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Abstract

We derive the 2-component Camassa–Holm equation and corresponding N = 1
super generalization as geodesic flows with respect to the H1 metric on the extended
Bott-Virasoro and superconformal groups, respectively.
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1 Introduction

About ten years ago, Rosenau, [26], introduced a class of solitary waves with com-
pact support as solutions of certain wave equations with nonlinear dispersion. It was
found that the solutions of such systems unchanged from collision and were thus called
compactons. The discovery that solitons may compactify under nonlinear dispersion
inspired further investigation of the role of nonlinear dispersion. It has been known
for some time that nonlinear dispersion causes wave breaking or lead to the formation
of corners or cusps. Beyond compactons, a wide variety of other exotic non-analytic
solutions, including peakons, cuspon, mesaons, etc., have been found in to exist in a
variety of models that incorporate nonlinear dispersion, [15].

We will study integrable evolution equations appearing in bihamiltonian form

ut = J1

δH1

δu
= J2

δH0

δu
n = 0, 1, 2, · · · , (1)

where J1 and J2 are compatible Hamiltonian operators. The initial Hamiltonians
H0,H1 are the first two in a hierarchy of conservation laws whose corresponding bi-
hamiltonian flows are successively generated by the recursion operator

R = J2J
−1

1
.

We refer the reader to [21] for the basic facts about bihamiltonian systems.

In an earlier work, the second author showed with Rosenau [22] that a simple
scaling argument shows that most integrable bihamiltonian systems are governed by
tri-Hamiltonian structures. They formulated a method of “tri-Hamiltonian duality”,
in which a recombination of the Hamiltonian operators leads to integrable hierarchies
endowed with nonlinear dispersion that supports compactons or peakons. A related
construction can be found in the contemporaneous paper of Fuchssteiner [9].

The tri-Hamiltonian formalism can be best described through examples. The
Korteweg–deVries equation

ut = uxxx + 3uux, (2)

can be written in bihamiltonian form (1) using the two compatible Hamiltonian oper-
ators

J1 = D, J2 = D3 + uD +Du where D ≡
d

dx

and

H1 =
1

2

∫
u2 dx, H2 =

1

2

∫
(−u2

x + u3) dx.

The tri-Hamiltonian duality construction is implemented as follows:
• A simple scaling argument shows that J2 is in fact the sum of two compatible
Hamiltonian operators, namely K2 = D3 and K3 = uD+Du, so that K1 = J1,K2,K3

form a triple of mutually compatible Hamiltonian operators.
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• Thus, when we can recombine the Hamiltonian triple as transfer the leading term
D3 from J2 to J1, thereby constructing the Hamiltonian pairs Ĵ1 = K2±K1 = D3±D.
The resulting self-adjoint operator S = 1 ±D2 is used to define the new field variable
ρ = Su = u± uxx.
• Finally, the second Hamiltonian structure is constructed by replacing u by ρ in the
remaining part of the original Hamiltonian operator K3, so that Ĵ2 = ρD +Dρ. Note
that this change of variables does not affect Ĵ1.

As a result of this procedure, we recover the tri-Hamiltonian dual of the KdV
equation

ρt = Ĵ1

δĤ2

δρ
= Ĵ2

δĤ1

δρ
, (3)

where

Ĥ1 =
1

2

∫
uρ dx =

1

2

∫
(u2 ∓ u2

x) dx, Ĥ2 =
1

2

∫
(u3 ∓ uu2

x) dx.

In this case, (3) reduces to the celebrated Camassa–Holm equation [2, 3]:

ut ± uxxt = 3uux ±
(
uuxx + 1

2
u2

x

)
x
. (4)

Remark: The choice of plus sign leads to an integrable equation which supports
compactons, whereas the minus sign is the water wave model derived by Camassa–
Holm, whose solitary wave solutions have a sharp corner at the crest.

