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Abstract. Under periodic boundary conditions, a one-dimensional dispersive medium
driven by a Lamb oscillator exhibits a smooth response when the dispersion relation is
asymptotically linear or superlinear at large wave numbers, but unusual fractal solution
profiles emerge when the dispersion relation is asymptotically sublinear. Strikingly, this is
exactly the opposite of the superlinear asymptotic regime required for fractalization and
dispersive quantization, also known as the Talbot effect, of the unforced medium induced
by discontinuous initial conditions.

1. Introduction.

The original Lamb system was introduced by Horace Lamb in 1900, [15], as a simple
model for the phenomenon of radiation damping experienced by a vibrating body in an
energy conducting medium. Examples include vibrations of an elastic sphere in a gaseous
medium, electrical oscillations of a spherical conductor, a dielectric sphere with large in-
ductance, relativistic radiation of energy from a concentrated mass via gravity waves, and
quantum resonance of nuclei. To understand this phenomenon, Lamb proposed a simpler
one-dimensional model consisting of an oscillatory point mass–spring system directly cou-
pled to an infinite string modeled by the usual second order wave equation. The oscillator
transfers energy to the string, generating waves that propagate outwards at the intrinsic
wave speed. Meanwhile, the string tension induces a damping force on the oscillator, with
the effect that the propagating waves are of progressively smaller and smaller amplitudes.
It is worth pointing out a potential source of confusion: Lamb refers to the point mass as
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a “nucleus”, although he clearly does not have atomic nuclei in mind as these were not
discovered by Rutherford until 1911.

More recently, Hagerty, Bloch, and Weinstein, [13], investigated mechanical gyro-
scopic systems, also known as Chetaev systems, such as the spherical pendulum and rigid
bodies with internal rotors, that are coupled to both the classical non-dispersive wave
equation and a dispersive equation of Klein–Gordon form. In such systems, the gyroscopic
Lamb oscillator can even induce instabilities through the effects of Rayleigh dissipation.
However, as we will see, their analysis does not cover the full range of phenomena exhibited
by dispersive Lamb models.

This paper analyzes the both the full line and periodic Lamb problems when the
oscillatory mass is coupled to more general one-dimensional dispersive media. Our mo-
tivation is to see whether such systems exhibit the remarkable phenomenon of dispersive
quantization, [16], also known as the Talbot effect, [1], in honor of a striking 1836 optical
experiment of William Henry Fox Talbot, [21]. Fractalization and quantization effects
arise in both linear and nonlinear unforced dispersive wave equations on (at least) periodic
domains. In the linear regime, a solution to the periodic initial-boundary value problem
produced by rough initial data, e.g., a step function, is “quantized” as a discontinuous but
piecewise constant profile or, more generally, piecewise smooth or even piecewise fractal,
at times which are rational multiples of Ln/πn−1, where L is the length of the interval,
but exhibits a continuous but non-differentiable fractal profile at all other times. (An
interesting question is whether such fractal profiles enjoy self-similarity properties similar
to the Riemann and Weierstrass non-differentiable functions, as explored in [6]. However,
the Fourier series used to construct the latter are quite different in character, and so the
problem remains open and challenging.)

