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Abstract

In this note, we analyze the geometric active contour models proposed in [10, 31]
from a curve evolution point of view and propose some modifications based on gradient
flows relative to certain new metrics. This leads to a novel snake paradigm in which
the feature of interest may be considered to lie at the bottom of a potential well. Thus
the snake is attracted very naturally and efficiently to the desired feature. Moreover,
we consider some 3-D active surface models based on these ideas.
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In this note, we analyze the geometric active contour models proposed in [10, 31]
from a curve evolution point of view and propose some modifications based on gradient
flows relative to certain new metrics. This leads to a novel snake paradigm in which
the feature of interest may be considered to lie at the bottom of a potential well. Thus
the snake is attracted very naturally and efficiently to the desired feature. Moreover,
we consider some 3-D active surface models based on these ideas.



Summary

. Original contribution: The contribution of this work is an active contour and sur-
face model based on novel gradient flows, differential geometry, and curve and surface
evolutions.

2. Importance of the contribution: The scheme we derive for the computation of de-

formable contours as well as our numerical routines make this type of approach ideal for
segmentation, edge and curve detection, visual tracking, and shape modelling. More-
over, we believe we elucidate some underlying mathematical principles for geometric
active contour models based on our gradient flow paradigm.

3. Related works and how this work differs: This work was strongly influenced by

the geometric evolution models of Caselles et al. [10] and Malladi et al. [31]. There
is an extensive literature on deformable contours references to which may be found in
the book by Blake and Yuille [8]. However, in our case we derive our model from basic
differential geometric principles (gradient flows relative to a Riemannian metric which
depends on the given image) which leads to a new gradient term appearing in these
previous models and which makes the evolution more efficient and natural.

. How other researchers can make use of this work: Researchers working in active
vision will have an efficient natural procedure for employing active contours to various
kinds of imagery. Our scheme seems to work very well on noisy images with which
other methods seem to have problems.



1 Introduction

Recently, a number of approaches have been proposed for the problem of snakes or active
contours. The underlying principle in these works is based upon the utilization of deformable
contours which conform to various object shapes and motions. Snakes have been used for
edge and curve detection, segmentation, shape modelling, and visual tracking. The recent
book by Blake and Yuille [8] contains an excellent collection of papers on the theory and
practice of deformable contours together with a large list of references to which which we
refer the interested reader.

In this note, we consider a method based on the elegant approaches of Caselles et al.
[10] and Malladi et al. [31]. In these papers, a level set curve evolution method is presented
to solve the problem. Our idea is simply to note that both these approaches are based on
Euclidean curve shortening evolution which in turn defines the gradient direction in which
the Euclidean perimeter is shrinking as fast as possible. (See Section 2.) We therefore
modify the active contour models of [10, 31] by multiplying the Euclidean arc-length by
a function tailored to the features of interest to which we want to flow, and then writing
down the resulting gradient evolution equations. Mathematically, this amounts to defining
a new Riemannian metric in the plane tailored to the given image, and then computing the
corresponding gradient flow. This leads to some new snake models which efficiently attract
the given active contour to the features of interest (which basically lie at the bottom of a
potential well). The method also allows us to naturally write down 3-D active surface models
as well.

We now summarize the contents of this paper. In Section 2, we discuss some of the
relevant facts from Euclidean curve shortening. In Section 3, we present our modification of
the Fuclidean arc-length and the resulting active contour models. In Section 4, we consider
how these models may be extended to surfaces, i.e., for deformable surface (or 3-D contour)
models. Next in Section 5, we consider the existence and uniqueness of the solutions of
our models from a viscosity point of view. Finally in Sections 6 and 7, we work out some
examples and draw our conclusions.

2 Euclidean Curve Shortening

The motivation for the equations underlying active geometric contours comes from Fuclidean
curve shortening. Therefore, in this section we will review the relevant curve evolution theory
in the plane RZ%.

Accordingly, for & the curvature, and N the inward unit normal, one considers families
of plane curves evolving according to the geometric heat equation

ocC

- = wN. (1)



This equation has a number of properties which make it very useful in image processing, and
in particular, the basis of a nonlinear scale-space for shape representation [1, 3, 24, 25, 32].

Indeed, (1) is the Euclidean curve shortening flow, in the sense that the Euclidean perime-
ter shrinks as quickly as possible when the curve evolves according to (1) [16, 17, 21]. Since,
we will need a similar argument for the snake model we discuss in the next section, let us
work out the details.