The Ito equation Let us next study the Ito equation [14],

ut = uxxx + 3uux + vvx ,

vt = (uv)x , (5)

which is a protypical example of a two-component KdV equation. This can also be
expressed in bihamiltonian form using the following two Hamiltonian operators

J1 =

(
D 0
0 D

)
, J2 =

(
D 3 + uD +Du vD

Dv 0

)
,

with Hamiltonians

H1 =
1

2

∫
(u2 + v2) dx, H2 =

1

2

∫
(u3 + uv2 − u2

x) dx.

Again, a simple scaling argument is used to split

J2 =

(
D 3 0
0 0

)
+

(
uD +Du vD

Dv 0

)
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as a sum of two compatible Hamiltonian operators. To construct the dual, we transfer
the leading term D3 from the first Hamiltonian operator to the second. We obtain the
first Hamiltonian operator for the new equation

Ĵ1 =

(
D ±D3 0

0 D

)
≡ D

(
S 0
0 1

)
.

Therefore, the new variables are defined as

(
ρ
σ

)
=

(
S 0
0 1

)(
u
v

)

The second Hamiltonian structure follows from the truncated part of the original Hamil-
tonian operator J2, so that

Ĵ2 =

(
ρD +Dρ vD
Dv 0

)

with

Ĥ1 =
1

2

∫
(uρ+ v2) dx, Ĥ2 =

1

2

∫
(u3 + uv2 ∓ uu2

x) dx.

The dual system (3) takes the explicit form

ut ± uxxt = 3uux + vvx +
(
uuxx + 1

2
u2

x

)
x
,

vt = (uv)x . (6)

Motivation The Camassa–Holm equation was derived physically as a shallow water
wave equation by Camassa and Holm [2, 3, 4], and identified as the geodesic flow on
the group of one-dimensional volume-preserving diffeomorphisms under the H1 metric.
The multi-dimensional analogs lead to important alternative models to the classical
Euler equations of fluid mechanics. Later, Misiolek [20] showed that, like the KdV
equation [23], it can also be characterized as a geodesic flow on the Bott–Virasoro
group.

Recently, a 2-component generalization of the Camassa–Holm equation has drawn
a lot of interest among researchers. Chen, Dubrovin, Falqui, Grava, Liu and Zhang
(the group at SISSA) have been working on multi-component analogues, using recipro-
cal transformations and studying their effect on the Hamiltonian structures, [5, 8, 16].
They show that the 2-component system cited above admits peakons, albeit of a dif-
ferent shape owing to the difference in the corresponding Green’s functions. Another
two-component generalization also appeared recently as the bosonic sector of the ex-
tended N = 2 supersymmetric Camassa–Holm equation [25].

Following Ebin-Marsden [7], we enlarge Diff (S1) to a Hilbert manifold Diff s(S1),
the diffeomorphisms of the Sobolev class Hs. This is a topological space. If s > n/2,
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it makes sense to talk about an Hs map from one manifold to another. Using local
charts, one can check whether the derivations of order ≤ s are square integrable. The
Lie algebra of Diff s(S1) is denoted by V ects(S1).

In this paper we show that a 2-component generalization of the Camassa–Holm
equation and its super analog also follow from the geodesic with respect to the H1

metric on the semidirect product space Diff s(S1)nC∞(S1) and its supergroup respec-
tively. In fact, it is known that numerous coupled KdV equations [11, 12, 13] follow
from geodesic flows of the right invariant L2 metric on the semidirect product group

̂Diff (S1) nC∞(S1) [1, 19].

2 Preliminaries

The Lie algebra of Diff s(S1) n C∞(S1) is the semidirect product Lie algebra

g = V ects(S1) n C∞(S1).

An element of g is a pair
(
f(x)

d

dx
, a(x)

)
, where f(x)

d

dx
∈ V ects(S1), and a(x) ∈ C∞(S1).

It is known that this algebra has a three dimensional central extension given by the
non-trivial cocycles

ω1

((
f(x)

d

dx
, a(x)

)
,

(
g
d

dx
, b

))
=

∫

S1

f ′(x)g′′(x)dx

ω2

((
f(x)

d

dx
, a(x)

)
,

(
g
d

dx
, b

))
=

∫

S1

[ f ′′(x)b(x) − g′′(x)a(x) ]dx

ω3

((
f(x)

d

dx
, a(x)

)
,

(
g
d

dx
, b

))
= 2

∫

S1

a(x)b′(x)dx.

