the 
above methods, as well as many others, can all be uni- 
fied and significantly generalized by the concept of  a 
differential equation with side conditions. By this we 
mean that to determine special solutions to a given 
system of partial differential equations one proceeds 
by appending one or more auxiliary differential equa- 
tions, which we call "side conditions". The solutions 
themselves will then be found by solving the entire 
system of differential equations consisting of both 
the original system along with the prescribed side con- 
ditions. The main difference between the various spe- 
cial methods devised for Finding explicit solutions is 
then only the form or complexity of the relevant side 
conditions. The most important conclusion to be 
drawn from this approach is that the unifying theme 
behind f'mding special solutions to partial differential 
equations is not, as is commonly supposed, group 
theory, but rather the more analytic subject of over- 
determined systems of partial differential equations. 
Thus the key question becomes not which groups are 
relevant t o  a given system o f  partial differential equa- 
tions, but rather which side conditions are admissible, 
thereby providing genuine solutions of  the system ? 
What is now required is an algorithmic method of de- 
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termining these compatible side conditions, and then 
the corresponding special solutions. In this light, the 
group-theoretic methods alluded to above can be re- 
garded as special techniques that allow one to construct 
particular classes of compatible side conditions; the 
general set of side conditions is much larger. This is 
not to say that the proposed method is meant to sup- 
plant the popular group-theoretic methods in use, but 
rather to be utilized as a unifying frame-work in which 
to compare and interpret all these different techniques. 
Nor does it preclude the discovery of other formalisms 
for constructing special solutions, although it certain- 
ly can provide motivation for the development of ad- 
ditional new classes of methods for determining ex- 
plicit solutions. It also helps explain recent result of 
Kalnins and Miller [5,6] on separation of variables, 
ha which the group-theoretic interpretation relevant 
to simpler systems seems to be no longer valid. 

Actually, one can provide a group-theoretic expla- 
nation of the side conditions provided one uses the 
theory of generalized symmetries (also known as Lie-  
Ba'cklund transformations), although in many cases 
this appears to us as a somewhat artificial re-inter- 
pretation of the basic issue. Using this point of view, 
the side conditions relevant to group-invariant solu- 
tions come from ordinary geometrical groups of trans- 
formations, those for partially invariant solutions 
from first order generalized symmetries which are not 
equivalent to geometrical symmetries and those for 
separable solutions from second order generalized 
symmetries. Higher order symmetries lead to yet more 
general types of ansatz for special solutions. What has  

been lost is any underlying symmetry connection 
with the system of partial differential equations itself 
- there are no a priori restrictions on the groups under 
consideration. (See also ref. [4] for the geometrical 
symmetry case.) 

Rather than try to develop a general theory here, 
we have chosen to illustrate the basic concepts by a 
series of examples of the different methods for con- 
structing solutions, each reinterpreted in the light of 
the unifying concept of a differential equation with 
side conditions. Using these as a launchpad, the astute 
reader will no doubt be able to envisage the form 
which the general theory must take. Besides, in the 
words of de Tocqueville, "God doesn't need general 
theories - He knows all the special cases!" 

We begin with Lie's classical theory of group-in- 

variant solutions, illustrated by the similarity solution 
of the heat equation 

U t = U x x .  (1) 

Consider the one-parameter group of scaling transfor- 
mations (x, t, u) ~ (kx, h2t, u), h > 0. This is a clas- 
sical symmetry group of the heat equation, in the 
sense that it takes solutions to solutions. The condi- 
tion that a solution be invariant under this group (i.e. 
a "similarity solution") can be expressed in differential 
form 

x u  x + 2 t u  t = 0. (2) 

