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Abstract

In this paper we undertake a systematic investigation of affine invariant object
detection and image denoising. Edge detection is first presented from the point of view
of the affine invariant scale-space obtained by curvature based motion of the image
level-sets. In this case, affine invariant maps are derived as a weighted difference of
images at different scales. We then introduce the affine gradient as an affine invariant
differential function of lowest possible order with qualitative behavior similar to the
Euclidean gradient magnitude. These edge detectors are the basis for the extension
of the affine invariant scale-space to a complete affine flow for image denoising and
simplification, and to define affine invariant active contours for object detection and
edge integration. The active contours are obtained as a gradient flow in a conformally
Fuclidean space defined by the image on which the object is to be detected. That is,
we show that objects can be segmented in an affine invariant manner by computing
a path of minimal weighted affine distance, the weight being given by functions of
the affine edge detectors. The gradient path is computed via an algorithm which
allows to simultaneously detect any number of objects independently of the initial
curve topology. Based on the same theory of affine invariant gradient flows we show
that the affine geometric heat flow is minimizing, in an affine invariant form, the area

enclosed by the curve.

Key Words: Affine invariant detection, denoising, segmentation, affine scale-space,

affine gradient, active contours, gradient flows, geodesics, invariant metrics.

1 Introduction

Despite the extensive activity in recent years on invariant shape recognition algorithms —
see [51] for a representative collection of papers on the topic — the corresponding problem
of invariant detection of shapes has received considerably less attention. Some work along
these lines has been reported in [65, 66|, where the theory of geometric invariant smoothing
of planar curves (boundaries of planar shapes) was initiated; see also [1]. In particular, using

the methods of [1, 66|, a shape can be smoothed in an affine invariant manner before the



computation of invariant descriptors such as those reported in corresponding chapters in
[51]; see for example [26]. This work was partially extended for other groups and dimensions
in [55, 58, 68]. Motivated by this work, efforts in the derivation of a projective invariant
smoothing process was begun in the work of [24, 25]. In [69], the work was extended to the
invariant smoothing of shapes without shrinking.

The purpose of this paper is to derive simple geometric object detection and image de-
noising schemes which incorporate affine invariance. By this we mean that if two images are
related by an affine and photometric transformation (see next section for the exact defini-
tions), the images and objects boundaries or edge maps obtained by the algorithms are also
related by the same transformation. These invariant edge detection and denoising algorithms
should constitute the first step in a fully affine invariant system of object recognition. The
second step, if necessary, would be the affine smoothing mentioned above (for curve-based
systems), to be followed by the computation of affine invariant descriptors. Incorporating
the affine invariant detection and denoising schemes presented here in object recognition sys-
tems will reduce the “algorithmic” noise introduced by using non-invariant methods. Indeed,
smoothing an image with a non-invariant algorithm before computing its affine curvature,
will introduce “artificial noise” to the computation, and when comparing the signatures of
different shapes, will be very difficult to know if the differences correspond to the shapes or
were introduced by the algorithm. This is illustrated in Figures 1 and 2. Two images related
by an affine transformation are used to detect edges, both in an Euclidean (gradient followed
by thresholding) and affine form (with the algorithm described in Section 3). Note how in
the Euclidean case, entire edge segments are missing from one of the affine related images.
In the affine case, some differences appear, due to discretization (the pixel grid is not affine
invariant), but the relation between the edges of the two affine related images is much more
consistent than in the Euclidean case. Further and more detailed examples are presented
later in the paper. The next step in a shape recognition system is to recognize the objects
bounded by the edges that have been detected by the segmentation procedure. For this
purpose, a new approach, incorporating either Euclidean or affine invariance, based on the
general concept of a differential invariant signature curve, was recently proposed in [9, 10].

These papers also derive a new, fully affine-invariant numerical algorithm for computing



the affine invariants required to uniquely characterize the curve up to affine motion, and
hence, in conjunction with the algorithms in this paper, form the basis of a fully curve-based
affine-invariant object detection and recognition procedure. The schemes here described can
in general be used as pre-processing steps for the algorithms described in [51]. For exam-
ple, the denoising algorithm can be used in combination with the moment-based approach
recently introduced in [79]. We should note that the primary goal of this work is to present
a framework to derive invariant object detection and image denoising schemes, and not just
to improve existing state-of-the-art algorithms. Since those schemes are basically not affine
invariant, they are not comparable with the techniques here introduced (although we do
demonstrate the importance of affine invariant detection in this paper).

Two different affine edge detectors are presented. The first one is derived by weighted
differences of images obtained as solutions of the affine invariant scale-space developed in
[1, 66, 67, 70]. The second one is given by the simplest affine invariant function which shows
behavior similar to the magnitude of the Euclidean gradient. (By “simplest” we mean the
minimal number of spatial derivatives.) This affine gradient is derived from the classification
of differential invariants described in [53, 54]. These affine invariant edge maps are then used
to define affine invariant active contours, extending the work in [12, 13, 36, 37, 83]. (See also
the book [6] for a collection of papers on the classical theory of snakes.) The active contours
are therefore used to integrate the local information obtained by the affine edge detectors.
The boundaries of the scene objects are determined as lying at the bottom of a potential
well relative to a geometrically defined energy functional tailored to the affine geometry of
the plane weighted by an affine invariant stopping function. (This was the philosophy of
[12, 36, 37] in the Euclidean case.) Hence, in contrast with previous approaches, distances
in the resulting metric space are affine invariants, and are based on the affine edge maps
and classical affine differential geometry [7]. The boundaries of the desired features, are
computed via a gradient descent flow based on a new notion of affine invariant curve metric
introduced in this paper as well. This curve metric not only makes it possible to define a
gradient flow for the active contour computation but also shows that the affine invariant heat
flow introduced in [1, 2, 65, 66] is minimizing, in an affine invariant form, the area enclosed

by the curve. The affine invariant edge maps are also used to extend the work in [1, 67, 70]
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Figure 1: Illustration of the effect of affine invariant edge maps. First row: A disk smoothed
by Gaussian filtering and an affine transformation of it. Second row: Results of Euclidean
gradient computation followed by thresholding. Note how entire segments are missing. Third
row: Results of the affine gradient followed by thresholding. Besides discretization and
intrinsic errors (see Section 3 for details), the two edge maps are much closer to each other

than the ones in the second row.



Figure 2: Illustration of the effect of affine invariant edge maps. First row: Two images
related by an affine transformation. Second row: Results of Euclidean gradient computation
followed by thresholding. Note how entire segments are missing. Third row: Results of
the affine gradient followed by thresholding. Besides discretization and intrinsic errors (see
Section 3 for details), the two edge maps are much closer to each other than the ones in the

second row.



to obtain a completely affine invariant flow for image denoising and simplification.