Let C = C(p,t) be a smooth family of closed curves where ¢ parametrizes the family and
p the given curve, say 0 < p < 1. (Note we assume that C'(0,¢) = C(1,t) and similarly for
the first derivatives.) Consider the length functional

o= [ 1% o

Then differentiating (taking the “first Variation”), and using integration by parts, we see
that
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(Note that we multiplied and divided by || %H in the latter integral.) But noticing now that
oC
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s (Euclidean) arc-length, and using the definition of curvature, the last integral is
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Thus the direction in which L() is decreasing most rapidly is when
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that is, we see

= kN

Thus (1) is precisely a gradient flow.

A much deeper fact is that simple closed curves converge to “round” points when evolving
according to (1) without developing singularities; see [17, 21]. This fact is one of the keys
for the geometric active contour models considered below.
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3 Active Snake Model

In two remarkable papers, Caselles et al. [10] and Malladi et al. [31] propose a snake model
based on the level set formulation of the Euclidean curve shortening equation. More precisely,
their model is

ov . V¥ .
a1 = Y@ IV v + ). @

Here the function ¢(z,y) depends on the given image and is used as a “stopping term.” For
example, the term ¢(z,y) may chosen to be small near an edge, and so acts to stop the
evolution when the contour gets close to an edge. In [10, 31], the term

1 .
¢i= 1+ ||VG, * 12 3)

is chosen, where [ is the (grey-scale) image and (G, is a Gaussian (smoothing filter) filter. The
function ¥(x,y,t) evolves in (2) according to the associated level set flow for planar curve
evolution in the normal direction with speed a function of curvature which was introduced
in the fundamental work of Osher-Sethian [37, 38, 44, 45, 46].

It is important to note that as we have seen above, the Euclidean curve shortening part
of this evolution, namely

ov \YA'4
— = |[|V¥||di 4

ot

is derived as a gradient flow for shrinking the perimeter as quickly as possible. As is explained
in [10], the constant inflation term v is added in (2) in order to keep the evolution moving in
the proper direction. Note that we are taking ¥ to be negative in the interior and positive
in the exterior of the zero level set.

Remarks 1.

1. In [31], the inflationary constant is considered both with a positive sign (inward evo-
lution) and with a negative sign (outward or expanding evolution). (Note the sign
convention we have taken for W above.) In the latter case, this can be referred to as
expanding “balloons.” For simplicity, unless stated otherwise explicitly, we will take
v > 0 (inward evolutions) in what follows below.

2. Instead of using a Gaussian to smooth the image one may of course use the a nonlinear
smoothing filter based on the curvature; see [4].



We would like to modify the model (2) in a manner suggested by the computation in
Section 2. Namely, we will change the ordinary Fuclidean arc-length function along a curve
C = (z(p),y(p))! with parameter p given by

ds = (;c;‘; + y;)1/2dp
to
dsy = (x;‘; + y;)1/2¢dp,
where ¢(x,y) is a positive differentiable function. We now essentially repeat the computation
made in Section 2, i.e., we want to compute the corresponding gradient flow for shortening

)= [ 1%, Nodp
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denote the unit tangent. Then taking the first variation of the modified length function Ly,
and using integration by parts just as above, we get that

length relative to the new metric ds,.
Accordingly set

Let

Ly (2) aC
Lty = [T 0N + (Vo TIT - Vo)ds,

which means that the dlrectlon in which the L, perimeter is shrinking as fast as possible is

given by
aC
ot

This is precisely the gradient flow corresponding to the miminization of the length functional
Ly. Since the tangential component of equation (5) may be dropped (see [15]), this may be

= oxN + (V¢ - T)T — V¢, (5)

simplified to

90
= N — V¢ (6)
The level set version of this is
a\I/ \YA'
VV||di V¢ -V, 7

One expects that this evolution should attract the contour very quickly to the feature which

lies at the bottom of the potential well described by the gradient flow (7). As in [10, 31], we

we may also add a constant inflation term, and so derive a modified model of (2) given by
ov
ot

VU
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Notice that for ¢ as in (3), V¢ will look like a doublet near an edge. Of course, one may
choose other candidates for ¢ in order to pick out other features.

We have implemented this snake model based on the algorithms of Osher-Sethian [37,
38, 44, 45, 46] and Malladi et al. [31]. We are also experimenting with some new code based
on [35].

