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1. Introduction.

Garrett Birkhoff’s mathematical work over the last three decades has been primarily
centered on scientific computation and numerical analysis, and the other contributions
to this special issue survey the broad range of his research and influence in this area.
However, this subject represents only a small part of Garrett’s many and diverse interests,
and the number of areas of mathematics on which he has left his mark is astonishing. My
own contribution to these proceedings will be devoted to another of Garrett’s “applied”
research areas — the applications of Lie groups to differential equations, a subject whose
renaissance, especially among applied mathematicians, owes much to his pioneering efforts
in the 1940’s, [2]. In light of the subject of this conference, I find Garrett’s choice of thesis
topic for his last pure mathematics Ph.D. student, [15, 16], slightly ironic, but his insight
into its hidden potentialities has more than been fulfilled. My debt to Garrett for initiating
my research career and its subsequent course cannot be understated. So it is with great
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pleasure that I am able to contribute to these proceedings a discussion of some of my own
investigations into the many uses of symmetry for studying differential equations.

More specifically, this survey will cover recent (and not so recent) developments in
the use of symmetry and other methods for finding explicit solutions to systems of par-
tial differential equations. While ostensibly not directly connected with the general theme
of scientific computing, this particular topic does have several points of contact with the
other papers in this volume. First, and perhaps of crucial importance, is the role that
explicit solutions to partial differential equations play in the design and testing of nu-
merical integrators. Being able to reproduce an explicit solution to a complicated system
of partial differential equations constitutes a reassuring check for the accuracy and re-
liability of one’s numerical package; moreover, explicit solutions can effectively serve as
benchmarks for comparison of competing packages, or in establishing practical error esti-
mates (which might be far more reasonable than any resulting from a rigorous theoretical
analysis, if such is even available). Secondly, there is a well established role played by
computer algebra (symbolic manipulation) systems, such as Macsyma, Reduce, Maple

and Mathematica in the determination of symmetry groups and calculation of invariant
solutions. Indeed, the methods introduced by Lie in the last century for computing the
symmetry groups and consequent group-invariant solutions are computationally complex,
but nevertheless completely algorithmic, and hence constitute a prime candidate for au-
tomation. Finally, I should remark that the role of symmetry in the design of numerical
algorithms is a subject whose importance is only slowly being recognized; see the contribu-
tion by Bill Ames in these proceedings or the book by Shokin, [25]. Unfortunately, space
limitations preclude a broader survey of the manifold applications of symmetry groups
to partial differential equations, including integration of ordinary differential equations,
conservation laws, reduction of Hamiltonian systems, classification of integrable (soliton)
equations, bifurcation theory, etc. (See, for example, the references in [4] and [17].)

A few brief historical remarks might be of interest to place this review in context
(although I don’t claim to have thoroughly researched the early history of the subject).
Possibly the first type of explicit or special solution to a partial differential equation was
the travelling wave solution which appears in d’Alembert’s solution to the wave equation.
The method of separation of variables arises in the work of Fourier on the heat equation,
while similarity solutions appear quite a bit later, first in work of Weierstrass around 1870
and Boltzman around 1890. Also of interest from the last century are Bäcklund trans-
formations, which arose originally in differential geometry, but are now of great interest
in soliton theories. The classical notion of a group-invariant solution, which includes as
special case travelling waves and similarity solutions was emphasized by Garrett Birkhoff
in his treatise on hydrodynamics, [2], the general theorem being stated by Ovsiannikov
in 1958. However, in the course of writing my book, [17], I discovered that this theorem
already appeared in full generality in an 1895 paper, [12], by Lie himself.

In the last three decades, a number of useful extensions of the classical Lie approach
to group-invariant solutions have been developed, beginning with the method of partially
invariant solutions of Ovsiannikov, [21], and Bluman and Cole’s “nonclassical method”,
[3]. In a pair of papers written with Philip Rosenau, [18], [19], these methods were further
generalized to include “weak symmetries” and, even more generally, the incorporation of
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“side conditions” or differential constraints. The latter method incorporates all (?) known
methods for determining special solutions to partial differential equations. However, our
frame-work is much too general to be workable, and more recent research has concentrated
on finding more specific ansatzes which can be practically applied to a wide variety of
physically important examples. In this direction, the recent direct method of Clarkson and
Kruskal, [7], and the “nonlinear separation” method of Galaktionov, [8] deserve mention.
In this paper, I will survey these different approaches, illustrated by simple examples,
and explain how they fit into a general framework based on the theory of overdetermined
systems of partial differential equations.

In conclusion, I would like to express my gratitude to the organizers of the conference,
especially Richard Varga, for their excellent work in putting together a fitting celebration
of the eightieth birthday of one of the leading mathematical lights of the twentieth century.