To the best of our knowledge, besides the schemes here described, the only works ad-
dressing affine invariant detection and segmentation were performed by Ballester et al. [5]
and by Lindeberg [43]. In [5] the authors presented a very nice affine invariant version of
the Mumford-Shah [50] segmentation algorithm. The work of Lindeberg is related to our
definition of affine gradient, as will be explained in Section 3. The framework here described
for affine invariant edge detectors and active contours can use or be combined with other
scale-spaces such as the one proposed in [44].

This paper is organized as follows. In Section 2 we review the affine scale space intro-
duced in [1, 65, 66] and based on it we present a possible affine invariant edge detector. In
Section 3 we describe the affine invariant gradient approach following the classification in
[563, 54]. Section 4 extends the results of [2, 67, 70] for affine invariant image denoising and
simplification. In Section 5, after the affine invariant curve metric is introduced, the affine

invariant active contours are presented. Concluding remarks are given in Section 6.

2 Affine edges from affine scale-space

We begin by deriving the first affine invariant edge detector. It is based on the theory of
invariant scale-spaces developed in [1, 55, 58, 65, 66, 67, 70]. We start by a brief review of
the relevant results on planar curve evolution, following with the level-sets flows that will
lead to the affine edge detector.

We first introduce some preliminary notation. For planar column vectors, X = (1, 72)7,
Y = (y1,40)" € IR?, we let [X,Y] := x1y2 — 2oy; be the area of the parallelogram spanned
by X,Y. We also define Y+ := (—yo,41)T by

[X, Y] = (X,Y),

where (X,Y) = x1y; + x2y2 denotes the usual Euclidean inner product.

The geometric transformations here considered are of the form

X :=AX +V,



where X represents the boundary of the (planar) shape (vector in IR?), V is a translation
vector, and A a 2 x 2 unimodular matrix (unit determinant). This transformation implies
that the camera is relatively far from the object. For general affine transformations of the
image plane, the theory here presented gives relative invariants instead of absolute ones.

We also allow for changes in the image intensity (photometric changes, [79]). If @ :
[z,y] — IR™ stands for the image, then we consider scaling and offset transformations, that
is,

~

®(z,y) = s®(z,y) + o,

where s and o are constants. Since the theory developed in this paper is based on level-sets
curvature flows (which are morphological invariant by definition) and partial derivatives of
the image ®, it is clear that the operations here defined are (at least relative) invariant with
respect to this photometric transformation. In this paper, we use the term affine invariant
to refer to operations that are invariant to the geometric transformation above, as well as to
the photometric one when dealing with images. This model of image transformations is the
same as the one assumed in the recently published paper [79] for moment-based recognition,

and is commonly used in the investigation of pattern recognition systems.

2.1 Planar curve evolution

The theory of planar curve evolution has been considered in a variety of fields such as
differential geometry [30, 31, 55, 58, 65], theory of parabolic equations [3], numerical analysis
[16, 59|, computer vision [25, 26, 38, 39, 41, 42, 60, 62, 64, 66, 76, 82|, viscosity solutions
[15, 23, 72|, phase transitions [34], and image processing [2, 62, 63, 67, 70]. One of the
most important of such flows is derived when a planar curve deforms in the direction of the
Euclidean normal, with speed equal to the Euclidean curvature.

Formally, let C(p,t) : S* x [0,7) — IR? be a family of smooth embedded closed curves in
the plane (boundaries of planar shapes), where S' denotes the unit circle, p € S' parametrizes

the curve, and ¢ € [0, 7) parametrizes the family. Assume that this family of curves evolves



according to the evolution equation

dC(p,t) _ 9*C(p,1)

8t - 3?}2 = K:(p: t)N(pa t)v

C(p,0) = Co(p).

Here

v@)= [ 116 dp

is the Fuclidean arc-length ' (|| Cy ||= 1), &k = [Cy, Coo] the Fuclidean curvature, and N the
inward unit normal [33]. The flow given by (1) is called the Fuclidean shortening flow, since
the curve perimeter shrinks as fast as possible when the curve evolves according to it [31].
Gage and Hamilton [30] proved that a simple and smooth convex curve evolving according
to (1), converges to a round point. Grayson [31] proved that an embedded planar curve
converges to a simple convex one when evolving according to (1), and so any embedded
curve in the plane converges to a round point via the flow given in (1).

The flow (1), which is non-linear since v is a time-dependent curve parametrization, is
also called the Fuclidean geometric heat flow. It has been utilized for the definition of a
geometric, Euclidean invariant, multiscale representation of planar shapes [1, 38, 39]. As we
will show below, this flow is also important for image enhancement applications. Note that
in contrast with the classical heat flow given by C; = C,,, the Euclidean geometric heat flow
is intrinsic to the curve, that is, only depends on the geometry of the curve and not on its
parametrization. This flow, as well as the other presented below, can be used also to solve
the standard shrinking problem of smoothing processes [69].

Recently, we introduced a new curve evolution equation, the affine geometric heat flow
(65, 66]:

dC(p,t) _ 0%C(p,1)
o 082

(2)
C(p’ O) = C()(p),

'We will consistently use v to denote Euclidean arc-length, reserving s for the affine arc length which is

the main focus of this paper.



where

s0) = [1Cyr ol *dp, 3)

is the affine arc-length ([Cs,Css] = 1), i.e., the simplest? affine invariant parametrization [7].
Css is called the affine normal [33]. In contrast with the Euclidean version, the affine arc-
length is based on area, and not on length (recall that [C,,C,,] is the area between C, and
Cpp). This is clear since length is not affine invariant, whereas area is the simplest geometric
affine invariant. This evolution is the affine analogue of equation (1), and admits affine
invariant solutions, i.e., if a family C(p,t) of curves is a solution of (2), the family obtained
from it via unimodular affine mappings, is a solution as well. We have shown that any simple
and smooth convex curve evolving according to (2), converges to an ellipse [65]. Since the
affine normal C,, exists just for non-inflection points, we formulated the natural extension of

the flow (4) for non-convex initial curves in [66, 68]:

oC(p,t) 0, p an inflection point, n
ot Css(p,t), otherwise,

together with the initial condition C(p,0) = Cy(p). The flow (4) defines a geometric, affine
invariant, multiscale representation of planar shapes. Indeed, in [66], we proved that this
flow satisfies all the required properties of (morphological) scale-space such as causality and
order preservation. In this case, we proved (see also [4]) that the curve first becomes convex,
as in the Euclidean case, and after that it converges into an ellipse according to the results
of [65]. See [66] for a number of explicit examples of planar shape smoothing.