Remarks 2.

1. Note that the metric ds, has the property that it becomes small where ¢ is small and
vice versa. Thus at such points lengths decrease and so one needs less “energy” in
order to move. Consequently, it seems that such a metric is natural for attracting the
deformable contour to an edge when ¢ has the form (3).

2. Kumar et al. [28] using a similar modification of the affine metric have developed an
affine invariant snake model as well. In this case, the role of the function ¢ is played
by an affine invariant edge detector developed in [28].

4 3-D Active Contour Models

In this section, we will discuss some possible geometric 3-D contour models based on surface
evolution ideas, by modifying the Euclidean area in this case by a function which depends
on the salient features which we wish to capture. In order to do this, we will need to set
up some notation. (For all the relevant concepts on the differential geometry of surfaces, we
refer the reader to [14].)

Let S :[0,1] x [0,1] — R® denote a compact embedded surface with (local) coordinates

(u,v). Let H denote the mean curvature and N the inward unit normal. We set

95 a5
Su = %, SU = %

Then the infinitesimal area on S is given by
dS = (|[SulPI1Sull* = (Sus Su)*)dudv.

Let ¢ : @ — R be a positive differentiable function defined on some open subset of R*. The
function ¢(x,y, z) will play the role of the “stopping” function ¢ given above in our snake
model (7, 8).

It is a beautiful classical fact that the gradient flow associated to the area functional for
surfaces (i.e., the direction in which area is shrinking most rapidly) is given by

05 ~



(See [9, 19, 33, 36, 52] and the references therein.) What we propose to do is to replace the
Euclidean area by a modified area depending on ¢ namely,

dS, = ¢dS.

For a family of surfaces (with parameter t), consider the ¢-area functional

) ://Sd5¢.

Once again, an integration by parts argument gives that

dA
—¢ = —// quN V¢ + tangential components)dsS,

which after dropping the tangential part becomes

8—5 = ¢HN — V. (10)

The level set version of (10) is given in terms of ¥(z,y,z,t) by

.. Vv
U, = ¢|| V|| div( &l

)+ V¢ VU, (11)
As before one may add a constant inflation term to the mean curvature to derive the model

VU
= o[ V¥ (div(

HW’HHVHW'W' (12)

In the context of image processing, the term ¢ depends on the given 3-D image and is
exactly analogous to the stopping term in (7, 8). It is important to note that there is a very
big difference between the 2-D and 3-D models discussed here. Indeed, the geometric heat
equation will shrink a simple closed curve to a round point without developing singularities,
even if the initial curve is nonconver. The geometric model (2) is based on this flow. For
surfaces, it is well-known that singularities may develop in the mean curvature flow (9)
non-convex smooth surfaces [20]. (The classical example is the dumbbell.) We should note
however that the mean curvature flow does indeed shrink smooth compact convex surfaces
to round “spherical” points; see [23].

We should add that because of these problems, several researchers have proposed re-
placing mean curvature flow by flows which depend on the Gaussian curvature k. Indeed,

define
k4 := max{k,0}.

Then Caselles and Sbert [11] have shown that the affine invariant flow

aa—f = sign(H)/fi/LlJ\? (13)



will (smoothly) shrink rotationally symmetric compact surfaces to ellipsoidal shaped points.
(This has been proven in [6] in the convex case. See also [2, 5].) Thus one could replace the
mean curvature part by sign(H)%;}I_/4 in (12). Another possibility would be to use /11_/2 as has
been proposed in [34]. See also [51]. (Note that Chow [12] has shown that convex surfaces
flowing under &'/? shrink to spherical points.) All these possible evolutions for 3-D contours

are now being explored.

5 Viscosity Analysis of the Models

In this section, we will outline the analysis of the nonlinear diffusion equation
W, = §(2)a (VOO + H(z, V), = (1, 2,), (14)

of which the models of Caselles et al. [10] and Malladi et al. [31], and the equations we study
here are special cases. Note that we use the summation convention systematically in (14) and
in what follows. This section is rather mathematically technical, and has been included to
rigorously justify the partial differential equations we have been using. We use the standard
notation from the theory of partial differential equations as may be found in [48].