(7)

The first cocycle ω1 is the well-known Gelfand–Fuchs cocycle. The Virasoro algebra

V ir = V ects(S1) ⊕R

is the unique non-trivial central extension of V ects(S1) based on the Gelfand–Fuchs
cocycle. The space C∞(S1) ⊕R is identified as regular part of the dual space to the
Virasoro algebra. The pairing between this space and the Virasoro algebra is given by:

〈
(u(x), a) ,

(
f(x)

d

dx
, a(x)

) 〉
=

∫

S1

u(x)f(x)dx+ aα.

Similarly we consider the following extension of g,

ĝ = V ects(S1) n C∞(S1) ⊕R
3. (8)
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The commutation relation in ĝ is given by
[(
f
d

dx
, a, α

)
,

(
g
d

dx
, b, β

)]
:=

(
(fg′ − f ′g)

d

dx
, fb′ − ga′, ω

)
(9)

where α = (α1, α2, α3), β = (β1, β2, β3) ∈ R
3, and where ω = (ω1, ω2, ω3) are the

cocycles.

Let
ĝ
∗

reg = C∞(S1) ⊕C∞(S1) ⊕R
3

denote the regular part of the dual space ĝ ∗ to the Lie algebra ĝ, under the following
pairing:

〈 û , f̂ 〉 =

∫

S1

[ f(x)u(x) + a(x)v(x) ] dx+ α · γ, (10)

where û = (u(x), v, γ) ∈ ĝ ∗

reg, f̂ =
(
f d

dx
, a, α

)
∈ ĝ. Of particular interest are the

coadjoint orbits in ĝ ∗

reg. In this case, Gelfand, Vershik and Graev, [10], have constructed
some of the corresponding representations.

Let us introduce H1 inner product on the algebra ĝ

〈 f̂ , ĝ 〉H1 =

∫

S1

[ f(x)g(x) + a(x)b(x) + ∂xf(x)∂xg(x) ] dx+ α · β, (11)

where

f̂ =

(
f
d

dx
, a, α

)
, ĝ =

(
g
d

dx
, b, β

)
.

Now we compute :

Lemma 2.1 The coadjoint operator with respect to the H1 inner product is given by

ad∗
f̂

(
u
v

)
=

(
(1 − ∂2)−1[2f ′(x)(1 − ∂2

x)u(x) + f(x)(1 − ∂2
x)u′(x) + a′v(x)]

f ′v(x) + f(x)v′(x)

)
.

(12)

Proof: Since we have identified g with g∗, it follows from the definition that

〈 ad∗
f̂
û , ĝ 〉H1 = 〈 û , [f̂ , ĝ] 〉H1

= −

∫

S1

[ (fg′ − f ′g)u− (fb′ − ga′)v − ∂x(fg′ − f ′g)∂xu ]dx.

After computing all the terms by integrating by parts and using the fact that the
functions f(x), g(x), u(x) and a(x), b(x), v(x) are periodic, the right hand side can be
expressed as above.

Let us compute now the left hand side:

ad∗
f̂

(
u
v

)
=

∫

S1

[ (ad∗
f̂
u)g + (ad∗

f̂
u)′g′ + (ad∗

f̂
v)b ] dx

=

∫

S1

[ [(1 − ∂2)ad∗
f̂
u]g + (ad∗

f̂
v)b ] dx =

〈
((1 − ∂2)ad∗

f̂
u , (ad∗

f̂
v)), (g, b)

〉
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Thus by equating the the right and left hand sides, we obtain the desired formula. 2

We conclude that the Hamiltonian operator arising from the induced Lie–Poisson
structure is (