We should also add that in [68], we give a general method for writing down invariant
flows with respect to any Lie group action on JR*. The idea is to consider the evolution given
by C; = C,, where r is the group invariant arc-length. This was formalized, together with
uniqueness results, in [55], and extended to surfaces in [58]. Results for the projective group
were recently reported in [24, 25].

Recently, algorithms for image smoothing were developed based on the Euclidean and

affine geometric heat flows and related equations, and this will be the subject of the next

2Gimplest in this context refers to minimal order or minimal number of spatial derivatives.
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section. An excellent volume of papers edited by Bart ter Haar Romeny [62] has appeared
which is dedicated to such geometry driven diffusion processes. We refer the interested
reader to this book for many more details about the subject as well as a rather complete set

of references.

2.2 Euclidean image processing

In this section, we review a number of algorithms for image processing which are related
to the Euclidean shortening flow (1). The algorithms were developed in continuous spaces,
and tested on digital computers by very accurate and stable numerical implementations.
These numerical implementations were developed by the various authors for their specific
algorithm. Only the basic concepts of the algorithms are given here. For more details, see
the appropriate references given below.

In general, ® : IR*> — IR" represents a gray-level image, where ®(x, ) is the gray-level
value. The algorithms that we describe are based on the formulation of partial differential
equations, with @, as initial condition. The solution ®(z,y,t) of the differential equation
gives the processed image.

Rudin et al. [63] presented an algorithm for noise removal, based on the minimization of

the total first variation of @, i.e.,

/ | Vo || dedy. (5)
Image

The minimization is performed under certain constraints and boundary conditions (zero flow
on the boundary). The constraints they employed are zero mean value and given variance
o? of the noise, but other constraints clearly can be considered as well. More precisely, if

the noise is additive, the constraints are given by

/ & dody = / ®, drdy, / (® — )2 dzdy = 207 (6)
Image Image Image

Note that x, the Euclidean curvature of the level-sets, is exactly the Euler-Lagrange deriva-

tive of this total variation. Then, for the minimization of (5) with the constraints given by
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(6), the following gradient-descent flow is obtained: 3
(Dt =K — /\((b - @0), (7)

and the solution to the variational problem is given when ® achieves steady state. The
level-sets curvature x may be computed via standard formulas for curves defined by implicit
functions. The quantity o is used in the computation of A. The authors computed A from
the steady state solution (®; = 0).

Alvarez et al. [2] described an algorithm for image selective smoothing and edge detection.

In this case, the image evolves according to

. Vo
0= o(1 G+ Ve ) | Vo | aiv (7o), ®

where G is a smoothing kernel (for example, a Gaussian), and ¢(w) is a nonincreasing

function which tends to zero as w — oo. Note that

Vo
Vo || div| ———
Ivel (n Vo ||>

is equal to ®¢¢, where £ is the direction normal to V®. Thus it diffuses ® in the direction
orthogonal to the gradient V®, and does not diffuse in the direction of V®. This means
that the image is being smoothed on both sides of the edge, with minimal smoothing at the

edge itself. Note that the evolution

Vo
¢, =[| VP || div|-—==— | =k | VD 9
=l Ve lldiv (Te o) =l Ve o)

is such that the level-sets of ® move according to the Euclidean shortening flow given by

equation (1) [2, 59]. Finally, the term
o G+ V)

is used for the enhancement of the edges. If || V® || is “small”, then the diffusion is strong.
If || V@ || is “large” at a certain point (x,y), this point is considered as an edge point, and

the diffusion is weak.

3Note that the gradient-descent flow is not the only possible technique to minimize the total-variation.

We concentrate on this approach here since the flow obtained is related to those relevant to our algorithms.
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In summary, equation (8) gives anisotropic or edge preserving (and enhancement) dif-
fusion, extending the ideas first proposed by Perona and Malik [61]. The equation looks
like the level-sets of ® are moving according to (1), with the velocity value “altered” by the

function ¢(w).

2.3 Affine smoothing and edge detection

As we saw in the previous section, there is a close relationship between the curve evolution
flow (1), and recently developed image enhancement and smoothing algorithms (see equation
(9)). In this section we employ the affine shortening flow (4) for a similar purpose.

It is well-known in the theory of curve evolution, that if the velocity ¥V = C; of the
evolution is a geometric function of the curve, then the geometric behavior of the curve is
affected only by the normal component of this velocity, i.e., by < V, N > . The tangential
velocity component only affects the parametrization of the evolving curve [22, 66]. Therefore,
instead of looking at (4), we can consider a Euclidean-type formulation of it. In [65], we

proved that the normal component of C,, is equal to x'/3N . This is very easy to prove, since

Cov
Css - W + f(K,, K/v)cvv va = K'N? CU = T’

and
ds = [Cy, Cm,]l/?’ dv = k'3 dv. (10)

Since k = 0 at inflection points, and inflection points are affine invariant, we obtain that the

evolution given by
Ct = Kl/sNa (11)

is geometrically equivalent to the affine shortening flow (4). Then the trace (or image) of
the solution to (11) is affine invariant.

It is important to note that the affine invariant property of (11) was also pointed out
by Alvarez et al. [1], based on a completely different approach. They proved that this flow
is unique under certain conditions (uniqueness is obtained also from the results in [55]).

Moreover, they give an extensive characterization of PDE based multiscale analysis, and
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remarked that the flows (1) and (11) are well-defined also for non-smooth curves, using
the theory of viscosity solutions [20]. This is also true for the corresponding image flows,
where the level-sets deform according to the geometric heat flows [15, 23] (see below). The
existence of the Euclidean and affine geometric heat flows for Lipschitz functions is obtained
from the results in [3, 4] as well. These results on extensions of the flows to non-smooth
data are fundamental for all image processing applications, since images, being discrete, are
non-smooth. The results prove that the flows are mathematically correct (well-defined and
stable).

We proceed now to show how the affine curve flow (11) can be extended to process images.
The technique of embedding a curve in a 3D surface, and looking at the evolution of the
level-sets, is frequently used for the digital implementation of curve evolution flows [59]. Let
us consider now what occurs when the level-sets of ® evolve according to (11). It is easy to

show that the corresponding evolution equation for @ is given by
Dy = K| VO [[= (020, — 20,0, Dy + B2D,) 2. (12)

This equation was used in [66] for the implementation of the novel affine invariant scale-space
for planar curves mentioned in the Introduction. It was also used in [1, 67, 70] for image
denoising (here we extend those flows; see Section 4). Note again that, based on the theory
of viscosity solutions, equations (9) and (12) can be analyzed even if the level-sets (or the
image itself), are non-smooth; see [1, 15, 20, 23]. This flow is well-posed and stable. The
maximum principle holds, meaning that the flow is smoothing the image.