Thus the similarity solutions to the heat equation can 
be determined as the solutions to the overdetermined 
system consisting of the heat equation itself (1) to- 
gether with the side condition (2) reflecting the seal- 
hag invariance of the desired solutions. To solve this 
system (1), (2), one can proceed to first solve (2) 
using the method of characteristics, leading to the 
fact that u = u ( x / x f f )  is a function of the similarity 
variable ~ = x/x/Tonly. Substituting into (1), we see 
that u satisfies the ordinary differential equation 

u"  + ~ u ' / 2  = 0 ,  

primes denoting derivatives with respect to ~. This 
leads to the general scale-invariant solutions 

u = c 1 e r f ( x / 2x / r t )  + c 2 , 

where erf is the standard error function. 
In the nonclassical method introduced by Bluman 

and Cole, one does not require that the group be a 
symmetry group of the original system, but, less re- 
strictively, that it be a symmetry group of the system 
supplemented by the side conditions prescribing the 
group invariance of the desired solutions. Rather than 
treat the heat equation, since all the solutions obtain- 
ed by the non-classical method already appear among 
the classical group-invariant solutions in this case, cf. 
ref. [3], we will use a less trivial example. Consider 
the nonlinear wave equation 

u t t  = UUxx , (3) 

whose classical symmetry group has been computed 
ha ref. [7], p. 301. The one-parameter group G with 
inf'mitesimal generator o = 2 t b  x + 0 t + 8tO u does not 
appear among the classical symmetries, and so is not 
a candidate for the usual method of finding group- 
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invariant solutions. Nevertheless, we can rind G-in- 
variant solutions as follows. A function u = f(x, t) is 
invariant under the group generated by u if and only 
if it satisfies the side condition 

8 t  = 2 t u  x + u t . (4) 

One easily checks that the combined pair of differen- 
tial equations (3), (4) is invariant under the group G. 
This is precisely the requirement needed to apply the 
non-classical method, and hence we can Fred G-invafi- 
ant solutions to (3) by solving an ordinary differential 
equation. The general solution of (4) is 

u = 4t 2 + w ( x  - t2) ,  

where w depends on the invariant ~ = x - t 2. Substi- 
tuting into (3) we see that w must satisfy the ordinary 
differential equation 

ww" + 2w' = 8,  

where primes indicate derivatives with respect to ~. 
This last equation can be integrated by Lie's method 
for ordinary differential equations using the obvious 
scaling and translational symmetries, but we will not 
pursue this here. For each solution w = h(~), we ob- 
tain an explicit G-invariant solution u of  the nonlin- 
ear wave equation (3); most of these do not appear 
among the group-invariant solutions computed using 
the ordinary symmetry groups of (3), and are thus 
genuinely new invariant solutions not obtainable by 
the classical method. 

In ref. [4] it is shown how to generalize this 
method to an arbitrary group of transformations on 
the underlying space of independent and dependent 
variables. For example, returning to the heat equa. 
tion (1), the one-parameter group G generated by 
the vector field o = tO t - x O  x - 3 x 3 0  u is not an or- 
dinary symmetry group of the heat equation. Nor is 
it of  the form amenable to the non-classical method 
given by Bluman and Cole [3]. (Indeed, using their 
notation on p. 1041, we would have X = - x / t ,  U = 

- 3 x 3 / t  [eL their eq. (90)], but these two functions 
do not satisfy their defining equations (94)- (96) . )  
Nevertheless, there do exist G-invariant solutions of 
the heat equation, and we can construct them as fol. 
lows. The relevant side condition is 

t u  t - x u  x +3x 3 = 0 ,  

whose general solution is 

u = x3 + w ( x t ) ,  

where w is a function of ~ = x t .  Substituting into the 
heat equation, we obtain 

x w '  = t 2 w  '' + 6x, (5) 

which is n o t  an ordinary differential equation for w 
as a function of ~. (Indeed, if it were, then G would 
necessarily satisfy Bluman and Cole's non-classical 
conditions!) However, treating x and ~ as independent 
variables (valid provided t #: 0), we have 

x 3 ( w  ' - 6) = ~2w" . 

Since w is a function of ~ only, this latter equation is 
satisfied for all x and ~ if and only if w satisfies the 
pair of ordinary differential equations 

w" = 0, w' = 6 .  