Dispersive quantization relies on the slow, conditional convergence of the Fourier se-
ries solutions, and requires the dispersion relation to be asymptotically polynomial at
large wave number. The key references include the 1990’s discovery of Michael Berry and
collaborators, [1], in the context of optics and quantum mechanics, and the subsequent
analytical work of Oskolkov, [18]. In particular, this effect underlies the experimentally ob-
served phenomenon of quantum revival, in which an electron that is initially concentrated
at a single location of its orbital shell is, at rational times, re-concentrated at a finite num-
ber of orbital locations. The subsequent rediscovery by the first author, [2, 16], showed
that the phenomenon appears in a range of linear dispersive partial differential equations,
while other models arising in fluid mechanics, plasma dynamics, elasticity, DNA dynamics,
etc. exhibit a fascinating range of as yet poorly understood behaviors, whose qualitative
features are tied to the large wave number asymptotics of the dispersion relation. These
studies were then extended, through careful numerical simulations, to nonlinear disper-
sive equations, including both integrable models, such as the cubic nonlinear Schrödinger,
Korteweg–deVries, and modified Korteweg–deVries equations, as well as non-integrable
generalizations with higher degree nonlinearities. Some of these numerical observations
were subsequently rigorously confirmed in papers of Chousionis, Erdoğan, and Tzirakis,
[3, 9, 10], and, further, in the very recent paper by Erdoğan and Shakan, [8], which ex-
tends the analysis to non-polynomial dispersion relations, but much more work remains to
be completed, including extensions to other types of boundary conditions and dispersive
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wave models in higher space dimensions.

In the original case of a Lamb oscillator coupled to the wave equation, but now
on a periodic domain, the solution is readily seen to remain piecewise smooth, the only
derivative discontinuities occurring at the wave front and the location of the oscillator.
Extending the analysis to a higher order linearly elastic string model reveals that the
solution continues to exhibit a piecewise smooth profile. Indeed, smoothness will hold for
both bidirectional and unidirectional dispersive linear partial differential equations with
linear or super-linear dispersion asymptotics at large wave numbers, including the Klein–
Gordon model considered in [13]. However, the periodic Lamb problem with dispersion

asymptotics of the order O(
√

| k |) as the wave number k → ∞ does exhibit a fractal
solution profile. Furthermore, recent results of Erdoğan and Shakan, [8] can be adapted
to the present context, to rigorously establish convergence of the formal Fourier series
solution, at each fixed time t > 0, to a fractal profile whose maximal fractal dimension
lies between 5

4
and 7

4
. On the other hand, when the dispersion relation is asymptotically

constant, the resulting highly oscillatory plots of the partial sums suggest weak convergence
of the Fourier series to some kind of distributional solution.

Our present analysis of the Lamb systems relies on classical Fourier transform and
Fourier series techniques. One can envision applying the more general and powerful Unified
Transform Method (UTM), due to Fokas and collaborators, [11, 12]. However, the space-
dependent coefficient places the system outside the class of equations currently solvable
by the UTM. A second possible way to approach such problems is to view Lamb’s original
formulation as an interface problem, as in [5, 20], and combine this with recent work
applying the UTM to systems of equations, [4]. However, the Lamb interface condition is
more complicated than those considered to date, and extending current work on interface
problems remains an interesting challenge.

Remark : The paper includes still shots of a variety of solutions at selected times.
Mathematica code for generating the movies, which are even more enlightening, can be
found on the first author’s web site:

http://www.math.umn.edu/∼olver/lamb

2. The Bidirectional Lamb Model.

The original Lamb model, [15], consists of an oscillating point mass that is connected
to an infinite elastic string and constrained to move in the transverse direction. With the
system starting at rest, the mass is subject to a sudden blow, and the continuous medium
serves to dampen the ensuing vibrations of the mass. In the underdamped regime, the
vibrating mass spawns an oscillatory traveling wave which propagates along the string at
its innate wave speed, while the string tension acts as a damping force on the oscillating
mass, which vibrates at an exponentially decreasing amplitude that in turn produces a
similarly decaying propagating wave profile.

Thus, in the small amplitude regime, the string displacement u(t, x) satisfies the usual
bidirectional wave equation

utt = c2uxx, x 6= 0, (2.1)
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away from the fixed location of the mass, which we take to be at the origin x = 0. Here
c =

√
T/ρ is the wave speed, with ρ representing the string density and T its tension,

which are both assumed constant for simplicity. As in [15], force balance on the mass
displacement h(t) = u(t, 0) at the origin yields

M(h′′ + σ2h) = −T
[
ux

]
0
, (2.2)

where M is the mass and σ its uncoupled oscillatory frequency. The forcing term on the
right hand side is the negative of the product of the string tension T and the jump in the
spatial derivative ux at the location of the mass. Warning : Lamb appears to include a
factor of 2 in his formulation of (2.2), but he is using the fact that u is even in x and hence
its jump at the origin is twice its limiting value.