If we compare (9) with (12), we observe that the denominator is eliminated. This not only
makes the evolution (11) affine invariant [1, 66], it also makes the numerical implementation
more stable [59]. The 1/3 power is the unique one which eliminates this denominator. This
is of course an important advantage of the affine flow over the Euclidean one in image
processing. Moreover, for high curvatures, x/? is smaller than x, which further prevents
sharp regions from moving. Finally, since the symmetry group (the affine group) of (12) is
much larger than that of equation (9) (the Euclidean heat flow), more structure is preserved
up to a higher degree of smoothing. This phenomenon has been observed, for example, in

Niessen et al. [52] in which elliptical structures of MRI images of the brain were preserved
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up to a very high degree of smoothing using equation (12).

We are now ready to define the first affine invariant edge map. Note that from the results
in [1, 65, 66], the affine based flow derived from (11) will perform edge preserving anisotropic
diffusion as in the Euclidean case. Based on this, we obtain the first affine invariant edge

detection scheme, from the following function (see also [19]):

Definition 1 Let
Sedge(t0> tl) = a(I)(tl) - b(I)(tO)a (13)

such that ®(-) is the solution of (12) with initial datum ®(0), a,b € R™ and t; > ty > 0.

Seage(to, t1) is denoted as the scale-space affine invariant edge detector. 4

From the results above, we first of all obtain that Seq is affine-invariant. (If a > b,
then S,qqe is also positive, since the flow satisfies the maximum principle [1, 66].) Seqqe then
gives an affine invariant edge map of the original image ®(0). Note that if ¢, > 0, noise
is (efficiently) removed before edges are computed. Varying ¢y and ¢; gives affine edges at
different scales. Examples of this flow are presented in Figure 3 for different values of ¢; (o
is left fixed in these experiments). The implementation of the affine invariant scale-space in
this example, as well as all the other examples in this paper, is based on the popular level-
sets numerical scheme [59] and details can be found for example in [59, 66]. The function
Sedge can be followed by a pre-defined threshold without affecting the affine invariance.
Note that we use thresholding here only for ease of visualization. When using Sq4g. for
further computations, as in the affine active contours described in following sections, this
thresholding is not used, since it can remove important information. The affine invariant
edge detection in Figure 3 gives similar results to those obtained with basic edge detection
algorithms reported in the literature, with the additional property of being affine invariant.

As can be observed from the figures, edges are not perfectly detected (compare with Figure

4 After this paper was concluded [56, 57], we received a copy of [40], where the function S.q, is also
defined. As pointed out by the author when defining this function, his work was inspired by our remarks
in [70], where we reported the possibility of defining an affine invariant edge map from the affine invariant
geometric heat flow. The interested reader is referred to [40] for applications of this edge map as well as nice

examples further supporting the importance of affine invariance in this type of computation.
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4). In particular, at clean areas, where the curvature at the edge is exactly zero, it will take
a number of iterations for the edge to “move,” allowing only then its detection via Seqge-
In spite of this, Sc44. can be used, as we see later, as a basic edge map for invariant active

contours or other edge integration algorithms, as well as for affine invariant image denoising.

Figure 3: Examples of the scale-space based affine invariant edge detector. The original
image is presented on the left, followed by results of S(ty,t1) for to fix and different values
of t;. For the time step At = 0.05, the (non-optimized) parameters used in this Figure are:

to = 10At, t; = 15A¢t, 20At, 25At, a = b = 12.

3 Affine invariant gradient

Let ® : IR?> — IR™ be a given image in the continuous domain. In order to detect edges in
an affine invariant form, a possible approach is to replace the classical gradient magnitude
| V& ||= \/m, which is only Euclidean invariant, by an affine invariant gradient.
By this we mean that we search for an affine invariant function from IR? to IR that has,
at image edges, values significantly different from those at flat areas, and such that this

values are preserved, at corresponding image points, under affine transformations. In order
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to accomplish this, we have to verify that we can use basic affine invariant descriptors
which can be computed from @ in order to find an expression that (qualitatively) behaves
like || V@ ||. Using the classification developed in [53, 54], we found that the two basic

independent affine invariant descriptors are °

Hi= 0,0, — 02, J:=0,02 —20,8,0,, + 320,

We should point out that there is no (non-trivial) first order affine invariant descriptor, and
that all other second order differential invariants are functions of H and J. Therefore, the
simplest possible affine gradient must be expressible as a function F = F(H, J) of these two
invariant descriptors.

The differential invariant J is related to the Euclidean curvature of the level-sets of the
image. Indeed, if a curve C is defined as the level-set of ®, then the curvature of C is given
by k = W. Lindeberg [43] used J to compute corners and edges, in an affine invariant

form, that is,
Fi=J=r|vel.

This singles out image structures with a combination of high gradient (edges) and high
curvature of the level-sets (corners). Note that in general edges and corners do not have to
lie on a unique level-set. Here, by combining both H and J, we present a more general affine
gradient approach. Since both H and J are second order derivatives of the image, the order

of the affine gradient is not increased while using both invariants.

Definition 2 The (basic) affine invariant gradient of a function ® is defined by the equation®

Vaﬁ(I) =

oneff]

Technically, since §aﬁ ® is a scalar (a map from IR? to IR), it measures just the magnitude

of the affine gradient, so our definition may be slightly misleading. However, an affine

Note that the simplest Euclidean invariant differential descriptor is exactly || V@ ||, which is enough to

formulate a basic Euclidean invariant edge detector.
6This functions is not well defined at perfect straight lines, that is, straight lines that have exactly the

same gray value. Invariants of additional complexity need to be investigated to avoid this problem.

17



invariant gradient direction does not exist, since directions (angles) are not affine invariant,
and so we are justified in omitting “magnitude” for simplicity.
Note also that if photometric transformations are allowed, then §aﬁ ® becomes only a

relative invariant. In order to obtain an absolute invariant, we can use, for example, the com-

H3/2

bination 5

. Since in this case, going from relative to absolute invariants is straightforward,
we proceed with the development of the simpler function /V\aﬁ .

The justification for our definition is based on a (simplified) analysis of the behavior of
§aﬁ ® near edges in the image defined by ®. Near the edge of an object, the gray-level values
of the image can be (ideally) represented via ®(x,y) = f(y — h(x)), where y = h(z) is the
edge, and f(t) is a slightly smoothed step function with a jump near ¢t = 0. Straightforward

computations show that, in this case,
H — _hllflfll J: —h”fl3.
Therefore
H/J = f"/f?=(=1/f")"

Clearly H/J is large (positive or negative) on either side of the object y = f(z), creating an
approximation of a zero crossing at the edge.” This is due to the fact that f(z) = step(z),
f'(x) = d(z), and f"(x) = 0'(x). (We are omitting the points where f' = 0). Therefore,
/V\aﬁ ® behaves like the classical Euclidean gradient magnitude.