2. Symmetries of Differential Equations.

We will begin by reviewing a few relevant points from Lie’s theory of symmetry groups
of differential equations as presented, for instance, in the textbooks [4], [17]. Consider a
general system of nth order (partial) differential equations

∆ν(x, u
(n)) = 0, ν = 1, . . . , m, (1)

in p independent variables x = (x1, . . . , xp), and q dependent variables u = (u1, . . . , uq),
with u(n) denoting the derivatives of the u’s with respect to the x’s up to order n. In
general, by a symmetry of the system (1) we mean a transformation which takes solutions
to solutions. The most basic type of symmetry is a (locally defined) invertible map on the
space of independent and dependent variables:

(x̄, ū) = g · (x, u) = (Ξ(x, u),Φ(x, u)).

Such transformations act on solutions u = f(x) by pointwise transforming their graphs;
in other words if Γf = {(x, f(x))} denotes the graph of f , then the transformed function

f̄ = g · f will have graph

Γf̄ = {(x̄, f̄(x̄))} = g · Γf ≡ {g · (x, f(x))}. (2)

Definition 1. A local Lie group of transformations G is called a symmetry group of
the system of partial differential equations (1) if f̄ = g · f is a solution whenever f is.

We will always assume that the transformation group G is connected, thereby exclud-
ing discrete symmetry groups, which, while also of great interest for differential equations,
are unfortunately not amenable to infinitesimal, constructive techniques. Connectivity
implies that it suffices to work with the associated infinitesimal generators, which form a
Lie algebra of vector fields

v =

p
∑

i=1

ξi(x, u)
∂

∂xi
+

q
∑

α=1

ϕα(x, u)
∂

∂uα
, (3)
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on the space of independent and dependent variables. The group transformations in G are
recovered from the infinitesimal generators by the usual process of exponentiation. Thus,
the one-parameter group G = {gε| ε ∈ R} generated by the vector field (3) is the solution
gε · (x0, u0) = (x(ε), u(ε)) to the first order system of ordinary differential equations

dxi

dε
= ξi(x, u),

duα

dε
= ϕα(x, u), (4)

with initial conditions (x0, u0) at ε = 0. For example, the vector field v = −u∂x + x∂u
generates the rotation group x(ε) = x cos ε − u sin ε, u(ε) = x sin ε + u cos ε, which trans-
forms a function u = f(x) by rotating its graph.

Since the transformations in G act on functions u = f(x), they also act on their
derivatives, and so induce “prolonged transformations” (x̄, ū(n)) = pr(n) g · (x, u(n)). The
explicit formula for the prolonged group transformations is rather complicated, and so it
is easier to work with the prolonged infinitesimal generators, which are vector fields

pr(n) v =

p
∑

i=1

ξi(x, u)
∂

∂xi
+

q
∑

α=1

∑

#J≤n

ϕα
J (x, u

(n))
∂

∂uαJ
, (5)

on the space of independent and dependent variables and their derivatives up to order n,
which are denoted by uαJ = ∂Juα/∂xJ , where J = (j1, . . . , jn), 1 ≤ jν ≤ p. The coefficients
ϕα
J of pr(n) v are given by the explicit formula

ϕα
J = DJQ

α +

p
∑

i=1

ξi uαJ,i, (6)

in terms of the coefficients ξi, ϕα of the original vector field (3). Here Di denotes the total
derivative with respect to xi (treating the u’s as functions of the x’s), andDJ = Dj1

·. . .·Djn

the corresponding higher order total derivative. Furthermore, the q-tuple Q = (Q1, . . . , Qq)
of functions of x’s, u’s and first order derivatives of the u’s defined by

Qα(x, u(1)) = ϕα(x, u)−
p

∑

i=1

ξi(x, u)
∂uα

∂xi
, α = 1, . . . , q, (7)

is known as the characteristic of the vector field (3), and plays a significant role in our
subsequent discussion. The main point the reader should glean from this paragraph is
not the particular complicated expressions in (5), (6), (7) (although, of course, these are
required when performing any particular calculation), but rather that there are known,
explicit formulas which can, in a relatively straightforward manner, be computed. See [17]
for details.

Theorem 2. A connected group of transformations G is a symmetry group of the
(nondegenerate) system of differential equations (1) if and only if the classical infinitesimal
symmetry criterion

pr(n) v(∆ν) = 0, ν = 1, . . . , r, whenever ∆ = 0. (8)

holds for every infinitesimal generator v of G.
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The equations (8) are known as the determining equations of the symmetry group
for the system. They form a large over-determined linear system of partial differential
equations for the coefficients ξi, ϕα of v, and can, in practice, be explicitly solved to
determine the complete (connected) symmetry group of the system (1). There are now a
wide variety of computer algebra packages available which will automate most of the routine
steps in the calculation of the symmetry group of a given system of partial differential
equations. See [6], [23], [10], [24] for examples in Macsyma, Maple, Reduce and
Scratchpad. (Conspicuously lacking are packages in Mathematica.) Reference [6]
gives a good survey of the different packages available at present, and a discussion of their
strengths and weaknesses.