The first observation is that the Lamb model can be rewritten as a forced wave equa-
tion of the form

utt = c2uxx − 2ch′(t) δ(x), (2.3)

where δ(x) is the usual Dirac delta function and h(t) satisfies the damped oscillator equa-
tion

h′′ + 2βh′ + σ2h = 0, h(0) = 0, (2.4)

whose damping coefficient is

β =
T

cM
=

√
ρT

M
.

To prove this, just integrate (2.3) from x = −ε to x = +ε and let ε → 0.

According to [17; Theorem 2.18], the solution to (2.3) with zero initial conditions

u(0, x) = ut(0, x) = 0, (2.5)

(i.e., at rest initially) is

u(t, x) = −
∫ t

0

∫ x+c (t−s)

x−c (t−s)

h′(s) δ(y)dy ds, t > 0. (2.6)

Integrating twice, we deduce that

u(t, x) = − h̃
(
ct− | x |

)
, t > 0, (2.7)

where

h̃(t) =

{
h(t), t > 0,

0 t < 0.
(2.8)

On the other hand, the rescaled function f(t) = h(t/c) satisfies Lamb’s oscillator
equation, cf. [15; equation (8)]:

f ′′ +
1

b
f ′ +

σ2

c2
f = 0, f(0) = 0, (2.9)

where b = c/(2β). Thus,

f(t) = C e−t/(2b) sinκt, (2.10)
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where C is the integration constant, while

κ =

√
σ2

c2
− 1

4b2
=

ς

c
, ς =

√
σ2 − β2 , (2.11)

where we assume, as does Lamb, that the mass oscillator (2.9) is underdamped, so

σ > β > 0, or, equivalently, c < 2bσ.

Thus, setting
h(t) = f(ct) = C e−β t sin ς t, (2.12)

reduces (2.7–8) to Lamb’s solution, [15; equation (11)]:

u(t, x) =

{
−C e−(ct−| x |)/(2b) sinκ (ct− | x |), | x | < ct,

0 | x | > ct.
(2.13)

The resulting solution profile is continuous and piecewise smooth, and consists of
a symmetric pair of successively damped oscillatory disturbances generated by the mass
that propagate into the undisturbed region at velocities ±c. The only discontinuities in
its spatial derivative occur at the front of the disturbance and at the origin. The following
plots graph the solution spatial profile at selected times on the interval −6π ≤ x ≤ 6π with

vertical scale −.45 ≤ u ≤ .45, for the specific values c = 1, C = −1/2, b = 5, κ =
√
.99 .

The damping effect of the Lamb coupling is already evident in the waves generated by the
oscillator.

t = 2.5 t = 7.5 t = 12.5

Figure 1. The Lamb Oscillator on the Line.

As time progresses, the initial disturbance continues to propagate outwards, while the
damping completely dominates on an increasingly large interval centered around the origin,
as shown in the following graph, which is plotted with the same vertical scale on the larger
interval −50π ≤ x ≤ 50π.

t = 100

Figure 2. The Lamb Oscillator on the Line at Large Time.
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3. The Periodic Lamb Model.

Let us now focus our attention on the periodic version of the classical Lamb oscillator,
that is equations (2.3–4) on the interval −π < x < π with periodic boundary conditions.
(Equivalently, we can regard x as an angular coordinate on the unit circle.) As before, we
assume the system is initially at rest, and so the initial conditions are (2.5). Thus, if we
view the forcing term in (2.3) as a 2π periodically extended delta function, the solution
can be written in d’Alembert form as a formally infinite sum

u(t, x) =

∞∑

n=−∞

h̃(t− | x− 2nπ |/c), t > 0. (3.1)

Since h̃(t) = 0 whenever t ≤ 0, at any given point in space-time, only finitely many
summands in (3.1) are non-zero, and hence, by the preceding remarks, the solution is
continuous and piecewise smooth.

