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Abstract

In this paper, we employ the new geometric active contour models formulated in
[20, 21] for edge detection and segmentation of MRI and ultrasound medical imagery.
Our method is based on defining feature-based metrics on a given image which in turn
leads to a novel snake paradigm in which the feature of interest may be considered to
lie at the bottom of a potential well. Thus the snake is attracted very naturally and
efficiently to the desired feature.

Key words: Active vision, active contours, snakes, edge detection, segmentation, gra-
dient flows.



1 Introduction

The technique of snakes or active contours has become quite popular for a variety of appli-
cations in the past few years. This methodology is based upon the utilization of deformable
contours which conform to various object shapes and motions. Snakes have been used for
edge and curve detection, segmentation, shape modelling, and visual tracking. The tech-
nique has also been widely applied for various applications in medical imaging. For example,
snakes have been employed for the segmentation of myocardial heart boundaries as a pre-
requisite from which such vital information such as ejection-fraction ratio, heart output, and
ventricular volume ratio can be computed. See [17, 35] and the references therein. In this
paper, we will apply a new snake paradigm which the authors have developed in [20, 21]
for edge detection and segmentation of various kinds of medical imagery including MRI and
ultrasound.

In the classical theory of snakes, one considers energy minimization methods where con-
trolled continuity splines are allowed to move under the influence of external image dependent
forces, internal forces, and certain contraints set by the user. See [19, 44, 6]. As is well-known
there may be a number of problems associated with this approach such as initializations,
existence of multiple minima, and the selection of the elasticity parameters.

In this work, we will apply a new active contour method which was developed in [20, 21].
Our approach employs ideas from Euclidean curve shortening evolution which defines the
gradient direction in which the Euclidean perimeter is shrinking as fast as possible. (See
Section 3.) We therefore note that we can derive new active contour models by multiplying
the Euclidean arc-length by a function tailored to the features of interest to which we want
to flow, and then writing down the resulting gradient evolution equations. Mathematically,
this amounts to defining a new Riemannian metric in the plane tailored to the given image,
and then computing the corresponding gradient flow. This leads to some new snake models
which efficiently attract the given active contour to the features of interest (which basically
lie at the bottom of a potential well). The method also allows us to naturally write down
3-D active surface models for three dimensional image segmentation as well which we do in
[20, 21]. One can completely justify this method using viscosity theory which is done as well
in [20, 21].

The contents of this paper may be summarized as follows. In Section 2, we briefly sketch
some background from the classical theory of snakes. In Section 3, we give the relevant from
curve evolution theory, which allows us to formulate our new active contour paradigm in
Section 4. In Section 5, we indicate how these methods may be extended for volumetric
segmentation based on mean curvature flow. Finally in Section 6, we apply our methods to
some specific medical images, and then we draw our conclusions in Section 7.



2 Background on Snakes

In this section, we briefly review the energy based optimization approach to deformable
contours as discussed in [19, 44, 10, 6]. For complete details, we refer the interested reader
to the collection of papers in [6], especially [43].

Let C(p) = (z(p),y(p))’ be a closed contour in R* where 0 < p < 1. (Note that the
superscript 1" denotes transpose.) We now define an energy functional on the set of such
contours (“snakes”), £(C'). Following standard practice, we take £(C') to be of the form

E(C) = &Em(C) +P(C),

where &;,,; is the internal deformation energy and P is an external potential energy which
depends on the image. (Other external constraint forces may be added.) Perhaps the most
common choice for the internal energy is the quadratic functional

1
Ent(C) = [ wiIC I+ wa(p) I Conlld.

where wy and w, control the “tension” and “rigidity” of the snake, respectively. (Note that
the subscripts denote derivatives with respect to p in the latter expression, and || - || denotes
the standard Euclidean norm.)

Let I : R? — R be the given grey-scale image. Then the external potential energy
depends on the image [(x,y). It can be defined by

P(C)= [ PO,

where P(z,y) is a scalar potential function defined on the image plane. The local minima
of P attract the snake. For example, we may choose P to be

P(z,y) = ¢|VG, * I(z,y)],

for a suitably chosen constant ¢, in which case the snake will be attracted to intensity edges.
Here GG, denotes a Gaussian smoothing filter of standard deviation o.