Because of the form of @/, and the fact that ¢ may vanish, this problem requires some
care; in particular, the solutions are not expected to be sufficiently regular for the equation to
make sense, and we need to use a type of generalized solutions known as viscosity solutions,
defined below. The technicalities are very similar to those in [4], [10].

In what follows, the letter C' is used to denote various positive constants, the exact value
of which is not significant. We assume that H is the sum of —VW¥ . V¢ and an “inflation
term” v¢||[VW||. We also assume that ¢ and /¢ are Lipschitz continuous. While ¢ and H

are continuous in their arguments, a* is not:

i i PipP;
a’(p) = 6 — HPHJQ’ p=(p1,....pn)

Note that in the latter expression 6% denotes the Kronecker delta. We use periodic boundary
conditions in the spatial domain, and consider a Lipschitz continuous initial value Wq(x).
Our solutions will have bounded first derivatives, but will not have second-order derivatives
in general.

Viscosity interpretation of equation (14):

Since the solution is not twice differentiable, we must use a notion of weak solution. Since
the equation is not in the form of a divergence, the familiar integration by parts argument
used for shock waves does not help.

We use the notion of “viscosity solution” which has proved useful in this context.

We first define sub- and super-solutions. A viscosity solution will be by definition any
function which is both a sub-solution and a super-solution in the following sense.



A function f is said to be a sub-solution it f is defined and continuous for all x, and
0 <t < T for some T > 0, and is such that whenever ¢ is a twice continuously differentiable
function and (f — ¢g) attains a local maximum at a point (zg,%o) with o > 0, one has

ge(o,to) — d(wo)a” (Dg(wo,t0))dijg(xo, to) — H(wo, Vg(wo,10)) < 0,

if Vg(xo,t9) # 0. If Vg(zo,%0) = 0, we require instead

gt(fﬂouto) - ¢(170) lim sup aij(P)aijg(J?o,to) - H(iﬂm VQ(CEOJO)) < 0;
p—0
this latter form being made necessary by the fact the % is not continuous for p = 0.
A super-solution is similarly defined, by requiring that (f — ¢g) have a local minimum,
replacing lim sup by liminf, and reversing the direction of all inequalities. As already men-
tioned, a viscosity solution is a continuous function which is both a sub- and a super-solution.

We can now state the following result:

Theorem 1 There is a unique viscosity solution in L*°(0,T; W=(R")).

Proof. The construction of the solution proceeds by solving an approximate uniformly
parabolic problem, and by passing to the limit. The uniqueness is more delicate and requires
a lemma from Crandall-Ishii [13]; the outcome will be an estimate for the difference of two
solutions with different initial data.

STEP 1: (Gradient bounds).

We consider here the case when the nonlinearities are all smooth. These considerations will

apply to a regularized version of our equation. In the following, subscripts denote derivatives.
Let W be a solution. Differentiation of the equation gives

LU, U, + Cl”q}ijk]

3 — Uy — o =0,

Oy, — Qbkaijq’ij —¢ [ Il Ok

We multiply this equation by 2¥; and sum over & to find:

M; — ¢ laljaijM + aLle\I}z]alM] + 8—li = —qua”\I/ik\Iljk + 28k¢ [CL”\IJZ']'\I/]C + HY, ,

where M = |V¥||?.

We now choose our approximation:

PR T
[p[? + &

We also replace | VU] by /||[V¥||? + &2 in the inflation term.
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Since we assumed that /¢ is Lipschitz, we have

0kd] < C1/6.

On the other hand, reducing the symmetric semi-definite matrix (a?) to its principal axes,
it is easy to see that

(aij\pij)Q S C(a”\I/Z;C\Il]k)

for some constant C'. Combining these two estimates, we find that Since H < C||VV¥]||, we
find, using the maximum principle for uniformly parabolic equations, that

IV @] (8) < e (V@] 2 (0) + 7).

A global Lipschitz estimate in space for solutions of the approximate equation follows.

STEP 2: (Convergence of approximations).

The gradient bound in space implies in fact a Holder estimate with exponent 1/2 in time.
We may therefore apply Ascoli’s theorem to conclude that a solution exists. To prove its
uniquness will require more sophisticated tools from the theory of viscosity solutions.