Example 3. The classic example illustrating the basic techniques is the linear heat
equation

ut = uxx. (9)

(See [3], although the result was known long before this, [9].) An infinitesimal symmetry
of the heat equation will be a vector field v = ξ∂x + τ∂t +ϕ∂u, where ξ, τ, ϕ are functions
of x, t, u. To determine which coefficient functions ξ, τ, ϕ yield genuine symmetries, we
need to solve the symmetry criterion (8), which, in this case, is

ϕt = ϕxx whenever ut = uxx. (10)

Here, utilizing the characteristic Q = ϕ− ξux − τut given by (7),

ϕt = DtQ+ ξuxt + τutt, ϕxx = D2
xQ+ ξuxxx + τuxxt, (11)

are the coefficients of the terms ∂ut
, ∂uxx

in the second prolongation of v, cf. (6). Sub-
stituting the formulas (11) into (10), and replacing ut by uxx wherever it occurs, we are
left with a polynomial equation involving the various derivatives of u whose coefficients
are certain derivatives of ξ, τ, ϕ. Since ξ, τ, ϕ only depend on x, t, u we can equate the
individual coefficients to zero, leading to the complete set of determining equations:

Coefficient Monomial

0 = −2τu uxuxt
0 = −2τx uxt
0 = −τuu u2xuxx

−ξu = −2τxu − 3ξu uxuxx
ϕu − τt = −τxx + ϕu − 2ξx uxx

0 = −ξuu u3x
0 = ϕuu − 2ξxu u2x

−ξt = 2ϕxu − ξxx ux
ϕt = ϕxx 1

The general solution to these elementary differential equations is readily found:

ξ = c1+c4x+2c5t+4c6xt, τ = c2+2c4t+4c6t
2, ϕ = (c3−c5x−2c6t−c6x2)u+α(x, t),
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where ci are arbitrary constants and αt = αxx is an arbitrary solution to the heat equation.
Therefore, the symmetry algebra of the heat equation is spanned by the vector fields

v1 = ∂x, v2 = ∂t, v3 = u∂u, v4 = x∂x + 2t∂t,

v5 = 2t∂x − xu∂u, v6 = 4xt∂x + 4t2∂t − (x2 + 2t)u∂u,

vα = α(x, t)∂u, where αt = αxx.

The corresponding one-parameter groups are, respectively, x and t translations, scaling in
u, the combined scaling (x, t) 7→ (λx, λ2t), Galilean boosts, an “inversional symmetry”,
and the addition of solutions stemming from the linearity of the equation. See [3] or [17]
for more details.

Example 4. The Boussinesq equation

utt + uuxx + u2x + uxxxx = 0, (12)

is a well-known soliton equation, and arises as a model equation for the unidirectional
propagation of solitary waves in shallow water, [14]. The basic symmetry condition (8)
now takes the form

ϕtt + uϕxx + uxxϕ+ 2uxϕ
x + ϕxxxx = 0,

which must hold whenever (12) is satisfied. Here ϕtt, ϕx, ϕxx, ϕxxxx, are the coefficients of
the terms ∂utt

, ∂ux
, ∂uxx

, ∂uxxxx
, respectively, in the fourth prolongation of v, with formulae

similar to (11). A straightforward calculation eventually yields the complete symmetry
algebra, which is spanned by

v1 = ∂x, v2 = ∂t, v3 = x∂x + 2t∂t − 2u∂u. (13)

In this example, the classical symmetry group is disappointingly trivial, consisting of eas-
ily guessed translations and scaling symmetries. Theorem 2 guarantees that these are the
only continuous classical symmetries of the equation. (There are, however, higher order
generalized symmetries, cf. [17], which account for the infinity of conservation laws of
this equation.) Sometimes the complicated calculation of the symmetry group of a system
of differential equations yields only rather trivial symmetries; however, there are numer-
ous examples where this is not the case and new and physically and/or mathematically
important symmetries have arisen from a complete group analysis.

3. Group Invariant Solutions.

We begin by discussing the classical notion of a group-invariant solution, which in-
cludes many of the common special solutions to partial differential equations, such as
similarity solutions, travelling wave solutions, etc.

Definition 5. Assume that G is a symmetry group of a system of differential equa-
tions (1). A solution u = f(x) is called G-invariant if g · f = f for all g ∈ G.
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In other words, a solution is G-invariant if does not change under the action of the
transformations in the given symmetry group G. This is equivalent to the requirement
that the graph Γf is a (locally) G-invariant set, i.e., g · Γf = Γf , for all g ∈ G, cf. (2). For
example, if G is the group of rotations in the independent variables x, then a G-invariant
solution f is one whose graph is rotationally invariant, which is the same as requiring that
u = f(|x|) be a function of the radius alone. Similarity solutions arise when the group is
a group of scaling transformations; travelling wave solutions correspond to translational
symmetry groups.