Alternatively, one can solve the periodic Lamb problem via a Fourier series approach.
Since the solution is even in x, we can expand it into a cosine series:

u(t, x) = 1
2
a0(t) +

∞∑

k=1

ak(t) cos kx. (3.2)

Substituting (3.2) into (2.3, 5), and using the fact that the delta function has the (weakly
convergent) Fourier expansion

δ(x) ∼ 1

2π
+

1

π

∞∑

k=1

cos kx,

we deduce that the Fourier coefficients ak(t) must satisfy the following decoupled system
of initial value problems:

a′′k + c2k2ak = −2c

π
h′(t), ak(0) = a′k(0) = 0. (3.3)

Given the particular Lamb forcing function (2.12), the solution is straightforwardly con-
structed modulo some tedious algebra:

ak(t) = −2cC

π

[
pk cos ck t+ qk sin ck t− e−β t(pk cos ς t+ rk sin ς t)

]
, (3.4)

where

pk =
ς (σ2 − c2k2)

(σ2 − c2k2)2 + 4c2k2β2
, qk =

2ckβ ς

(σ2 − c2k2)2 + 4c2k2β2
,

rk =
β (σ2 + c2k2)

(σ2 − c2k2)2 + 4c2k2β2
,

(3.5)

where, by (2.11), σ2 = ς2 + β2.

Some representative solution profiles over a single period appear in the following plots.
Keep in mind that the solution is both even and periodic.
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t = 1. t = 2.5 t = 5.

t = 7.5 t = 10. t = 12.5

Figure 3. The Periodic Lamb Oscillator.

4. Bidirectional Dispersive Lamb Models.

Let us now generalize the dispersion relation for the linear system being driven by a
Lamb oscillator. We replace the second order wave equation by a second order (in time)
dispersive linear (integro-)differential equation coupled to an oscillator:

utt = L[u ] + h′(t) δ(x), (4.1)

where h(t) is as above, cf. (2.12). (For simplicity, we have absorbed the prefactor −2c in
(2.3) into the forcing function: h(t) 7−→ −h(t)/(2c).) The linear operator L is assumed
to have dispersion relation ω = ω(k) relating temporal frequency ω and wave number k.
As usual, [23], ω(k) is found by substituting the exponential ansatz e i (kx−ωt) into the
unforced equation. We assume that the system is purely dispersive, which is equivalent to
requiring that ω(k) be a real-valued function of the wave number k ∈ R. The operator L
is, in general, of integro-differential form, and is a differential operator if and only if ω(k)
is a polynomial.

In particular, the wave equation (2.3) has the linear dispersion relation ω = ck. A
higher-order correction modeling a linearly elastic string takes the form, [14, 22],

utt = c2uxx − εuxxxx + h′(t) δ(x), (4.2)

where ε > 0, whose dispersion relation

ω =
√
c2k2 + εk4 , (4.3)

is asymptotically quadratic for large wave number: ω(k) ∼ k2 as | k | → ∞. The same
dispersion relation arises in the Boussinesq approximations to the free boundary problem
for water waves, [23]. A regularized version

utt = c2uxx + εuxxtt + h′(t) δ(x), (4.4)
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in which two of the x derivatives are replace by t derivatives, has the same order of
approximation to the full physical model, and has also been proposed as the linearization
of a model for DNA dynamics, [19]. Equation (4.4) has dispersion relation