STEP 3: (Comparison principle and uniqueness).
Let two solutions ¥y and Wy be given (both in the viscosity sense). We define

a(z,y,t) = Ui (t, z) — Uy(y, 1) — (4e) 7|z —y|I* = M,

where A is an arbitrary positive constant. We claim that on 0 < ¢ < 7', this function is
maximum for ¢ = 0. Indeed, otherwise, the maximum would be attained at some point
(20, Yo,t0) with to > 0. By a lemma of Crandall and Ishii [13], for any positive u, there are
real numbers a and b, and symmetric matrices X and Y such that

a—b= 2\
and
X 0 9
where
B —-B
=5 5 )
with

Bij = &7 |zo — yol*6ij + (2/€) (w0 — yo)i(xo — yo);-
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In addition, one has

a — ¢(zo)a" (™" |20 — yoll*(zo — y0)) Xij — H(e™ |20 — yol (0 — y0)) <0
and

b— ¢(yo)a” (e |20 — yoll *(z0 — ¥0))Yi; — H(yo,e™ |20 — yol*(z0 — y0)) > 0.

If xo = yo, these relations have to be interpreted in terms of a suitable limit, but this case
leads to @ < 0 < b, which contradicts the assumption A > 0. So zg # yo.
Next, choose p = ¢||xg — yo||~? (which is now possible), and conclude that

(33 )
0 =Y /) —«<\=-D D )’
where

Di; = |lzo — yol|*6i; + 5(x0 — yo)i(zo — yo);-

Multiplying this inequality by G, where

G:( ¢(z0) B ¢<xo>¢<y0>3)
o(x0)o(yo) B dy)B )

and taking the trace, we obtain after some manipulation, using the fact that a* is bounded,
the definition of a viscosity solution, and the fact that \/@ is Lipschitz, an inequality

A < Collzo — yoll*/e.

Using the Lipschitz condition on the functions Wy and W5, and the property «a(to, zo, yo) >
a(to, Yo, yo), we derive a bound

A< Ce PLAB,
Taking
P = 6K
and
A =206 K L*?,

with K = supjg 775 pe [¥1 — Waf, we find that the bound on A leads to an absurdity. We
therefore can conclude that t; = 0.

12



We fix A and ¢ as before. Using ¢y = 0, we find that

3
sup |0y — Wy < sup |¥y — Uy(0) + Z6K LY3 + 2C,6 K LT
[0,T]x R" R» 4

Letting 6 — 0, we finally obtain

sup Wy — Wy| < sup |W; — Wy[(0),
[0,T]x R" Rn

which proves uniqueness and stability with respect to initial conditions. O

We can conclude from Theorem 1 that slight differences between images will not become
artificially enhanced by our active contour methods.

6 Experiments

We will now give a few numerical experiments to illustrate our methods. Full details about
the numerics will appear elsewhere as well as applications to more realistic MRI and ul-
trasound medical imagery. The implementations we have used are based on the level set
evolution methods developed by Osher-Sethian [37, 38, 44, 45, 46], and the techniques in
[31].

The equations described in this paper have been coded for the case of active contours on
two-dimensional images. The code is still in an early form and work is in progress to improve
various aspects of it. We will present here some preliminary experimental results obtained
by running this code on both binary (i.e., high contrast images) and real images. At this
stage of the work the images have been selected purely for the purposes of illustration. The
images are sampled at discrete pixel locations as usual.

6.1 Numerical Aspects of Level Set Evolution

For 2D active contours, the evolution equation as derived in Section 3 is equation (8),

ov . VvV

)+v)+ Ve VU,

vy
IVl

U(z,y,t). This equation describes a propagating front, and we are interested in its propaga-
tion in the plane of an image. It is known that a propagating front may not remain smooth
at all times (for example, it may cross itself). For evolution beyond the discontinuities the
solutions are required to satisfy an entropy condition to ensure that the front remains physi-

where v is a constant inflation force and x := div( ) is the curvature of the level sets of

cally meaningful at all times. The discrete approximations to the spatial derivatives are thus
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derived from the entropy condition. Osher-Sethian [38] have given such entropy satisfying
schemes and these have been used successfully in shape modelling [31]. Following [31] we
can regard a decomposition of our speed function as,

. Vv
F(k) = v+ div( VU

) =v+k&, (15)

where v is regarded as the constant passive advection term and the curvature « is the diffusive
term of the speed function. The inflation part in equation (8), i.e., v¢||VV|| is approximated
using upwind schemes. The diffusive part, i.e., k¢||V¥|| is approximated using usual central
differences. For the inner product term V¢ - VU, we use a certain thresholding smoothing
method for the “doublet” V¢ which will be described in full detail in the journal version of
this paper.