Dρ+ ρD vD
Dv 0

)
, (13)

where ρ = (1 − ∂2
x)u. We conclude that

Theorem 2.2 A curve

ĉ(t) =

(
u(x, t)

d

dx
, v(x, t), γ

)
⊂ g

defines a geodesic in the H1 metric if and only if

ut − uxxt = uxxx + 3uux + vvx −
(
uuxx + 1

2
u2

x

)
x

vt = 2(uv)x.
(14)

3 Geodesic flow and superintegrable systems

The first and foremost characteristic property of a superalgebra is that all the additive
groups of its basic and derived structures are Z2 graded. A vector superspace is a Z2

graded vector space V = VB ⊕VF . An element v of VB (resp. VF ) is said to be even
or bonsonic (resp. odd or fermionic). The super-commutator of a pair of elements
v,w ∈ V is defined to be the element

[ v,w ] = vw − (−1)v̄w̄wv.

The generalized Neveu-Schwartz superalgebra [24] is composed of two parts: the
bosonic (even) and the fermionic (odd). These are given by

SgB = V ects(S1) ⊕C∞(S1) ⊕R
3, SgF = C∞(S1) ⊕C∞(S1). (15)

There are three different actions:
(A) the action of the bosonic part on the bosonic part, discussed earlier.
(B) the action of the bosonic part on the fermionic part, given by

[ , ] : SgB ⊗ SgF −→ SgF

[(f(x)
d

dx
, a(x)), (φ(x), α(x))] :=

(
f(x)φ′ − 1

2
f ′(x)φ(x)

f(x)α′(x) + 1

2
f ′(x)α(x) − 1

2
a′(x)φ(x)

)
(16)

(C) the action of the fermionic part on the fermionic part, given by

[ , ]+ : SgF ⊗ SgF −→ SgB
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[(φ(x), α(x)), (ψ(x), β(x))]+ = (φψ
d

dx
, φβ + αψ,ωF ), (17)

where ωF = (ωF1, ωF2, ωF3) is the fermionic cocycle, with components

ωF1((φ, α), (ψ, β)) = 2

∫

S1

φ′(x)ψ′(x)dx,

ωF2((φ, α), (ψ, β)) = −2

∫

S1

(φ′(x)β(x) + ψ′α(x))dx,

ωF3((φ, α), (ψ, β)) = 4

∫

S1

α(x)β(x)dx.

(18)

The supercocycle ωS has two parts, the bosonic and the fermionic:

ωS = ωB ⊕ωF ,

where the bosonic part ωB is identical to ω = (ω1, ω2, ω3), as given by (7).

With this in hand, we establish the supersymmetric 2-component generalization of
the Camassa–Holm equation.

Definition 3.1 The H1 pairing between the regular part of the dual space Sĝ ∗ and Sg

is given by

〈
(u(x), v(x), ψ(x), β) , (f(x)

d

dx
, a(x), φ(x), α)

〉

H1

=

∫

S1

f(x)u(x)dx+

∫

S1

fxux dx+

∫

S1

a(x)v(x) dx (19)

+

∫

S1

φ(x)ψ(x)dx +

∫

S1

φxψx dx+

∫

S1

α(x)β(x)dx

Let us compute the coadjoint action with respect to the H1 norm.

Lemma 3.2

ad∗
f̂





u(x)
v(x)
ψ(x)
β(x)



 (20)

=





(1 − ∂2)−1[2f ′(1 − ∂2)u(x) + (1 − ∂2)u′f + a′v + 1

2
(1 − ∂2)ψ′φ+ 3

2
(1 − ∂2)ψφ′]

f ′v + fv′ + 1

2
(β′φ+ βφ′)

(1 − ∂2)−1[f(1 − ∂2)ψ′ + 3

2
f ′(1 − ∂2)ψ + 1

2
a′β + (1 − ∂2)uφ+ vα]

fβ′ + 1

2
f ′β + vφ



 .
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Sketch of the Proof: Using the definition of the coadjoint action

〈 ad∗
f̂
û , ĝ 〉H1 = 〈 f̂ , [û, ĝ] 〉H1

with

f̂ =





f(x)
a(x)
φ(x)
α(x)