One also typically considers dynamic time-varying models in which C(p) becomes a func-
tion of time as well; see [43]. In this case, one defines a kinetic energy and the corresponding
Lagrangian (the difference between the kinetic energy and the energy £ defined above). Ap-
plying the principle of least action, one derives the corresponding Lagrange equation which
one tries to solve numerically employing various approximations.

In the approach to be given below in Section 4, we will also use an energy method.
However, in contrast to more ad hoc approaches, we believe that our energy is intrinsic to
the given geometry of the problem, as is the correspondent gradient flow.



3 Curve Shortening

The mathematical foundation of our new active contour model is based on Fuclidean curve
shortening. Consequently, we will now review the relevant curve evolution theory in the
plane R?.

Accordingly, for k the curvature, and N the inward unit normal, one considers families
of plane curves evolving according to the geometric heat equation

aC -

This equation has a number of properties which make it very useful in image processing, and
in particular, the basis of a nonlinear scale-space for shape representation [1, 3, 22, 23].

In particular, (1) is the Euclidean curve shortening flow, in the sense that the Euclidean
perimeter shrinks as quickly as possible when the curve evolves according to (1) [14, 16].
Since, we will need a similar argument for the snake model we discuss in the next section,
let us work out the details.

Let C = C(p,t) be a smooth family of closed curves where ¢ parametrizes the family and
p the given curve, say 0 < p < 1. (Note we assume that C'(0,¢) = C(1,t) and similarly for
the first derivatives.) Consider the length functional

= [ 1% o

Then differentiating (taking the “first variation”), and using integration by parts, we see
that

(2, 22)
/ dp’ 9pd
YO =k T
oC
=[G || 15
o Cor Tegow 1227 o

(Note that we multiplied and divided by H%H in the latter integral.) But observing now
that

ocC
—||dp =: d
15 hdp = ds
s (Euclidean) arc-length, and using the definition of curvature, the last integral is

_/t)aC _)ds

that is, we see



Thus the direction in which L(%) is decreasing most rapidly is when

aC —3,
— = rN.
ot "

Thus (1) is precisely a gradient flow.
A much deeper fact is that simple closed curves converge to “round” points when evolving
according to (1) without developing singularities; see [14, 16]. This fact is one of the keys

for the geometric active contour models considered below.

4 New Active Contour Paradigm

In some elegant work, Caselles et al. [7] and Malladi et al. [27] formulate snake models
based on the level set formulation of the Euclidean curve shortening equation. Indeed, their
model is

ov i \A' ‘
o = ol )V (div (W) +). @)

Here the function ¢(z,y) depends on the given image and is used as a “stopping term.” For
example, the term ¢(z,y) may chosen to be small near an edge, and so acts to stop the
evolution when the contour gets close to an edge. In [7, 27|, the term

6= o
L || VG, I

(3)

is chosen, where [ is the (grey-scale) image and (7, is a Gaussian (smoothing) filter. (In [7],

n =1, and in [27], n = 2.) The function ¥(z,y,t) evolves in (2) according to the associated

level set flow for planar curve evolution in the normal direction with speed a function of

curvature which was introduced in the fundamental work of Osher-Sethian [30, 31, 37, 38, 39].
As we have just seen, the Euclidean curve shortening part of this evolution, namely

ov \A'
= |V div [ ——— 4
o ~ MY ”(HWH) W

may be derived as a gradient flow for shrinking the perimeter as quickly as possible using
only local information. As is explained in [7], the constant inflation term v is added in (2)
in order to keep the evolution moving in the proper direction. Note that we are taking ¥ to
be negative in the interior and positive in the exterior of the zero level set contour.

Remarks 1.



1. In [27], the inflationary constant is considered both with a positive sign (inward evo-
lution of the evolution of the contour in the direction of decreasing ¥) and with a
negative sign (outward or expanding evolution). (Note the sign convention we have
taken for W above.) In the latter case, this can be referred to as expanding “balloons”

or “bubbles” [10, 42].

2. Instead of using a Gaussian to smooth the image one may of course use the a nonlinear
smoothing filter based on the curvature; see [4].

3. There are of course many possibilities for a stopping term besides intensity: texture,
optical flow, stereo disparity, etc.