In order to avoid possible difficulties when the affine invariants H or J are zero, we
replace /V\aﬁ by a slight modification. Indeed, other combinations of H and J can provide
similar behavior, and hence be used to define affine gradients. Here we present the general
technique as well as a few examples.

For further applications described in this paper, we will be more interested in edge stop-

ping functions than in edge maps. These are functions which are as close as possible to zero

at edges, and close to the maximal possible value at flat regions. We then proceed to make

"Note that the Euclidean gradient is the opposite, high at the ideal edge and zero everywhere else. Of
course, this does not make any fundamental difference, since the important part is to differentiate between

edges and flat regions. In the affine case, edges are given by doublets.
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modifications on /V\aﬁ which allow us to compute well-defined stopping functions instead of
just edge maps.

In Euclidean invariant edge detection algorithms based on active contours, as well as in
anisotropic diffusion, the stopping term is usually taken in the form (1+ || V& [|?)~", the
extra 1 being taken to avoid singularities where the Euclidean gradient vanishes. Thus, in

analogy, the corresponding affine invariant stopping term should have the form
1 J?

—

1+ (Vy®)? HZ+J2

However, this can still present difficulties when both H and J vanish, so we propose a second

modification.

Definition 3 The normalized affine invariant gradient is given by:

H2

=)
Vg J2+1

(15)

The motivation comes from the form of the affine invariant stopping term, which is now
given by

1 P+
1+ (Ve ®)2 H24+J2+1

Formula (16) avoids all difficulties where either H or J vanishes, and hence is a proper

(16)

candidate for affine invariant edge detection. Indeed, in the neighborhood of an edge we

obtain
J2 + 1 _ f16h112 + 1
H2+J2+1 _ h"2f’2(f’4 +f"2) + 1’

which, assuming A" is moderate, gives an explanation of why it serves as a barrier for the

edge. Barriers, that is, functions that go to zero at (salient) edges, will be important for the
affine active contours presented in the following sections.

Examples of the affine invariant edge detector (16) are given in Figure 4. As with the
affine invariant edge detection scheme introduced in previous section, this algorithm might
produce gaps in the objects boundaries, as a result of the existence of perfectly straight
segments with the same gray value. In this case, an edge integration algorithm is needed
to complete the object boundary. The affine invariant active contours presented later is a

possible remedy of this problem.
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Figure 4: Examples of the affine invariant edge detector (after thresholding).

4 Affine invariant image denoising and simplification

We now present an additional application of the affine invariant edge maps introduced above.
Indeed, we will describe a new model of anisotropic diffusion for image denoising and simpli-
fication, which is motivated by the ideas in [1, 2, 70]. According to the anisotropic diffusion
flow of Alvarez et al. [2] given by (8), a stopping term ¢ should be added to the directional
derivative to stop diffusion across edges. Following the work in [67, 70] (see also [1]), where
the affine flow (12) is used as “directional diffusion,” we can further replace the Euclidean
function ¢ in (8) by an affine invariant edge stopping function ¢,5. Accordingly, assume
that ¢.p = ¢(w,z) where, as before, ¢(w) — 0 when w — co. We let w = w,z be either
one of the affine edge detectors defined above, i.e., Segge as in (13) or Vg (®) as in (15).

This results in a completely affine invariant flow,
®; = Gug 62| VE| = Gug () Pz — 20,0, Doy + D3 Dyy)'/°. (17)

This flow is analogous to the flow in [2], while having the additional property of being
affine invariant, and therefore similar qualitative behavior is to be expected. The edge

preserving denoising property of the flow is tested in Figure 5 (the affine gradient is used for
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Ga5 in this and following examples). Note that since this type of flow (as well as the ones
proposed in [2, 63]) tends to make an image piecewise constant, its results can be used to

simplify (segment) an image in an affine invariant fashion.

Figure 5: Examples of the affine invariant image flow for image denoising and simplification.
The original image is presented on the top row. Two different noise levels are given on the
left at the second and last row, and the corresponding results of the affine invariant flow on

the right.

In Figure 6, we compute the affine curvature for two images related by an affine trans-
formation. Both images are first altered by random Gaussian noise, and after that, are
processed by the denoising algorithm described above. The same number of steps was used

for processing both images (20At). The affine curvature (the simplest non-trivial differential
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affine invariant), given by [7]

M= [CSSa Csss]a

is then computed for the mid-range level-set of both cleaned images. This was done using
the implicit functions formula for the affine curvature (see for example [40] for the specific
expression). Although this is not the best possible way to compute the affine curvature
in discrete curves [9, 10], it is sufficient to show the qualitative behavior of the algorithms
here described. The affine arc-length was computed using the relation between affine and
Euclidean arc-lengths given by (10). Since we do not use the same starting point to compute
the affine curvature, the plots are shifted one with respect to the other. Apart from this
shift, the affine signatures area very close. The affine invariant edge map Sqq is also shown
for both images.

In Figure 7, we test the importance of affine invariant denoising. The noisy image is pro-
cessed with the affine flow introduced above and also with its Euclidean analogue introduced
in [2] (or [63]). After denoising, the affine curvature of the mid-range level-set is computed
and compared to that of the original image. We note how this signature is much better

preserved with the affine processing than with the Euclidean one.

5 Affine invariant active contours

In this section, we derive our affine invariant active contour models. We start with a brief
description of classical energy “snakes” and curve evolution based snakes, followed by the
presentation of Euclidean geodesic active contours, following the treatments of [12, 13, 36,
37]. For complete comparisons between these models, the interested reader is referred to
[12, 37, 47]. We then proceed to derive the affine active contours based on the Euclidean
version by defining the proper gradient flow. It is important to note that after affine edges
are computed locally based on the scale-space or affine gradient derive above, affine invariant
fitting can be performed [8, 27, 28, 80]. In this work, the affine invariant integration is done

by means of active contours.
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Figure 6: Affine denoising, edge maps, and curvature computation for two affine related
images. The first row shows the two original noisy images (two left figures). Gaussian random
noise was added independently to each one of the images after the affine transformation was
performed. The subsequent images on the same row show the results of the affine denoising
algorithm. The second row shows, on the left, Sc44 for the images after affine denoising.
The last two figures on the second row show plots of the affine curvature vs. affine arc-
length of the mid-range level-set for these images. The affine curvature was computed using
implicit functions. Although this is not the best possible way to compute the affine curvature
in discrete curves, it is sufficient to show the qualitative behavior of the algorithm. The
affine arc-length was computed using the relation between affine and Euclidean arc-lengths
described in the text. The curve was smoothed with the affine geometric heat flow for a
small number of steps to avoid large noise in the discrete computations. Note that different

starting points were used for both images, and therefore the corresponding plots are shifted.
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NS\