ω =
c | k |√
1 + εk2

, (4.5)

which is asymptotically constant at large wave number. In their work on gyroscopic Lamb
systems, [13], Hagerty, Bloch, and Weinstein investigate coupling the Lamb oscillator to
the linearly dispersive Klein–Gordon equation:

utt = c2uxx −m2u+ h′(t) δ(x), (4.6)

with “mass” m. In this case, the dispersion relation

ω =
√

c2k2 +m2 , (4.7)

is asymptotically linear: ω(k) ∼ | k |.
We begin by investigating the solution to (4.1) on the line with zero initial condition

u(0, x) = 0. While there is no longer a d’Alembert style formula for the solution, the
Fourier transform will enable us to express the solution in the following form:

u(t, x) =
C

4cπ

∫ ∞

−∞

e i kx
[
pk cosω(k) t+ qk sinω(k) t− e−βt(pk cos ς t+ rk sin ς t)

]
dk,

(4.8)
where

pk =
ς (σ2 − ω2)

(σ2 − ω2)2 + 4ω2β2
, qk =

2ωβ ς

(σ2 − ω2)2 + 4ω2β2
, rk =

β (σ2 + ω2)

(σ2 − ω2)2 + 4ω2β2
.

(4.9)
Note that (4.9) coincides with (3.5) upon setting ω = ck, which is the dispersion relation
for the classical wave equation (2.1). Thus, (4.8) and the Fourier transform of (2.13) are
equivalent, modulo the factor −2c which was absorbed into h(t).

Turning to the corresponding periodic problem for a dispersive Lamb system (4.1)
on the interval −π < x < π, we work with the Fourier series representation (3.2). The
equations (3.3) for the Fourier coefficients become

a′′0 = h′(t)/π , a0(0) = a′0(0) = 0 ,

a′′k + ω(k)2ak = h′(t)/π , ak(0) = a′k(0) = 0.
(4.10)

Thus, the solution to the periodic dispersive Lamb problem has

a0(t) =
C

π(β2 + ς2)

[
ς − e−β t(ς cos ς t+ β sin ς t)

]
,

ak(t) =
C

π

[
pk cosω(k) t+ qk sinω(k) t− e−β t(pk cos ς t+ rk sin ς t)

]
,

(4.11)

for k ≥ 1 where pk, qk, rk are as in (4.9).
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t = 1. t = 2.5 t = 5.

t = 7.5 t = 10. t = 12.5

Figure 4. The Dispersive Periodic Lamb Oscillator with ω(k) = k2.

t = 1. t = 2.5 t = 5.

t = 7.5 t = 10. t = 12.5

Figure 5. The Dispersive Periodic Lamb Oscillator for the Klein–Gordon Model.

In particular, suppose that the dispersion relation has large wave number asymptotics
given by a power law:

ω(k) ∼ | k |m as | k | −→ ∞, (4.12)

for some m ∈ R. Then, assuming m > 0, according to (4.11),

ak(t) ∼ ω(k)−2 ∼ | k |−2m as | k | −→ ∞. (4.13)

The resulting Fourier coefficients therefore decay as | k | → ∞, which, depending upon the
magnitude of m, implies smoothness, meaning differentiability, of the solution. Namely,
when m > 1, (4.13) implies that u(t, ·) ∈ Cn provided 2m−1 > n ∈ N, by a standard result
in Fourier analysis, [17]. Thus, in this situation, the solution to the periodic dispersive
Lamb problem is continuously differentiable up to order n and there is no fractalization.
This observation is borne out by Mathematica calculations, obtained by summing the
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first 1000 terms of the Fourier series (3.2); examples appear in the above plots for quadratic
dispersion and the Klein–Gordon model (4.6).

When the exponent m > 1, in direct contrast to the smoothness of the Lamb solution,
starting with rough initial conditions, e.g., a step function, fractalization and, when m ∈
N, dispersive quantization at rational times will be manifested in the unforced periodic
solution profiles, [2]. The effect of combining such rough initial data with the Lamb
oscillator is simply a linear superposition of the two solutions.