We would like to modify the model (2) in a manner suggested by the computation in
Section 3. We accomplish this, by changing the ordinary Euclidean arc-length function along
a curve C = (z(p),y(p))’ with parameter p given by

ds = ||Cylldp = (22 + y2)'/*dp

to

dsy = ¢ds = (x} + y;)"/*¢dp,
where ¢(x,y) is a positive differentiable function. We now essentially repeat the computation
made in Section 3, i.e., we want to compute the corresponding gradient flow for shortening

)= [ 1%, lodp

- 0C  0C
T=3 N5
P

denote the unit tangent. Then taking the first variation of the modified length function Ly,

length relative to the new metric ds,.
Accordingly set

Let

and using integration by parts just as above, we get that

24y = [0 6k 4 (Vo TIT - Vo)ds

which means that the direction in which the Ly perimeter is shrinking as fast as possible is

given by
aa—f — N + (Vo T)T - Vo, (5)



This is precisely the gradient flow corresponding to the minimization of the length functional
Ly. Since the tangential component of equation (5) may be dropped (see [13]), this may be
simplified to

ocC

The level set version of this is
ov VA
— = ¢||VVY||div | —— V¢ -V, 7
o = oIVl (o) + v U

One expects that this evolution should attract the contour very quickly to the feature which
lies at the bottom of the potential well described by the gradient flow (7). As in [7, 27], we
we may also add a constant inflation term, and so derive a modified model of (2) given by
ov \A'
rTie 6|V ||(div (W) +v)+ V¢ -VU. (8)
Notice that for ¢ as in (3), V¢ will look like a doublet near an edge. Of course, one may
choose other candidates for ¢ in order to pick out other features. The point is that the
metric ds, has the property that it becomes small where ¢ is small and vice versa. Thus at
such points lengths decrease and so one needs less “energy” in order to move. Consequently,
it seems that such a metric is natural for attracting the deformable contour to an edge when
¢ has the form (3).
We have implemented this snake model based on the algorithms of Osher-Sethian [30,
31, 37, 38, 39] and Malladi et al. [27].

5 3-D Active Contour Models

In this section, we will show how the 2D active contour model which we have presented
may be easily extended to the 3D case. Here we use the corresponding surface evolution
equations, gotten by modifying the Fuclidean area by a function which depends on the salient
features which we wish to capture. For all the relevant concepts on the differential geometry
of surfaces, we refer the reader to [11].

Let S :[0,1] x [0,1] — R® denote a compact embedded surface with (local) coordinates
(u,v). Let H denote the mean curvature and N the inward unit normal. We set

95 95
Su = %, SU = %

Then the infinitesimal area on S is given by

dS = (|| Su)l?|1Su]? = (S, S)H)Y 2 dudw.
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Let ¢ : @ — R be a positive differentiable function defined on some open subset of R*. The
function ¢(x,y, z) will play the role of the “stopping” function ¢ given above in our snake
model (7, 8).

It is a beautiful classical fact that the gradient flow associated to the area functional for
surfaces (i.e., the direction in which area is shrinking most rapidly) is given by

S -

(See [45] and the references therein.) What we propose to do is to replace the Euclidean
area by a modified area depending on ¢ namely,

dS, = ¢dS.

For a family of surfaces (with parameter t), consider the ¢-area functional

e

Once again, an integration by parts argument gives that

% _// 7ngJ\/ V¢ + tangential components)dS,

which after dropping the tangential part becomes

8—5 — HN — V. (10)

The level set version of (10) is given in terms of ¥(x,y,z,t) by

VU
V]l

U, = ¢|| V| div( )+ Ve V. (11)

As before one may add a constant inflation term to the mean curvature to derive the model

VU
V]l

U, = ¢|| V| (div( J+v)+ Ve VU, (12)

In the context of image processing, the term ¢ depends on the given 3-D image and is
exactly analogous to the stopping term in (7, 8). It is important to note that there is a very
big difference between the 2-D and 3-D models discussed here. Indeed, the geometric heat
equation will shrink a simple closed curve to a round point without developing singularities,
even if the initial curve is nonconvex. The geometric model (2) is based on this flow. For
surfaces, it is well-known that singularities may develop in the mean curvature flow (9) non-
convex smooth surfaces. (The classical example is the dumbbell.) We should note however

8



that the mean curvature flow does indeed shrink smooth compact convex surfaces to round
“spherical” points; see [18].