As discussed in [31], an important aspect of the propagation as given in equation (8)
is that the image-based terms only have meaning on the zero-level set. Thus these terms
must be extended to all the level sets to get a globally defined extension. To do this, we
have basically followed the methods reported in [31] to which we refer the reader for all the
details.

There are also stability implications of the choice of the step sizes, and in [31] it is noted
that for the evolution equation used in that work the requirement is At = O(Az?). Therefore
if small spatial step sizes are used, it forces a small time step and the resulting evolution
can be very slow. One way to speed up the evolution is to use a larger inflationary force and
move the front faster (recall the advection term causes a constant contraction/expansion of
the front). However, in our experience with using the approach in [31] this results in large
motion of the front causing “overshooting” of the edge of the feature of interest in the image.
This problem is resolved by the evolution in equation (8). V¢ has a behavior similar to a
doublet near an edge. Thus, it exerts a “stronger” stopping effect and arrests the evolution
of the contour close to an edge. In our experiments we have observed that this arresting
behavior of the V¢ - VWU term allows use of large inflationary forces, resulting in features
being extracted in relatively fewer time steps. In fact, the behavior of the inner product
term is much more interesting, but we leave that for discussion in the full journal version of
this note.

6.2 Image Feature Extraction Results

Here we sketch a few experimental results obtained using the feature extraction algorithm
developed in this paper based on equation (8). First we present the result of feature extrac-
tion on a synthetic high contrast image consisting of three shapes. The image is a 150 x 150
binary image with intensity values 0 or 255. The entire image is used in the computations.
Figure 1(a) shows the image with the initial contour. The time step used was At = 0.000001

14



and Figures 1(b) through 1(d) show the evolving contour at intermediate time steps. Figure
1(d) corresponds to 400 iterations.

In Figure 2, we present a convoluted shape to be extracted using an active contour. The
image is a 150 x 150 binary image with binary intensity values as before. The entire image
was used in the computations. Figure 2(a) shows the initial contour. Figures 2(b) through
2(f) show the evolving contour at 200, 400, 600, 800, and 1000 iterations. The shape of
the feature has been completely captured by 1000 iterations. Again the time step used was
At = 0.000001.

Finally, we present the result of evolution of an active contour in a real image. The aim
of this experiment was to demonstrate the ability of the active contour in capturing the finer
features in real images and also the abililty to capture more than one feature. The image is
a 256 x 240 gray-scale image of a Rubik’s cube placed on a circular table with a pattern on
the table’s side. An initial contour is placed with the aim of capturing the cube, the edge of
the table and also the patterns on the side of the table. Figure 4(a) shows the intial contour.
Figures 4(b) through 4(d) show the evolving contour after 100, 200, and 300 iterations. The
time step used was At = 0.001. After 200 iterations the contour has captured the Rubik’s
cube and the table’s edge. At 300 iterations most of the patterns we wished to capture on
the table’s side have been obtained. Indeed, the active contour finds the edge of the table
from both the inside and the outside as well as the Rubik’s cube itself. Notice that the snake
also captures the shadow of the cube.

7 Conclusions

In this note, we have considered possible modifications of the active contour models based on
those of [10, 31]. The basic concept is that we consider snakes in the framework of gradient
flows relative to modified arc-length functionals. The active contour therefore flows to the
desired feature regarded as lying at the bottom of the corresponding potential energy well.
Possible 3-D surface models were also proposed using these energy ideas. We also presented a
viscosity justification of our models as well as some illustrative numerical examples. Finally,
this type of method may be extended to a number of different metrics, e.g., the affine metric

in [28].
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.

Figure 1: Feature extraction in a synthetic image. Left to right, top to bottom: (a) Initial

contour. (b),(c),and (d) contour after 200, 300, and 400 iterations. At = 0.000001.
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Figure 2: Feature extraction in a synthetic image. Left to right, top to bottom: (a) Initial
contour. (b),(c),(d),(e),and (f) contour after 200, 400, 600, 800 and 1000 iterations. At =
0.000001.
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Figure 3: Rubik’s Cube on a turntable.

Figure 4: Feature extraction in a real image. Left to right, top to bottom: (a) Initial contour.

(b),(c),and (d) contour after 100, 200, and 300 iterations. At = 0.001.
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