These are compatible, with solution w = 6~ + c, where 
c is an arbitrary constant. Thus we obtain a one-param- 
eter family of G-invariant solutions to the heat equa- 
tion 

u = x 3 + f x t + c ,  

which do not appear among the classical group-invari- 
ant solutions (although they are, of  course, linear 
combinations of two such solutions). 

Before leaving side conditions arising from group- 
invariance of solutions, it is worth pointing out that if 
one has found a solution to a system of differential 
equations, one can always devise a group that will lead 
to the given solution by an application of the above 
method. This is because any function u = f(x, t) is in- 
variant under a multitude of groups acting on the 
space of variables (x, t, u), and, as the generalized non- 
classical method of ref. [4] does not impose a n y  con- 
ditions on the group, any one o f these groups will lead 
to the given solution. However, this reasoning is more 
than likely done a p o s t e r i o r i ,  and therefore of limited 
practical importance. Of more interest is the question 
of which groups G lead to actual solutions; in other 
words, when are the side conditions expresing the G- 
invariance of a solution compatible with the system 
under consideration. Obviously not any group will do, 
but the problem of determining precisely which ones 
are valid is no doubt very difficult, even for the sim- 
plest systems. (Note that it is even possible to devise 
simple examples of classical symmetry groups of a sys- 
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tern, to which no G-invariant solution can be found. 
For instance the equation u t + u x = 1 admits the one- 
parameter group (x, t, u) ~ (x + e, t + e, u), e E R, 
but there are no solutions to it which are invariant 
under this group.) 

Partially invariant solutions can also be treated by 
this general approach, using side conditions in the form 
of first order differential equations, but which are not 
of the form prescribing group-invariance in the classi- 
cal sense. (Indeed the general method of Ovsiannikov 
rests on the theory of over-determined systems of dif- 
ferential equations!) As an illustrative example we 
consider the system 

Uy = Ox , uu x = Oy, (6) 

describing the transonic flow of a gas, which is treated 
by Ovsiannikov (ref. [1], p. 286); note that these are 
equivalent to the nonlinear wave equation uyy = 

½ (u2)xx (see below). For the two-parameter symme~y 
group of translations (x, y,  u, v) ~- (x + e, y,  u, v + e) 
generated by bx and 3v, a partially invariant solution 
of rank 1 and defect 1 has general form u = q~(y), o = 
~ ( x , y ) .  Equivalently, we can prescibe this class of so- 
lutions by appending the single side condition 

u x = 0 .  (7) 

The resulting over-determined system (6), (7) has the 
general solution 

U = c l Y + C  0 , O = C l X + C  2 , 

which is the most general such partially invariant solu- 
tion. Note that we could reinterpret (7) as expressing 
the invariance of the desired solutions under the one- 
parameter generalized group generated by the general- 
ized vector field o = Uxa u ; the corresponding group 
transformations are obtained by solving the system of 
evolution equations 

au/ae  = u x ,  avlae = O , 

with corresponding group law 

(u(x ,y) ,  o(x, y ) )  ~ (u(x + e, y) ,  ~(x, y ) ) .  

(See refs. [2,8] for the general theory of generalized 
symmetries.) Note that this group is not equivalent to 
a geometrical group acting locally on the variables (x, 
y, u, o), but is truly "non-local". Also, the group is 
not a symmetry group of  the system (6) per se, so we 
are in a "generalized version" of the non-classical sym- 

metry group method. The partially invariant solutions 
considered by Ovsiannikov (ref. [4], p. 286), have a 
similar interpretation using the side condition xu  x + 

yUy = 0 reflecting their invariance under the general- 
ized vector field (xu  x +yUy)  a u . It is also a relatively 
easy matter to extend Ovsiannikov's method to in- 
clude solutions which are partiaUy invariant under 
non-classical or even more general transformation 
groups. 