Theorem 6. Suppose that the symmetry group G acts regularly and has r dimens-
ional orbits. Then all the G-invariant solutions to ∆ = 0 can be found by solving a reduced
system of differential equations ∆/G = 0 in r fewer independent variables.

Thus, for example, if we have a system of partial differential equations in 2 indepen-
dent variables, then the solutions invariant under a one-parameter symmetry group can
all be found by integrating a system of ordinary differential equations. Of course, for The-
orem 6 to be applicable, the orbit dimension r must be strictly less than the number of
independent variables p. (Often the orbit dimension coincides with the dimension or num-
ber of independent generators of the group. See [17] for the precise definition of regular.)
If r = p, the invariant solutions can be found from a system of algebraic equations, while
if r > p there are no invariant solutions.

There are several approaches to finding the reduced system of differential equations
∆/G. We begin by recalling the following convenient characterization of functions u = f(x)
which are invariant under a given group of transformations, a result based on the (classical)
theory of systems of first order partial differential equations

Proposition 7. Let G be a local Lie group of transformations with infinitesimal
generators v1, . . . ,vr. Let Q1, . . . , Qr be the associated characteristics of these vector
fields, cf. (7). Then a function is G-invariant if and only if it is a solution to the system of
first order partial differential equations

Qα
κ(x, u

(1)) = 0, κ = 1, . . . , r, α = 1, . . . q. (14)

Thus, the group-invariant solutions to the system of partial differential equations
(1) will consist of those functions u = f(x) which satisfy both the original system (1)
and a collection of “differential constraints” which are the first order partial differential
equations (14) characterizing the G-invariant functions. In other words, to determine the
group-invariant solutions to the system (1), we must solve the following overdetermined
system of partial differential equations:

∆ν(x, u
(n)) = 0,

Qα
κ(x, u

(1)) = 0,

ν = 1, . . . , m,

κ = 1, . . . , r, α = 1, . . . q.
(15)

Theorem 6 implies that if G is a symmetry group of (1), then the overdetermined
system (15) can be reduced to a system of differential equations in fewer independent
variables. The classical implementation of this theorem is to first solve the invariance
constraints (14) by utilizing invariant coordinates; these will form the new variables for
the reduced system. (Other approaches have recently been introduced, cf. [4].)
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Definition 8. A function η(x, u) is called an invariant of the transformation group
G if it is unaffected by the transformations in G; in other words

η
(

g · (x, u)
)

= η(x, u), forall g ∈ G.

Invariants of a transformation group can be, in many cases, be determined by inspec-
tion. (More complicated cases can often be handled by solving the infinitesimal invariance
criterion vκ[η] = 0, κ = 1, . . . , r, using the method of characteristics; v1, . . . ,vr are the in-
finitesimal generators of G.) A basic result states that, locally, any regular transformation
group with r dimensional orbits has a complete set of p+ q − r functionally independent
invariants

y1 = η1(x, u), . . . , yp−r = ηp−r(x, u), w1 = ζ1(x, u), . . . , wq = ζq(x, u). (16)

The y’s and w’s will serve as new independent and dependent variables respectively. The
splitting of the invariants into the two classes is more or less arbitrary; however, in many
cases (including all those we discuss below), we can choose p − r of the invariants to be
independent of u, in which case these will naturally serve as the new independent variables,
the remaining invariants being dependent variables. A function u = f(x) will be invariant
under G, or, equivalently, a solution to the system (14), if and only if it can be rewritten
in terms of the basic invariants (16), i.e., in the form

w = h(y), or, explicitly, ζ(x, u) = h[η(x, u)]. (17)

Formula (17) can be differentiated using the chain rule to deduce formulae for the deriva-
tives of the u’s with respect to the x’s in terms of the derivatives of the w’s with respect to
the y’s. These expressions are then substituted into the original system (1). The crucial
point in the proof is that, because G is a symmetry group of (1), the resulting equations
are necessarily equivalent to a reduced system of differential equations ∆/G(y, w(n)) = 0
involving only y, w and derivatives of w. Solutions of the reduced system are in one-to-one
correspondence with G-invariant solutions to the original system, via (17).

Example 9. Consider the heat equation (9). For each one of the symmetry gen-
erators (or any linear combination thereof) the reduction algorithm will lead to an ordi-
nary differential equation for the associated group-invariant solutions. We just present
the classical example of the general similarity solution, which corresponds to the scaling
symmetry x∂x + 2t∂t + 2au∂u, where a is a constant, which generates the one-parameter
group (x, t, u) → (λx, λ2t, λ2au). The associated characteristic is, according to (7), Q =
au− xux − 2tut, hence the overdetermined system (15) in this particular case is

ut = uxx, xux + 2tut − au = 0.