We should add that because of these problems, several researchers have proposed re-
placing mean curvature flow by flows which depend on the Gaussian curvature . Indeed,

define

k4 := max{k,0}.
Then Caselles and Sbert [8] have shown that the affine invariant flow

aa—f = sign(H)x}'N (13)

will (smoothly) shrink rotationally symmetric compact surfaces to ellipsoidal shaped points.
Thus one could replace the mean curvature part by sign(H)/f}I_/4 in (12). Another possibility
would be to use /4;1/2 as has been proposed in [28]. See also [42]. (Note that Chow [9] has

shown that convex surfaces flowing under x'/2 shrink to spherical points.) All these possible
evolutions for 3-D contours are now being explored.

6 Applications to Medical Imagery

We will now apply the active contour model derived above to some medical imagery. The
implementations we have used are based on the level set evolution methods developed by
Osher-Sethian [30, 31, 37, 38, 39], and the techniques in [27]. The equations described in

this paper have been coded for the case of active contours on two-dimensional images.

6.1 Numerical Aspects of Level Set Evolution

For 2D active contours, the evolution equation as derived in Section 4 is equation (8),

ov

o _ ¢nwu<div( v

v RvA
5 ||V\IIH)+V)+V¢ \VAVR

where v is a constant inflation force and & := div(%) is the curvature of the level sets of

U(z,y,t). This equation describes a propagating front, and we are interested in its propaga-
tion in the plane of an image. It is known that a propagating front may not remain smooth
at all times (for example, it may cross itself). For evolution beyond the discontinuities the
solutions are required to satisfy an entropy condition to ensure that the front remains physi-
cally meaningful at all times. The discrete approximations to the spatial derivatives are thus
derived from the entropy condition. Osher-Sethian [31] have given such entropy satisfying



schemes and these have been used successfully in shape modelling [27]. As in[27], we can
regard a decomposition of our speed function as,

: A
F(/f)-l/—l—le(qulH)—l/—l—ﬁ:, (14)
where v is regarded as the constant passive advection term and the curvature « is the diffusive
term of the speed function. The inflation part in equation (8), i.e., v¢||VV|| is approximated
using upwind schemes. The diffusive part, i.e., k¢||V¥|| is approximated using usual central
differences.

There are also stability implications of the choice of the step sizes, and in [27] it is noted
that for the evolution equation used in that work the requirement is At = O(Az?). Therefore
if small spatial step sizes are used, it forces a small time step and the resulting evolution
can be very slow. One way to speed up the evolution is to use a larger inflationary force and
move the front faster (recall the advection term causes a constant contraction/expansion of
the front). However, in our experience with using the approach in [27] this results in large
motion of the front causing “overshooting” of the edge of the feature of interest in the image,
because ¢ might not be rigorously zero on the desired contour. This problem is resolved by
the evolution in equation (8). V¢ has a behavior similar to a doublet near an edge. Thus, it
exerts a “stronger” stopping effect and arrests the evolution of the contour close to an edge.
In our experiments we have observed that this arresting behavior of the V¢ - VW term allows
use of large inflationary forces, resulting in features being extracted in relatively fewer time
steps.

6.2 Contour Extraction Results

We now describe a number of 2D images from which we extracted the contours using the
snake/bubble technique which we have previously described. In Figure 1, using an initial
bubble, we find the boundary of the left ventricle in an MRI heart image. In Figure 2, the
snake (inward) evolution is utilized for the same purpose in another MRI image. Figure 3,
illusrates bubbles capturing the edge of a cyst in a breast ultrasound image. Finally, in
Figure 4, we indicate the finding of a complicated contour in an MRI brain image again
using expanding bubbles.

7 Conclusions

In this paper, we have applied the novel active contour model formulated in [20, 21] to a
number of medical images. The power of this technique in extracting features from even
rather noisy medical images has been demonstrated. Our approach is geometric based on
image-dependent Riemannian metrics and the associated gradient flows for active contour
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models. We are now working on fast, reliable implementations of the 3D mean curvature

equations for the volumetric segmentation of medical images.
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Figure 1: Contour extraction from MRI heart image via bubble
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(b)

Figure 2: Contour extraction from MRI heart image via snake
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Figure 3: Contour extraction of cyst from ultrasound breast image via bubbles
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(o)

Figure 4: Contour extraction from MRI brain image via bubble
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