The third major class of special solutions to partial 
differential equations are those obtained through sep- 
aration of variables. The simplest form of separation 
of variables is additive separation, and indeed all other 
modes of separation known to date can, by a suitable 
transformation, be reduced to additive separation. 
For example, in the case of the heat equation (1), we 
look for solutions of the form 

u(x ,  t)  = f ( x )  + g ( t ) .  (8) 

Substituting (8) into (1), we are left with two ordinary 
differential equations 

f '  = 2~, g ' = • ,  

in terms of a separation constant X. This immediately 
leads to the three-parameter family of  additively sep- 
arable solutions of  the heat equation: 

u(x ,  t)  = c2x2 + e l x  + 2c2t  + e 0 , 

where ~, = 2c 2. As with partially invariant solutions, 
the ansatz (8) does not arise from the invariance of 
the separable solutions under some geometrical group 
of transformations on the space of variables (x, t, u). 
(Indeed, this would lead to only a single ordinary dif- 
ferential equation for the invariant solutions, and here 
we have two ordinary differential equations.) However, 
we can recover (8) from the second-order side condi- 
tion 

Uxt = 0,  (9) 

in other words, additively separable solutions of  the 
heat equation are found by solving the system consist- 
ing of the heat equation (1) along with the second 
order side condition (9). As with (7), we can interpret 
(9) as requiring the desired solutions to be invariant 
under the generalized symmetry group with infinites- 
imal generator n = uxta  u; the corresponding non-local 
group transformations are found by solving the asso- 
ciated evolution equation 
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Ou/ae = Uxt, ul,~o = Uo(X, t). (10)  

If  the initial data u 0 is separable, then the solution to 
(10) does not depend on the group parameter e, re- 
flecting its invariance under the group. The recent 
work of Kalnins and Miller [5,6] on additive separa- 
tion for linear equations is, essentially, a detailed anal- 
ysis of these special types of  side conditions. 

Multiplicative separation for the heat equation 
comes from the ansatz 

u(x ,  t) = f(x)g( t ) .  (11) 

This can be reduced to additive separation by rewriting 
the heat equation in terms of o = log u. Alternatively, 
one can characterize (11) via the side condition 

UUxt = UxU t . (12) 

(See ref. [9] for a more precise statement.) Combining 
(1) and (12), we immediately deduce that a common 
solution u(x,  t) must satisfy the pair of ordinary dif- 
ferential equations 

l l U x x  X = l lX l lXX  , Ugltt  = 12 2 , 

the latter following from differentiating (12) with re- 
spect to t. These can both be integrated once, leading 
to the more familiar separation equations 

U x x + ~ U = O ,  ut +~u = 0 ,  

where (1) has required both integration constants to 
be the same separation constant X. For X > 0 we re- 
cover the standard solutions 

u = e -xt  cos(x/~x), u = e -xt  sin(x/~x), 

to the heat equation. Again, we could reinterpret (12) 
as specifying the invariance of these solutions under 
the generalized symmetry group generated by ~ = 

(UUxt - UxUt) O u • 
A more interesting, "nonclassical" form of multi. 

plicative separation can be found in the equation 

utt = Uxx + ~(U2)xx + "rUxxtt , 13, 3' constant, 

which arises in the vibration of rods. If  we set 

u(x ,  t) = o ( t )w(x )  - 1]2/3, 

arising from the side condition 

UUxt - UxU t + Uxt/20 = O, 

then we find that v and w satisfy the pair of ordinary 
differential equations involving a separation constant 

ott= Xo2, t3(w2)x x = X(w - VWxx), 

both of whose solutions can be explicitly written in 
terms of elliptic functions. (To integrate the second 
equation, set ~ = w + ?~7/2~, and multiply by (~2)x x = 
2w"w x.) Included among these are the elementary 
rational solutions 

u = ( I / 2 ~ ) ( [ ( x  + c) 2 + 3q,]/(t + d )  2 - l } ,  

where c and d are arbitrary constants. An interesting 
question is whether these simple solutions, which 
appear among the solutions invariant under the non- 
local group generated by the vector field u = (UUxt - 