Figure 7: Test of the importance of affine invariant denoising. The first row shows the

original image followed by the noisy one. The second row shows the denoising results for
the affine and Euclidean flows. The third row shows plots of the affine curvature vs. affine
arc-length of the mid-range level-set for the original image and those obtained from the
affine and Euclidean denoising algorithms (second row images). The affine curvature was
computed using implicit functions. The affine arc-length was computed using the relation
between affine and Euclidean arc-lengths described in the text. In both cases, the curve
was smoothed with the corresponding affine and Euclidean geometric heat flows for a small

number of steps to avoid large noise in the discrete computations.
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5.1 Classical snakes

Let C(p) : [0,1] — IR? be a parametrized planar curve, and ® : [0,a] x [0,b] — IRT a given
image where we want to detect the objects boundaries. The classical snakes approach [35, 77]
associates to the curve C an energy given by

E(C) = 04/01 Gy II? dp+ﬂ/01 Il Cp |I? dp — A/OI | Ve(C(p)) Il dp, (18)
where «, 3, and \ are real positive constants. Here o and [ determine the elasticity and
rigidity of the curve, so that first two terms represent internal energy, and essentially control
the smoothness® of the contours to be detected, while the third term represents external
energy, and is responsible for attracting the contour towards the desired object in the image.
Solving the problem of snakes amounts to finding, for a given set of constants «, 3, and A,
the curve C that minimizes E. The classical (energy) approach of snakes can not deal with
changes in topology, unless special topology handling procedures are added [49, 73]. This is
the basic formulations of 2D active contours. Other related and 3D formulations have been

proposed in the literature (e.g., [17, 18]). Reviewing all of them is beyond the scope of this

paper.

5.2 Deformable models based on curve shortening

Our approach to geometric based active contours is strongly motivated by the papers [11,
46, 47, 48], and we now present the basic results reported there. Assume in the 2D case
that the deforming curve C is given as a level-set of a function u : IR*> — IR, so that we can
represent the deformation of C via that of w. In this case, the proposed 2D deformation is
obtained modifying the edge detection algorithm (8) by including an inflationary force in

the normal direction governed by a positive real constant v.° The evolution equation takes

the form
% = elvula (i) el vull (o) e locla (1)
w0.3) = wl). cel (20

80ther smoothing constraints can be used, but this is the most common one.

9Note that in (8), ® is the image, while here u is an auxiliary embedding function.
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where the stopping term typically has the form

1

b= ——r
1+ || VO ||

(21)

where m = 1 or 2, and ® is a regularized version of the original image ®. We are looking
for the contour of an object O, so, in the case of outer snakes (curves evolving towards
the boundary of O from the exterior of O) the initial condition u(0,z) = ug(z) is typically
taken as a regularized version of 1 — x¢ where yc is the characteristic function of a curve
C containing O. Using once again the fact that div (%) = Kk, where k is the Euclidean

curvature of the level-sets C of u, equation (19) can be written in the form
up=¢- (v + £)||Vull

Equation (19) may then be interpreted as follows: Suppose that we are interested in following
a certain level-set of u, which we can take to be the zero level-set. Suppose also that this

level-set is a smooth curve. Then the flow
ug = (v + K)[|Vul,
means that the the level-set C of u we are considering is evolving according to
C:=(v+ kKN, (22)

where N is the inward normal to the curve. This equation was first proposed in [59, 74, 75],
where extensive numerical research on it was performed. It was introduced in computer
vision in [38, 39], where deep research on its importance for shape analysis is presented. The

motion
Ct = HN, (23)

is the Euclidean heat flow presented before, which is very well-known for its excellent geo-
metric smoothing properties [3, 30, 31]. As was pointed out before, this flow is also called
the “Euclidean shortening flow,” since it moves the curve in the gradient direction of the

length functional given by

L= ﬁdv, (24)
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where dv =|| C, || dp is the Euclidean arc-length element, and therefore this flow decreases
the length of the curve as fast as possible using only local information. This idea is the key
for the snake models of [12, 13, 36, 37|, as well as their extension to the affine case, as we
shall soon see.

Finally, the constant velocity v in (22), acts as the balloon force in [17] and is related to
classical mathematical morphology [38, 64]. If v > 0, this velocity pushes the curve inwards
and it is crucial in the model in order to allow convex initial curves to become non-convex,
and thereby detect non-convex objects. Of course, the v parameter must be specified a priori
in order to make the object detection algorithm automatic, being this a non trivial issue.
Recapping, the “force” v + k acts as the internal force in the classical energy based snakes
model. The external force is given by ¢, which is supposed to prevent the propagating curve
from penetrating into the objects in the image. In [11, 46, 47, 48], the authors choose ¢ given
by (21). o may be obtained by Gaussian filtering, but more effective geometric smoothers,
as those in [2, 70], can be used as well [45]. For an ideal edge, V® = 4, and the curve stops
at the edge since u; = 0 there. The boundary is then given by the set u = 0.

This curve evolution model given by (19) automatically handles different topologies. This
is achieved with the help of an efficient numerical algorithm for curve evolution, developed
by Osher and Sethian [59, 74, 75], used by many others for different image analysis problems,

and analyzed, for example, in [15, 23].

5.3 Euclidean gradient snakes

We present now the geodesic active contours derived in [12, 36, 37]. Because of the central
role played by Euclidean curve shortening in these models as well as the affine extension to
be given below, we would like to explain in some detail now the relationship between curve
shortening, gradient flows, and closed geodesics.

Let C = C(p,t) be a smooth family of closed curves where ¢ parametrizes the family and
p the given curve, say 0 < p < 1. (We assume that C(0,t) = C(1,t) and similarly for the

first derivatives.) Consider the length functional

L= [ 16 | dp
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Then differentiating (i.e., taking the “first variation”), and integrating by parts, we find

, L) BC
L) =~ [ (G5 mN) dv,

where dv is the Euclidean arc-length. Now, in the standard way, the length functional

1 L
1€ llwei= [ €Il dp= [ dv=1L,
0 0

will define a norm on the (Fréchet) space of twice-differentiable closed curves in the plane
C:={C:[0,1] = IR*: C is closed and C?}.

Consequently, the direction in which L(t) is decreasing most rapidly is when C satisfies the
gradient flow C; = kV/, proving that the Euclidean curve shortening flow (23) is precisely a
gradient flow. This analysis will be essential when we discuss the affine versions of this flow.