The independent invariants of this group are y = x/
√
t, w = t−au. Thus, by (17), every

scaling invariant solution can be written in the form w = w(y), or, explicitly, u = taw(y) =
taw(x/

√
t ), which is just the general solution to the characteristic equation Q = 0. Dif-

ferentiating this formula, we find ut = ta−1(−1
2yw

′ + aw), uxx = taw′′. Substituting these
into the heat equation and cancelling a power of t immediately yields the reduced equation:
w′′ + 1

2yw
′ − aw = 0, whose general solution is w(y) = e−y2/8 U

(

2a+ 1
2 , y/

√
2
)

, where U
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denotes a parabolic cylinder function. Therefore, the general similarity solution to the
heat equation is

u(x, t) = tae−x2/8t U

(

2a+
1

2
,
x√
2t

)

.

Example 10. Consider the Boussinesq equation (12). In the case of the scaling
symmetry group, generated by the vector field v3, the invariants are y = x/

√
t, w = tu,

with the general invariant solution u = t−1w(x/
√
t). Differentiating and substituting into

(12) leads to the reduced equation for the similarity solutions of the Boussinesq equation:

w′′′′ + ww′′ + w′2 + 1
4y

2w′′ + 7
4yw

′ + 2w = 0. (18)

Unfortunately, this ordinary differential equation does not have an elementary solution, so
it is not possible to write down the explicit form for the general similarity solution to the
Boussinesq equation in closed form; nevertheless, numerical integration of (18) is certainly
an option. It should also be noted that, in accordance with the original Painlevé conjecture
for soliton equations, [1], the ordinary differential equation (18) is of Painlevé type, having
only poles for moveable singularities.

4. The Non-Classical Method.

In the proof of Theorem 6, the key point is that the group in question is a symmetry
group of the original system of partial differential equations (1). Actually, a closer look at
the proof reveals that one can relax this condition, by only requiring that the overdeter-
mined system (15), consisting of the original system of partial differential equations and
the characteristic invariance system, is invariant under the group G. Bluman and Cole,
[3], were the first to note that this relaxed condition could lead to new types of groups and
new types of explicit solutions which cannot be obtained by the classical group invariance
approach, hence the name “non-classical method”. One draw back is that the determining
equations for the invariance of the combined system (15) are nonlinear and hence usually
impossible to solve explicitly, because the coefficient functions ξi, ϕα of the vector field
(3) occur also in the equations themselves via the characteristics (7). Nevertheless, any
solution to the nonclassical determining equations will lead to a “non-classical symme-
try group” and hence to invariant solutions which can be determined by the same basic
algorithm as the classical ones.

Example 11. Consider the Boussinesq equation (12). An explicit example of a non-
classical group is the Galilean group generated by the vector field v = t∂x+∂t−2t∂u. This
is not a symmetry of the Boussinesq equation, since it does not appear in the complete
classical symmetry group found in Example 4. Nevertheless, the combined overdetermined
system of partial differential equations

utt +
1
2
(u2)xx + uxxxx = 0, −Q = tux + ut + 2t = 0,

does admit v as a symmetry, as can be checked from the basic infinitesimal symmetry
criterion (8). The determination of Galilean-invariant solutions to the Boussinesq equation
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then proceeds as in the classical case. The invariants of the group are provided by the
functions y = x− 1

2
t2 and w = u+ t2, so the general invariant solution will have the form

u(x, t) = w(y)− t2 = w
(

x− 1
2 t

2
)

− t2. (19)

Differentiating and substituting into (12) yields the reduced ordinary differential equation

w′′′′ + ww′′ + (w′)2 − w′ + 2 = 0.

As in the classical similarity solution case, Example 10, this equation is not explicitly
solvable, but is of Painlevé type.

Example 12. Another intriguing example, noted by Vorob’ev, [27], shows how the
Bäcklund transformation (see [14]) for the sine-Gordon equation

uxt =
1
2 sin 2u, (20)

can be characterized using the non-classical symmetry method. Let v(x, t) be any partic-
ular solution to (20). Then the two vector fields

v1 = ∂x +
(

sin(u− v)− vx
)

∂u v2 = ∂t +
(

sin(u+ v) + vt
)

∂u,

generate a non-classical symmetry group. In this case the invariant solutions u(x, t) are
those obtained from v(x, t) by the classical Bäcklund transformation:

ux = sin(u− v)− vx, ut = sin(u+ v) + vt.

5. The Clarkson-Kruskal Direct Approach.

In an attempt to understand Example 11 and similar constructions, Clarkson and
Kruskal, [7], introduced a direct method for reducing partial differential equations to
ordinary differential equations. The basic idea is to make a similarity-like ansatz

u(x, t) = U(x, t, w(z)), where z = ζ(x, t), (21)

and choose the functions U and ζ in such a manner that the partial differential equation
will reduce to an ordinary differential equation for w(z).