On the other hand, if the dispersion relation is sublinear, m < 1, then the resulting
Lamb solution coefficients exhibit the slow decay that underlies the fractalization effects
observed is dispersive quantization. The most interesting examples occur when ω(k) ∼√

| k |, whereby (4.13) implies that ak(t) ∼ 1/| k |, which is exactly the decay rate that

produces the dispersive quantization effects. In particular, ω(k) =
√

| k | corresponds to
the (complex) linear system

utt = i ux,

i.e., the linear Schrödinger equation with the roles of space and time reversed. Interestingly,

the dispersion relation for the free boundary problem for water waves, ω(k) =
√
k tanh k

(ignoring physical constants), [23], is also asymptotically of this form.

t = 1. t = 2.5 t = 5.

t = 10. t = 20. t = 30.

t = 50. t = 100. t = 200.

Figure 6. The Dispersive Periodic Lamb Oscillator with ω(k) =
√
| k |.

As above, the plotted profiles are the order N = 1000 partial sums of the Fourier series
(3.2), (4.11). Plots of both smaller and larger order partial sums, e.g., N = 500 and 1500,
exhibit no noticeable change in the overall profile at the resolution provided by the figures,
and thus strongly suggest convergence of the series solution. Moreover, it appears that the
graphs are fractal, at least on a subinterval centered at the location of the oscillator, but
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perhaps smooth on the remainder. The width of the fractal region appears to grow as t
increases, so that by t ≥ 50 or so the entire interval appears to be fractal.

After making our numerical observations, we were fortunate to receive a new paper
by Erdoğan and Shakan, [8], that contains a proof the following result, which can be used
to guarantee convergence of our series solutions and, moreover, confirms the fractal nature
by providing an estimate of its (maximal) fractal dimension.

Theorem 4.1. Suppose ck are the complex Fourier coefficients of a function f(x)
on the interval −π < x < π. Assume that f is of bounded variation, but

∞∑

k=−∞

(1 + k2)p| ck |2 = +∞ diverges for any p > 1
2 ,

or, equivalently, f does not belong to any Sobolev space Hp for p > 1
2
. Let ω(k) ∼ | k |1/2

as k → ∞. Then, for any t 6= 0, the “dispersive” Fourier series

v(t, x) ∼
∞∑

k=−∞

ck e
i (kx−ω(k)t) (4.14)

converges to a function whose real and imaginary parts have graphs whose maximal fractal

dimension Dt satisfies the following estimate: 5
4 ≤ Dt ≤ 7

4 .

In our case, referring back to (4.11), the initial Fourier coefficients ck are proportional
to pk ± i qk. A simple partial fraction decomposition reduces this to a linear combination
of Fourier series with coefficients of the form ck = 1/

[
ω(k)2 + α

]
for real α. In the special

case ω(k) =
√
| k |, we have

ck =
1

| k |+ α
=

1

| k | −
α

k2
+

α2

k2(| k |+ α)
, k 6= 0. (4.15)

The final term is O(1/| k |3) and hence represents a Fourier series of a continuously differ-
entiable function. The first two terms are the Fourier coefficients of explicitly summable
series, namely

∞∑

k=−∞
k 6=0

(
1

| k | −
α

k2

)
e i kx = −2 log

∣∣ 2 sin 1
2
x
∣∣− α

(
1
2
x2 − π| x |+ 1

3
π2

)
. (4.16)

The initial term has a logarithmic singularity at x = 0, and so is not of bounded variation.
On the other hand, at t = 0, the exponentially decaying terms in (4.11) cancel out the
singularity, since the initial value is identically zero. Our numerical experiments indicate
that there is also no singularity in the solution profile once t > 0. Furthermore, the
methods of proof based on “summation by parts” used in [8] go through even without
verifying bounded variation if there is a differentiable function h(k) for | k | sufficiently
large such that ck = h(k) = O(1/k) and dk = h′(k) = O(1/k2), and this holds provided

ω(k) = O(| k |1/2) and ω′(k) = O(1). This establishes convergence of the Lamb solution
Fourier series and the preceding bound on the maximal fractal dimension of its graph at
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each t > 0. (The authors thank Burak Erdoğan, [7], for essential help with the above
arguments.)