We should note that this flow has arisen in the finding of closed geodesics on Riemannian
manifolds (it can be defined with respect to any Riemannian metric), and the basic idea is
that as long as it remains regular it will converge to a closed geodesic. The deep part is the
regularity; for details see [3, 30, 31, 32]. The active contours models which we are about to
define are completely straightforward consequences of these general principles.

We are now ready to formulate the gradient active contours model from [12; 36, 37].
In [12], the model is derived from the principle of least action in physics [21], showing
the mathematical relation between energy and curve evolution based snakes. In [36, 37],
the model is derived immediately from curve shortening, and is compared to similar flows
in continuum mechanics, in particular, phase transitions [34]. Of course, the two obtained
flows are mathematically identical and present active contours as geodesic computations. We
prefer to use here the simple curve shortening argument since it is the easier to generalize
to the affine case. The basic idea is to change the ordinary Euclidean arc-length function
dv =|| C, || dp along a curve C(p) by multiplying by a conformal factor ¢(z,y) > 0, which is
assumed to be a positive, differentiable function. The resulting conformal Euclidean metric

on IR? is given by ¢ dxzdy, and its associated arc length element is

dvy = ¢pdv=¢ | Cp || dp. (25)
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As in ordinary curve shortening, we want to compute the corresponding gradient flow for

the modified length functional

Lot):= [ sdv= [ 11¢, | pdp. (26)

Taking the derivative and integrating by parts, we find that [12, 36, 37]
/ Ly(t)
—Ly(t) = /0 (Ciy kN — (Vo - N)N) dv

which means that the direction in which the L, perimeter is shrinking as fast as possible is
given by

aa_(;’ — kN — (V- NIN. (27)

This is precisely the gradient flow corresponding to the minimization of the length functional
L4. As long as the flow remains regular, we will get convergence to a closed geodesic in the
plane relative to the conformal Euclidean metric ¢ dzdy. Regularity may be deduced from
the classical curve shortening case.

To introduce the level-set formulation [59, 74, 75], let us assume now that a curve C is
parametrized as a level-set of a function v : [0, a] x[0,b] — IR. Then, the level-set formulation
of the steepest descent method says that solving the above geodesic problem starting from

Co amounts to searching for the steady state (u; = 0) of the following evolution equation:

ou Vu Vu

— =|| Vu || div (qﬁ ) =¢ || Vu || div <7> + V¢ - Vu, 28

o rvur) =V o )
with initial datum (0, z) = uo(z). As in [11, 47], we may add an inflationary constant, to
derive

2_1: =|| Vu || div <<;5 %) +ve || Vul|=¢(v+k) || Vu || +Vu - V. (29)

In the context of image processing, we take ¢ to be a stopping term depending on the
image as in (21). In this case, V¢ will look like a doublet near an edge. The new gradient
term directs the curve towards the boundary of the objects since —V¢ points toward the
center of the boundary. This new force then increases the attraction of the deforming contour

towards the boundary, being of special help when the boundary includes high variations of its
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gradient values. Note that in contrast with this gradient flow (29), in the model of [11, 47],
the curve stops only when ¢ = 0, which happens only along an ideal edge. The second
advantage of this new term is that it allows the detection of non-convex objects as well, thus
removing the necessity to a priori estimate the inflationary constant given by v. In case we
wish to add this constant velocity, in order for example to increase the speed of convergence,
we can just consider the term v¢|Vu| of (29) as an extra speed in the gradient problem (26),
minimizing the enclosed area, [17, 85]. Existence, uniqueness and stability results for the
gradient active contour model (29) were studied in [12, 13, 36, 37].

We should point out it is trivial to write down the 3D extensions of such active contour
models, as was done in [13, 14, 36, 37, 83, 84]; see also [81, 82]. We should also note that Shah
[71] recently presented an active contours formulation using a weighted length formulation
as in (26) as starting point. In his case, ¢ is obtained from an elaborated segmentation
procedure obtained from the Mumford-Shah approach [50]. Extensions of the model in
[11, 46] are studied also in [76], motivated in part by the work in [38, 39]. Related work may
also be found in [29].

5.4 Affine invariant gradient snakes

Based on the gradient active contours and affine invariant edge detectors above, it is almost
straightforward to define affine invariant gradient active contours. In order to carry this
program out, we will first have to define the proper norm. Since affine geometry is defined
only for convex curves [7], we will initially have to restrict ourselves to the (Fréchet) space

of thrice-differentiable convex closed curves in the plane, i.e.,
Co:={C:[0,1] — IR? : C is convex, closed and C*}.

As above, let ds denote the affine arc-length; see (3). Then, letting L,z := § ds be the affine

length [7], we proceed to define the affine norm on the space Cy

1Cllg= [ 1€0) Il dp= [ 7 l1C(s) N ds

where

1C(@) lla == [C(p), G (P)]-
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Note that the area enclosed by C is just

1 /1 1 /! 1
A=s [le@ Nl dp=3 [16.¢1dp=3511C g - (30)
Observe that
” Cs ||a - [Csacss] - 15 || Css ||a = [Cssacsss] = M,

where p is the affine curvature, i.e., the simplest non-trivial differential affine invariant. This
makes the affine norm || - ||,4 consistent with the properties of the Euclidean norm on curves
relative to the Euclidean arc-length dv. (Here we have that || C, ||= 1, || Cuy ||= &.)

We can now formulate the functionals that will be used to define the affine invariant
snakes. Accordingly, assume that ¢,; = ¢(w.g ) is an affine invariant stopping term, based
on the affine invariant edge detectors considered before. Therefore, ¢,5 plays the role of the
weight ¢ in Ly. As in the Euclidean case, we regard ¢, as an affine invariant conformal
factor, and replace the affine arc length element ds by a conformal counterpart ds%ﬁ =

¢q5 ds to obtain the first possible functional for the affine active contours

Lajj‘ (t)
Loy = /O o ds, (31)

where as above L,; is the affine length. The obvious next step is to compute the gradient
flow corresponding to L%ﬂ in order to produce the affine invariant model. Unfortunately,
as we will see, this will lead to an impractically complicated geometric contour model which
involves four spatial derivatives. In the meantime, using the connection (10) between the
affine and Euclidean arc lengths, note that the above equation can be re-written in Euclidean

space as

Ly .. = L(t)qﬁ &3 dy (32)
baff — 0 aff ]

where L(t) denotes the ordinary Euclidean length of the curve C(t).
The snake model which we will use comes from another (special) affine invariant, namely
area, cf. (30). Let C(p,t) be a family of curves in Cy. A straightforward computation reveals

that the first variation of the area functional
A L C.C,ld
() =3 [ 1c.cldp
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is
Lag
A’(t):—/ 7e., ¢l ds.
0

Therefore the gradient flow which will decrease the area as quickly as possible relative to

| - |lap is exactly
Cr = Css,

which, modulo tangential terms, is equivalent to
C, = kPN,

which is precisely the affine invariant heat equation studied in [65]! It is this functional that
we will proceed to modify with the conformal factor ¢,5 . Therefore, we define the conformal

area functional to be 1°

1 Laﬁ (t)
Ay = [ 16,Clbug dp = [ C,C.loug ds.

The first variation of A%ﬁ will turn out to be much simpler than that of L%ﬂ and will lead
to an implementable geometric snake model.