Example 13. For the Boussinesq equation (12), it can be proved that there is no
loss of generality if we assume that the function U in the ansatz (21) is linear in w, of the
form

u(x, t) = α(x, t) + β(x, t)w(z), z = ζ(x, t). (22)

Plugging (22) into (12) leads to a rather complicated polynomial expression involving
various monomial products of derivatives of w whose coefficients depend on the partial
derivatives of α, β, ζ. For this expression to be an ordinary differential equation for w(z),
the coefficients of the different monomials must be functions of z alone. Rather than
reproduce the lengthy analysis required, we refer the reader to [7] and just quote the final
result.
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Theorem 14. The most general ansatz (21) reducing the Boussinesq equation to an
ordinary differential equation is

u(x, t) = θ(t)2w(z)− θ(t)−2(xθ′(t) + σ′(t))2, z = xθ(t) + σ(t),

where θ, σ are, in general, elliptic functions, satisfying

θ′′ = Aθ5, σ′′ = θ4(Aσ +B),

for constants A,B. The corresponding function w(z) satisfies a reduced ordinary differen-
tial equation of Painlevé type

w′′′′ + ww′′ + w′2 + (Az +B)w′ + 2Aw = 2(Az +B)2. (23)

Levi and Winternitz, [11], have shown how all the Clarkson-Kruskal reductions of
the Boussinesq equation come from either classical or non-classical group reductions. For
example, the case A = 0, B = −1 includes our earlier nonclassical ansatz (19), while
the case A = 3

4
, B = 0 includes the classical similarity reduction (18) (with w replaced

by w − 1
4y

2) as special cases. However, the connection between these two approaches for
general partial differential equations remains hazy.

6. Weak Symmetry Groups.

In [18] Philip Rosenau and I proposed a further generalization of the non-classical
method. Since the combined system (15) is an overdetermined system of partial differential
equations, one should, in treating it, take into account any integrability conditions given
by equating mixed partials. (The Cartan-Kuranishi Theorem, [5], assures us that, under
mild regularity conditions, the integrability conditions can all be found in a finite number
of steps; Gröbner basis methods, as in [22], [26], provide a practical means to compute
them.) Therefore, one should compute the symmetry group not of just the system (15)
but also any associated integrability conditions. Thus, we define a weak symmetry group
of the system (1) to be any symmetry group of the overdetermined system (15) and all its
integrability conditions.

Example 15. An example of a weak symmetry group for the Boussinesq equation
(12) is the scaling group generated by the vector field v = x∂x+t∂t. This is not a symmetry
of the Boussinesq equation, nor is it a symmetry of the combined system

utt + uuxx + u2x + uxxxx = 0, Q = xux + tut = 0. (24)

Nevertheless, if we append the integrability conditions to (24), we do find that v satisfies
the weak symmetry conditions. To compute the invariant solutions, we begin as before by
introducing the invariants, y = x/t, and w = u. Differentiating the formula u = w(y) =
w(x/t) and substituting into the Boussinesq equation, we come to the following equation

t−4w′′′′ + t−2[(y2 + w)w′′ + (w′)2 + 2yw′] = 0.

At this point the crucial difference between the weak symmetries and the nonclassical
(or classical) symmetries appears. In the latter case, any non-invariant coordinate, e.g.,

11



the t here, will factor out of the resulting equation and thereby leave a single ordinary
differential equation for the invariant function w(y). For weak symmetries this is no longer
true, since we have yet to incorporate the integrability conditions for (24). However, we
can separate out the coefficients of the various powers of t in the above equation, leading
to an overdetermined system of ordinary differential equations,

w′′′′ = 0, (y2 + w)w′′ + (w′)2 + 2yw′ = 0,

for the unknown function w. In this particular case, the resulting overdetermined system
does have solutions, namely w(y) = −y2, or w(y) = constant. The latter are trivial,
but the former yield a nontrivial similarity solution: u(x, t) = −x2/t2. Thus we have
the intriguing phenomenon of an equation with a similarity solution which does not come
from a classical scaling symmetry group! This leads to interesting speculations concerning
the asymptotics or blow up behavior of solutions, often governed by classical similarity
solutions.

Weak symmetry groups, while at the outset quite promising, have some critical draw-
backs. It can be shown that every group is a weak symmetry group of a given system of
partial differential equations, and, moreover, every solution to the system can be derived
from some weak symmetry group, cf. [18]. Therefore, the generalization is too severe. Nev-
ertheless, it gives some hints as to how to proceed in any practical analysis of such solution
methods. What is required is an appropriate theory of overdetermined systems of partial
differential equations which will allow one to write down reasonable classes of groups for
which the combined system (15) is compatible, in the sense that is has solutions, or, more
restrictively, has solutions that can be algorithmically computed. For example, restricting
to scaling groups, or other elementary classes of groups, might be a useful starting point.