Finally, consider the case of the linear regularized Boussinesq equation with Lamb
forcing, (4.4), with asymptotically constant dispersion relation (4.5). In this case, the
solution profiles exhibit much more noticeable high frequency oscillations, whose overall
amplitude, as indicated by the “width” of the fattened graphs, is time-varying. At earlier
times, e.g., t ≤ 20, the graph is noticeably thicker, while later on, e.g., at t = 57 and t = 95,
it has thinned out, with barely any noticeable superimposed oscillations. A while later,
at t = 205, the larger scale oscillations thickening the graph have re-emerged. As yet, we
have no explanation for this observed phenomenon. In this case, the persistence of high
frequency oscillations in the graphs of the partial sums remind us of the weak convergence
of Fourier series to distributions, the prototypical example being the weak convergence of
the Dirichlet kernel to the delta function, [17].

t = 1. t = 2.5 t = 5.

t = 10. t = 20. t = 30.

t = 57. t = 95. t = 205.

Figure 7. The Dispersive Periodic Lamb Oscillator for
the Regularized Boussinesq Model.

5. Unidirectional Models.

Now let us turn our attention to unidirectional dispersive wave models forced by a
Lamb oscillator. We begin with the linear wave equation and factor the differential operator
as usual, [17]:

∂2
t − c2∂2

x = (∂t − c∂x)(∂t + c∂x),

where the factors govern the unidirectional waves u(t, x) = f(x ± ct), that move off in
opposite directions, each of which is constant on the characteristic lines associated with
its annihilating differential operator.
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The bidirectional Lamb solution (2.13) is a superposition of left and right moving
waves, which do not overlap since the forcing only occurs at the origin:

u(t, x) =

{
v(t, x), x > 0,

v(t,−x), x < 0,
where v(t, x) =

{
f(ct− x), x > 0,

0, x < 0,
(5.1)

and f(t) is as above, (2.10). Thus, v(t, x) solves the quarter plane initial-boundary value
problem

vt + cvx = 0, v(0, x) = 0, v(t, 0) = h(t) = f(ct), x, t > 0, (5.2)

or, equivalently, the forced unidirectional wave equation

vt + cvx = h(t) δ(x), v(0, x) = 0, t > 0, (5.3)

since we assume that v(t, x) = 0 for all x < 0. As in Section 4, we have absorbed the factor
of −2c into the forcing function h(t). More generally, we can replace the spatial transport
term to construct a general unidirectional linear dispersive Lamb model

vt + L[v ] = h(t) δ(x), v(0, x) = 0, t > 0, (5.4)

in which the linear integro-differential operator L[v ] has real dispersion relation ω(k).

On the full line x ∈ R, we can solve the forced initial-boundary value problem (5.2)
using the Fourier transform:

v(t, x) =
C

4cπ

∫ ∞

−∞

e− iω(k)tς + e−βt
[
( iω(k)− β) sin ςt− ς cos ςt

]

σ2 − 2 i β ω(k)− ω(k)2
e i kx dk. (5.5)

The convergence of the integral depends upon the form of the dispersion relation ω(k).