 , û =





u(x)
v(x)
ψ(x)
β(x)



 , ĝ =





g(x)
b(x)
χ(x)
γ(x)



 ,

we obtain

〈
(u, v, ψ, β)] ,





(fg′ − f ′g) d
dx

+ φχ d
dx

fb′ − ga′ + φγ + αχ
fχ′ − 1

2
f ′χ+ gφ′ − 1

2
g′φ

fγ′ + 1

2
f ′γ − 1

2
a′γ + gα′ + 1

2
g′α− 1

2
b′φ





〉

H1

.

This would give us the right hand side without the (1− ∂2)−1 term, which appears on
the left hand side:

L.H.S. =

∫

S1

(ad∗
f̂
u)gdx +

∫

S1

(ad∗
f̂
u)′g′dx

∫

S1

(ad∗
f̂
v)b dx

+

∫

S1

(ad∗
f̂
ψ)φ dx+

∫

S1

(ad∗
f̂
ψ′)φ′ dx+

∫

S1

(ad∗
f̂
β)α dx

=

∫

S1

[(1 − ∂2)ad∗
f̂
u]gdx+

∫

S1

(ad∗
f̂
v)b dx

+

∫

S1

[(1 − ∂2)ad∗
f̂
ψ]φdx+

∫

S1

(ad∗
f̂
β)α dx.

Equating the right and left hand sides, we obtain the desired formula. 2

Therefore, if we use the Euler-Poincaré equation and the computational trick used
in [6], we obtain the supersymmetric version of the two component Camassa–Holm
equation:

mt = 2mux +mxu+ (vvx) + 3ξξ′′,

vt = 2(uv)x + β′ξ′ + βξ′′,

(1 − ∂2)ξt = 4mξ′ + 3m′ξ + 2ξ′′′,

βt = 2uβ′ + u′β + 2vξ′,

where m = u− uxx.

Corollary 3.3

ad∗
f̂
û =





2uf ′(x) + u′f + a′v + f ′′′ + 1

2
ψ′φ+ 3

2
ψφ′

f ′v + fv′ + 1

2
(β′φ+ βφ′

fψ′ + 3

2
f ′ψ + 1

2
a′β + uφ+ vα+ 2φ′′

fβ′ + 1

2
f ′β + vφ



 (21)
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In this way, we recover a supersymmetric version of Ito equation [14] given by

ut = 6uux + 2(vvx) + uxxx + 3ξξ′′,

vt = 2(uv)x + β′ξ′ + βξ′′,

ξt = 4uξ′ + 3u′ξ + 2ξ′′′,

βt = 2uβ′ + u′β + 2vξ′.

(22)

Corollary 3.4 In the supersymmetric Ito equation (22):
(A) if we set the super variables ξ = β = 0, we recover the Ito equation.
(B) If we set v = β = 0, we obtain

ut = 6uux + uxxx + 3ξξ′′

ξt = 4uξ′ + 3u′ξ + 2ξ′′′,
(23)

which is a fermionic extension of KdV equation and, modulo rescalings, is the super
KdV equation of Mathieu and Manin–Radul, [17, 18].

Remark: The physicists usually distinguish the fermionic and supersymmetric ex-
tension among each other. From the physical point of view the supersymmetry requires
the invariance under the supersymmetric transformations while for the fermionic ex-
tension we have no such restriction. All extended equations considered in this paper
are fermionic.
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[13] P. Guha, Euler-Poincaré Formalism of Coupled KdV type systems and Diffeomor-
phism group on S1, Jour. Appl. Anal. 11 (2005), 261–282.

[14] M. Ito, Symmetries and conservation laws of a coupled nonlinear wave equation,
Phys. Lett. 91A (1982), 335-338.

[15] Y.A. Li, P.J. Olver and P. Rosenau, Non-analytic solutions of nonlinear wave
models, in: Nonlinear Theory of Generalized Functions, M. Grosser, G. Hörmann,
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