7. Partially Invariant Solutions.

The concept of a partially invariant solution was introduced by Ovsiannikov, [21],
as a generalization of the classical concept of group-invariant solution. The basic remark
is the following: suppose G is a symmetry group of some system of partial differential
equations which acts regularly with r dimensional orbits. Let u = f(x) be a solution
of the system (1), whose graph Γf will be a p dimensional submanifold of the space of
independent and dependent variables. Consider the set G · Γf = {g · (x, u) | (x, u) ∈ Γf}
obtained by transforming the graph of f by all possible group elements in G, cf. (2). As
remarked earlier, a solution f is a G-invariant if and only if G ·Γf = Γf . On the other hand,
if f is a “generic” solution, then one expects the submanifold G · Γf to have dimension
p + s, where s = min{r, q}. A partially invariant solution is one such that the dimension
of G · Γf has some intermediate value, as made precise by the next definition.

Definition 16. The defect δ of a solution f with respect to the group G is given by
δ = dim(G · Γf ) − p. A solution f is G-invariant if δ = 0, generic if δ = s = min{r, q},
and partially invariant if 0 < δ < s.

Ovsiannikov introduced a complicated algorithm for calculating partially invariant
solutions of a given defect, requiring the solution to an associated overdetermined system
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of partial differential equations. A significant simplification, based on suggestions in [19],
was introduced in the thesis of Ondich, [20]. From the characteristics Q1, . . . , Qr of the
infinitesimal generators v1, . . . ,vr of G, we form the r × q “characteristic matrix”

Q(x, u(1)) =
(

Qα
κ(x, u

(1))
)

, α = 1, . . . , q, κ = 1, . . . , r. (25)

Proposition 17. The function u = f(x) is a partially invariant solution to (1) of
rank δ if and only if

rankQ(x, u(1)) = δ. (26)

Note that the corresponding inequality, rankQ(x, u(1)) ≤ δ, corresponding to partially
invariant solutions of rank at most δ, is prescribed by a collection of first order differential
constraints found by setting all δ × δ subdeterminants of Q to zero.

Example 18. (Ovsiannikov) Consider the equations for steady trans-sonic gas flow

ut = vx, vt + uux = 0, (27)

(where t = y is the vertical coordinate) which are equivalent to the nonlinear hyperbolic
equation utt +

1
2(u

2)xx = 0, a dispersionless limit of the Boussinesq equation (12). As
an example, we find the partially invariant solutions of defect 1 for the symmetry group
consisting of scalings in x, t and translations in v, which is generated by the two vector
fields x∂x + t∂t and ∂v. The characteristic matrix (25) is

Q =

(

−xux − tut −xvx − tvt
0 1

)

.

A defect 1 solution will satisfy the condition rankQ = 1, which requires xux + tut = 0.
Therefore we need to solve the combined system of partial differential equations

ut = vx, vt + uux = 0, xux + tut = 0.

(Note that the extra constraint is not the same as a group invariance constraint, (14),
which would require two additional equations; for instance, invariance under the scaling
subgroup generated by x∂x + t∂t gives the constraints xux + tut = xvx + tvt = 0.) The
solution to the constraint equation is u = ϕ(z), where z = x/t. Substituting into (27)
yields the system vx = ut = −t−1zϕ′(z), vt = −uux = −t−1ϕ(z)ϕ′(z), which has the
integrability condition [(z2 + ϕ)ϕ′]′ = 0. This can be reduced to the first order ordinary
differential equation (ϕ+ z2)ϕ′ = k, which, however, does not have an elementary general
solution.

Example 19. (Ondich) A more substantial example is provided by the Prandtl
boundary layer equations

uyy = ut + uux + vuy + px, ux + vy = 0, py = 0. (28)

The classical symmetry generators are

v1 = ∂t, v2 = 2t∂t + 2x∂x + y∂y − v∂v, v3 = x∂x + u∂u + 2p∂p,

vα = α(t)∂x + α′(t)∂u − α′′(t)x∂p, vβ = β(t)∂y + β′(t)∂v,
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As a particular example, we consider partially invariant solutions of defect 2 for the sub-
group generated by

v0 = ∂t, vβ=1 = ∂y, v3 = x∂x + u∂u + 2p∂p.

The characteristic matrix (25) is

−Q =





ut vt pt
uy vy 0

xux − u xvx xpx − 2p



 .

For defect δ = 2, we require rankQ = 2. We concentrate on the subcase when the first
two columns of Q are linearly dependent, which is equivalent to the condition v = φ(u/x).
Substituting this ansatz into the system yields

ux +
1

x
φ′

(u

x

)

uy = 0, uyy = ut + uux + φ
(u

x

)

uy + px, py = 0.