The precise formulas for the variations of these two functionals are given in the following
result. They use the definition of Y+ given in (2). The proof follows by an integration by

parts argument and some manipulations as in [12, 13, 36, 37].

Lemma 1 Let L and A denote the conformal affine length and area functionals re-
¢u,ﬁ ¢aﬁ

spectively.
1. The first variation of L%ﬁ 1S given by

dL¢aﬁ (t)

Loy (t) n La(t)
dt = _/0 [Ct: (V¢aﬁ) ]dS + A Qsaﬁ' M[Ctacs]ds' (33)

2. The first variation of A%ﬁ s given by

dA Lo (¢
%(t) _ /0 e, (up Co + %[c, (V)*C.])]ds. (34)

'%An alternative definition would be to use Ay o := [ [ ¢ag dady, which is actually the affine analogue

of the weighted area that produces the Euclidean weighted constant motion C; = ¢/\7 .
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The affine invariance of the resulting variational derivatives follows from a general result

governing invariant variational problems having volume preserving symmetry groups [58]:

Theorem 1 Suppose G is a connected transformation group, and Z[C| is a G-invariant
variational problem. Then the variational derivative (or gradient) 6T of T is a differential

wnwvariant if and only if G is a group of volume—preserving transformations.

We now consider the corresponding gradient flows computed with respect to || - ||l.g -

First, the flow corresponding to the functional L%ﬁ is

Co={(Voag )" + baginCs}ts = (Voag )" )s + (G 11)sCs + dagy 1 Css.

As before, we ignore the tangential components, which do not affect the geometry of the
evolving curve, and so obtain the following possible model for geometric affine invariant

active contours:
Cr = Gug 15PN + (Vg ) ") s, NN (35)

The geometric interpretation of the affine gradient flow (35) minimizing Ly,  1s analogous
to that of the corresponding Euclidean geodesic active contours. The term ¢4 pkt/® mini-
mizes the affine length L,z while smoothing the curve according to the results in [65, 66],
being stopped by the affine invariant stopping function ¢,;. The term associated with
((Vgag )F)s creates a potential valley, attracting the evolving curve to the affine edges. Un-
fortunately, this flow involves p which makes it difficult to implement. (Possible techniques
to compute p numerically were recently reported in [9, 10, 26].)

The gradient flow coming from the first variation of the modified area functional on the

other hand is much simpler:

€= (DugCot 5 [C.(Vour) '] C, (36)

Ignoring tangential terms (those involving C;) this flow is equivalent to

C = GurCort 5 €. (Vur)']Con (37)
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which in Euclidean form gives the second possible affine contour snake model:
1
C = Gugk'PN + 5 (€, Va6 PN (38)

Notice that although both models (35) and (38) were derived for convex curves, the flow
(38) makes sense in the non-convex case as well, which makes this the only candidate for a
practical affine invariant geometric contour method. Thus we will concentrate on (38) from
now on, and just consider (35) as a model with some theoretical interest.

In order to better capture concavities, to speed up the evolution, as well as to be able to
define outward evolutions, a constant inflationary force of the type v¢/N may be added to
(38). This can be obtained from the affine gradient descent of Ay . := [ [ oy dzdy. Note
that the inflationary force C; = ¢A7 in the Euclidean case of active contours if obtained from
the (Euclidean) gradient descent of A := [ [ ¢dzdy, where ¢ is a regular edge detector. For-
mal results regarding existence and uniqueness of solutions to (38) can be derived following
1, 11, 12, 13, 36, 37].

Figure 8 illustrates simulations of these active contour models (the implementation is as
in [12, 13, 36, 37, 46, 47, 48], based on the level-sets formulation [59]). The original curve
is a square surrounding both objects. This square becomes non-convex and then splits in
order to detect both objects. As mentioned before, the affine invariant active contours just
presented have similar behavior than the ones in [12, 37], with the additional property of
being affine invariant. Additional examples on gradient-based geometric active contours may

be found in these references.

6 Concluding remarks

The problems of affine invariant detection and image denoising were addressed in this paper.
Two different affine invariant edge detectors were first discussed. One is obtained from
weighted difference of images at different scales obtained from the affine invariant scale-space
developed in [1, 65, 66]. The second one is obtained from a function which behaves like the
Euclidean gradient magnitude, having, in addition, the affine invariance property. From the

classification of invariants developed in [53, 54], this function is the simplest possible with
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Figure 8: Examples of the affine invariant active contours. The original image is presented
on the left and the one with the corresponding objects detected by the affine active contours
on the right. The original curve is a square surrounding both objects. Although the image
contains high noise due to JPEG compression, both objects are detected. (This is a color

figure.)

this characteristic.

We then presented two models for affine invariant active contours, extending the results
presented in [12, 13, 36, 37] for the Euclidean group. We showed that objects can be obtained
as gradient flows relative to modified area and affine arc-length functionals. The induced
metric is a function of the affine invariant edge maps. Therefore, objects are modeled as paths
of minimal weighted affine distance. Based on the same theory of affine invariant gradient
descent and curve metrics, we proved that the affine geometric heat flow is minimizing area,
in an affine invariant form, as fast as possible, and so is a steepest-descent flow. The affine
edge maps were used to extend the image flows in [1, 67, 70|, obtaining a complete affine
invariant flow for image denoising and simplification.

The schemes here presented should be used as first steps in (“planar”) shape recognition
systems. This will help to reduce non-intrinsic noise frequently added to the algorithms
due to the use of non-invariant edge and object detection schemes. The affine-invariant
recognition of contours bounding objects can then proceed by using the affine signature

curves and their affine-invariant numerical approximations developed in [9, 10]. The affine
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invariant image denoising (and simplification) scheme can be used as pre-processing for the
algorithm recently introduced in [79].

We conclude by noting that the 3D extension of the affine active contours work is clear,
one can use a modified volume functional in this case. Moreover, we plan to compare
the Euclidean and affine methods on some more realistic medical imagery and to use the
affine invariant object detection and image denoising schemes for recognition tasks in future
publications. Study of the behavior of zero-crossings [78] associated with the affine invariant

gradient is the subject of current research as well.
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