UxU t + Uxt/2~) au, could, in fact, have been found 
by local (but possibly non-classical) group methods. 
Of course, according to ref. [4], any one of these 
solutions could be found by use of some local group, 
but it is not too hard to see that the entire two-pa- 
rameter family could not have come from a single 
local group. Indeed, suppose they were simultaneous- 
ly invariant under some one-parameter group with 
infinitesimal generator v = ~ x  + rot + ¢~u (where ~, 
r, ~o depend just on x, t and u). Solving for the param- 
eter d, we would have 

d = h ( x , t , u , c )  

=- - t  +{[(x +c  2) + 3"y]/(u + 1/2/3)) 1/2 , 

where h would necessarily be invariant under the 
group, and hence satisfy 

I~(h) = ~h x + rh t + tph u = 0 

for all x,  t, u, c. Since ~, r, ~o do not depend on the 
parameter c, this would only be possible if, for each 
fLxed x, t, u, the derivatives hx ,  ht ,  h u were linearly 
dependent functions of c. A tedious computation 
using wronskians shows that this is not  the case, hence 
the given two-parameter family of solutions cannot 
come from a single local group of transformations. 
(The same argument proves that any one-parameter 

family of  solutions does come from a local one-pa- 
rameter group via the non-classical method of (8). 
Moreover, if 3' = 0, so we are reduced to a nonlinear 
wave equation, any one-parameter family of  rational 
solutions can be determined using the classical sym- 
metry groups, of which there are several more in this 
case.) A similar non.classical separation of variables 
is discussed in ref. [10] for the equation of a nonlin- 
ear string. 
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For general differential equations, one can now 
easily envisage more general second order, and even 
higher order side conditions to append in the hopes 
of  determining more general classes of  solutions. Two 
questions are apparent: (1) Which side conditions are 
admissible in the sense that there do exist solutions 
to the combined system of  equations plus side con. 
ditions? (2) Which side conditions are soluble in the 
sense that the combined system is in some way easier 
to solve than the original partial differential equa- 
tion? We will not attempt to answer these questions 
here, but merely provide two final examples to illus- 
trate the possibilities which lie beyond simple group- 
invariance and separability. First consider the two- 
dimensional heat equation 

u t = uxx + Uyy.  (13) 

We append the third order side condition 

Uxy t = 0 ,  (14) 

(implying invariance under the group generated by 
v = UxytOu), the general solution of  which has the 
"semi-separable" form 

u ( x , y ,  t) = f ( x , y )  + g(x,  t) + h(y ,  t ) .  (15) 

Differentiating (13) and using (14), we see that u 
must satisfy three partial differential equations 

0 = Uxxxy + Uxyyy , Uxt t = Uxxxt, Uytt = Uyyy t , 

each of  which has one fewer independent variable 
than the original eq. (13). A little manipulation shows 
that the functions in (15) satisfy the equations 

f xx  + fyy  = t~(x) - fl(y), gt - gxx = T(t) - or(x), 

h t - hyy = ~ )  - ~ ( t ) ,  

involving separation funct ions  (as opposed to separa- 
tion constants) a,/3, and 7- One can now write down 
a host of  such solutions, much more general than the 
additively separable solutions. The multiplicative 
analog of  this "semi-separation" proceeds similarly 
(and, indeed, is perhaps of  even greater interest !). 

Secondly, for the nonlinear wave equation 

utt = ½ (U2)xx , 

equivalent to the system (6), we can generate a more 
interesting class of  solutions not  obtainable by partial 
invariance by appending the second order side con- 
dition 

utt = 20t, 

where t~ is a constant. The resulting over-determined 
system is easy to solve, leading to the new explicit 
solutions 

u = a t 2 + - x / ~ x + a t + b ,  a > 0 ,  

= +-(t + a )w /x  + b,  c~=O, 

where a and b are arbitrary constants. 
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