For example, if φ(s) = s, then u = ψ(xe−y, t), where ψ satisfies

ψzt = ψz + 3zψzz + z2ψzzz.

Thus we have reduced the nonlinear system (28) to a linear equation. A particular solution
found by standard separation of variables methods is

u = cos
(√

k
[

log x− y
]

)

e−kt, v =
1

x
cos

(√
k
[

log x− y
]

)

e−kt, p = 0.

There are two principal reasons why the partially invariant solution method has not
been as extensively applied as other approaches. First, the algorithm is quite complicated,
although the above approach is a significant simplification. Second, in many cases, all
partially invariant solutions are invariant under some subgroup, and so could have been
determined by the classical, simple Lie approach. For example, Ondich, [20] has proved
that this is always the case if the system is elliptic and the defect is 1. There appears to
be an intimate connection between the existence of non-trivial partially invariant solutions
and the classical characteristic directions of the system; in particular elliptic systems have
no real characteristic directions, which explains Ondich’s result. Nevertheless, there are, I
believe, many potentially important applications of this technique to physically interesting
systems which remain to be fully developed.

8. Differential Constraints.

The ultimate generalization, proposed in [19], which includes all of the preceding
methods, and many others, is the introduction of general “side conditions” or differential
constraints. (See also the earlier work of Yanenko, [28], and Meleshko, [13].) Now we
generalize the combined system (15) by allowing the possibility of constraints which depend
on higher order derivatives, leading to an overdetermined system of the form

∆ν(x, u
(n)) = 0,

Qκ(x, u
(k)) = 0,

ν = 1, . . . , m,

κ = 1, . . . , r.
(29)
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The differential constraints Qκ(x, u
(k)) = 0 are no longer restricted to be first order partial

differential equations provided by the characteristics of (weak, non-classical or classical)
symmetries, or partial invariance conditions. The method of differential constraints in-
cludes (almost) all known methods for determining special solutions to partial differential
equations, such as group invariant solutions, non-classical and weak symmetries, partially
invariant solutions, separation of variables, as well as many others. Besides the first order
constraints discussed above, higher order constraints include the additive separation of
variables ansatz u(x, t) = α(x) + β(t), corresponding to the constraint uxt = 0, and the
more usual multiplicative separation of variables u(x, t) = α(x)β(t) corresponding to the
constraint uuxt−uxut = 0. (Of course, these two ansatzes are easily related by the change
of variables u 7→ log u.) Differential constraints do have a group theoretic interpretation
as “generalized weak symmetries” although this does not appear to be an overly useful ob-
servation. The main difficulty is that this approach, while providing a completely general
framework which includes many special approaches, is much too general to be of direct
computation use. The crucial questions now are: Which constraints are compatible? What
are reasonable ansatzes that will (in many cases) yield computable solutions?

Example 20. Consider once again the Boussinesq equation (12). We impose the
differential constraint uuxt−uxut = 0, which is equivalent to the “separation of variables”
ansatz u = α(x)β(t). Substituting this expression into (12) and separating the terms that
depend on either x or t results in a “reduced system”

λα+ αα′′ + α′2 + α′′′′ = 0, β′′ = λβ2.

The general solution to this system includes our previous anomalous similarity solution
u(x, t) = −x2/t2.

The preceding example and the Clarkson-Kruskal direct approach have both been
recently extended by a method of “nonlinear separation” developed by Galaktionov and
others in a detailed study of the development of singularities in the solutions of certain
kinds of quasi-linear parabolic equations; see [8] and the references therein.

Example 21. Consider the nonlinear parabolic evolution equation

ut = uxx + u2x + u2, (30)

arising as a model for combustion. The differential constraint uxuxxt − uxxuxt = 0 corre-
sponds to a “separation” ansatz

u(x, t) = α(t) + β(t)θ(x), (31)

where α, β, θ are functions of a single variable. Plugging (31) into (30) gives

(αt − α2) + (βt − 2βα)θ − βθxx − α2(θ2x + θ2) = 0. (32)

Since α, β depend only on t, whereas θ depends only on x, equation (32) will be incom-
patible unless θ satisfies

θ′′ = aθ + b, θ′2 + θ2 = cθ + d,
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for constants a, b, c, d. This works if, for example, a = −1, b = c = 0, d = 1, whereby
θ(x) = cosx. In this case, (32) reduces to a coupled system of first order ordinary differ-
ential equations

α′ = α2 + β2, β′ = 2βα− β,

for the as yet undetermined functions α(t), β(t). The latter first order system of ordinary
differential equations does not have an explicit general solution; nevertheless, numerical
and analytical investigations lead to important applications to the study of blow-up of
solutions to the original equation (30), cf. [8].
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