Here we focus our attention on the periodic initial-boundary value problem corre-
sponding to (5.4) on the interval −π < x < π. We expand the solution in a Fourier
series:

v(t, x) = 1
2
a0(t) +

∞∑

k=1

[
ak(t) cos kx+ bk(t) sin kx

]
. (5.6)

Substituting (5.6) into the initial value problem (5.4) produces the Fourier coefficients

a0(t) =
C

2cπσ2

[
ς − e−β t(ς cos ς t+ β sin ς t)

]
,

ak(t) =
C

2cπ

[
pk cosω t+ qk sinω t− e−β t(pk cos ς t+ rk sin ς t)

]
,

bk(t) =
C

2cπ

[
−qk cosω t+ pk sinω t+ e−β t(qk cos ς t+ sk sin ς t)

]
,

(5.7)

for all k ≥ 1, where pk, qk, rk are given in (4.9) and

sk =
ω (2β2 − σ2 + ω2)

(σ2 − ω2)2 + 4ω2β2
. (5.8)
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In contrast to the bidirectional equations, the Fourier coefficients in (5.6) decay like 1/ω(k)
as k → ∞. As above, we deduce differentiability of the solution profiles provided the
dispersion relation grows sufficiently rapidly at large wave number; specifically, (4.12)
with m ≥ 2 implies u(t, ·) ∈ Cn provided m− 1 > n ∈ N.

We now examine some representative solutions. Again, we plot the order N = 1000
partial sum of the Fourier series (5.6). First, for a linear dispersion relation ω(k) = ck,
corresponding to the unidirectional transport equation with a Lamb oscillator (5.3), the
solution remains piecewise smooth.

t = 1. t = 2.5 t = 5.

t = 7.5 t = 10. t = 12.5

Figure 8. The Unidirectional Periodic Lamb Oscillator for the Transport Model.

As in the bidirectional models, for the higher order dispersion relations, the solution
smooths very quickly, as in the following plots:

t = 1. t = 2.5 t = 5.

t = 7.5 t = 10. t = 12.5

Figure 9. The Unidirectional Dispersive Periodic Lamb Oscillator for ω(k) = k2.

As above, the amplitude of the oscillations increases with a decaying dispersion rela-
tion — for example, the following figure plots the case ω(k) =

√
k. Observe the sharp tran-

sition region and possible discontinuity for smaller values of t, which appear to gradually
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completely disappear. One question is whether the solution profiles are fractal anywhere;
so far, the plots are inconclusive.

In the case of asymptotically constant dispersion, e.g., ω(k) = k2/
(
1 + 1

3 k
2
)
, we

still see significant high frequency oscillations. As in the bidirectional case, the graph
thickens and thins at various times, possibly indicating weak convergence to a distributional
solution.

6. Conclusions and Future Research Directions.

The most striking result in this study is that, when subject to periodic boundary
conditions, a Lamb oscillator will generate fractal solution profiles in a dispersive medium
possessing an asymptotically sub-linear large wave number dispersion relation whereas in
an unforced dispersive medium, fractalization and dispersive quantization require that the
dispersion relation grow superlinearly.

Several additional directions of research are indicated. As noted above, it has been
shown, [13], that coupling the wave equation or Klein–Gordon equation to a gyroscopic
oscillator or more general Chetaev system can induce instabilities through the effects of
Rayleigh dissipation. Preliminary numerical experiments with more general dispersive
media on periodic domains indicate that the coupling does not appear to destabilize an
otherwise stable gyroscopic system. However, a more thorough analysis must be performed
to confirm this result.

Furthermore, the effect of the boundary conditions on both unforced and forced dis-
persive wave equations is not yet clear, although in the unforced regime some preliminary
results are available, showing that the fractal behavior of solutions is highly dependent
upon the form of the boundary conditions. The corresponding problems in higher dimen-
sional dispersive media also remain largely unexplored.
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t = 1 t = 5. t = 7.5

t = 10. t = 20. t = 30.

t = 50. t = 100. t = 200.

Figure 10. The Unidirectional Dispersive Periodic Lamb Oscillator for ω(k) =
√
k.

t = 1. t = 2.5 t = 5.

t = 10. t = 20. t = 35.

t = 50. t = 100. t = 200.

Figure 11. The Unidirectional Dispersive Periodic Lamb Oscillator
for ω(k) = k2/

(
1 + 1

3 k
2
)
.
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