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Abstract

In this paper, we study some new connections between parabolic Liouville-
type theorems and local and global properties of nonnegative classical solu-
tions to superlinear parabolic problems, with or without boundary conditions.
Namely, we develop a general method for derivation of universal, pointwise
a priori estimates of solutions from Liouville-type theorems, which unifies and
improves many results concerning a priori bounds, decay estimates and initial
and final blow-up rates. For example, for the equation ut−∆u = up on a domain
Ω, possibly unbounded and not necessarily convex, we obtain initial and final
blow-up rate estimates of the form u(x, t) ≤ C(Ω, p) (1 + t

− 1
p−1 + (T − t)−

1
p−1 ).

Our method is based on rescaling arguments combined with a key “doubling”
property, and it is facilitated by parabolic Liouville-type theorems for the whole
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space or the half-space. As an application of our universal estimates, we prove
a nonuniqueness result for an initial boundary value problem.

1 Introduction

The aim of this paper is to study some new connections between parabolic Liouville-
type theorems and local and global properties of nonnegative classical solutions to
superlinear parabolic problems. In the whole paper, the word “solution” always refers
to “nonnegative solution”, regardless of whether it is specifically mentioned. By a
(nonlinear) Liouville-type theorem, we mean the statement of nonexistence of non-
trivial bounded solutions defined for all negative and positive times on the whole space
or on a half-space.

We develop a general method for obtaining pointwise, universal a priori estimates
of solutions from Liouville-type theorems. The solutions that we consider are defined
on an arbitrary spatial domain, without any prescribed initial conditions, but they
may or may not satisfy boundary conditions. The word “universal” means that these
estimates are independent of the solution itself (and even possibly of the domain).

We note that our approach works for both elliptic and parabolic problems, and
that the elliptic aspects have been developed in the preceding part [28]. The method is
based on rescaling arguments combined with a key “doubling” property (see Lemma 5.1
below). The doubling property is an extension of an idea of [20] (see Remark 5.3(a)).
However, this powerful idea does not seem to have been fully exploited up to now,
nor its wide applicability has been noticed.

Our approach enables us to unify and improve many results obtained in the last
two decades on superlinear parabolic problems, concerning:

- boundedness and (universal) a priori estimates of global solutions;

- blow-up rates of nonglobal solutions;

- initial blow-up rates of local solutions;

- decay rates of global solutions of the Cauchy problem;

- spatial singularity estimates for local solutions.

Interestingly, from the heuristic point of view, Liouville-type theorems turn out to be
equivalent to universal (initial or final) blow-up or decay estimates (cf. Remark 3.4(a)).
Note, however, that some of the results previously obtained by different methods
cannot still be entirely recovered here, due to the fact that the necessary Liouville
theorems have not yet been proved in the optimal range of exponents.

On the other hand, we obtain some new Liouville-type theorems, especially for
the case of half-spaces. Moreover, as another by-product of the method, we derive
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strong Liouville-type theorems from usual ones. By a strong Liouville-type theorem,
we mean a statement of nonexistence of nontrivial solutions, bounded or not, defined
for all negative and positive times on the whole space or on a half-space.

To show typical examples of our results, consider first the Cauchy problem asso-
ciated with the model equation

ut −∆u = up, (1.1)

where p > 1 is less than a suitable exponent (see Section 2). We prove the initial and
final blow-up rate estimate

u(x, t) ≤ C(n, p)
(
t−

1
p−1 + (T − t)−

1
p−1

)
, x ∈ Rn, 0 < t < T

for any local solution on Rn × (0, T ), and the decay estimate

u(x, t) ≤ C(n, p) t−
1

p−1 , x ∈ Rn, t > 0

for any global solution on Rn × (0,∞). We stress the universality of the constant C.
For the corresponding Dirichlet problem, in any smooth, possibly unbounded, domain
Ω ⊂ Rn, these estimates take the form

u(x, t) ≤ C(Ω, p)
(
1 + t−

1
p−1 + (T − t)−

1
p−1

)
, x ∈ Ω, 0 < t < T,

or
u(x, t) ≤ C(Ω, p)

(
1 + t−

1
p−1

)
, x ∈ Ω, t > 0.

Note that this proves blow-up rates without assuming convexity of the domain, an
assumption needed in the classical results of Giga and Kohn [17] (where, moreover,
the constants C depend on the solution).

Our method applies to more general superlinear parabolic equations such as the
equation

ut −∆u = f(u), (1.2)

where f : [0,∞) → [0,∞) is a continuous function satisfying a suitable growth condi-
tion. This includes in particular the model equation (1.1). We formulate most of our
results in the context of equation (1.2), for further generalizations see Section 6.

In some of our results, we consider radial solutions in symmetric domains. By a
symmetric domain, we mean either the whole space Rn, a ball BR = B(0, R) ⊂ Rn, an
annulus Ω = {x ∈ Rn; R1 < |x| < R2}, or an exterior domain Ω = {x ∈ Rn; |x| > R},
with R > 0, R2 > R1 > 0. We say that u = u(x, t) is a radial function if u(x, t) =
u(|x|, t) for each t.

The outline of the paper is as follows. In Section 2, we recall some known and
present new parabolic Liouville-type theorems. Sections 3 and 4 contain our main
results on universal (singularity and decay) estimates for equations (1.2) and (1.1),
with and without prescribed boundary conditions, respectively. Section 5 contains
the proofs of the singularity and decay estimates and of the strong Liouville-type
theorems. An application (a nonuniqueness result for the Dirichlet initial boundary
value problem associated with (1.1) with initial data in Lq) and generalizations can
be found in Section 6.
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2 Parabolic Liouville-type theorems

In order to state our results, we introduce the following exponents:

pS = pS(n) :=


n + 2

n− 2
, if n ≥ 3,

∞, if n = 1, 2,

and

pB = pB(n) :=


n(n + 2)

(n− 1)2
, if n ≥ 2,

∞, if n = 1.

Note that pB < pS if n ≥ 2.

The following two results will play an important role in our proof of singularity
estimates. The first one is a direct consequence of [5] (see Remark 2.6(a) below).

Theorem A. Let 1 < p < pB(n). Then the equation

ut −∆u = up, x ∈ Rn, t ∈ R, (2.1)

has no nontrivial (nonnegative) classical solution.

The proof in [5] is based on a modification of the technique of local, integral
gradient estimates developed in [14] for elliptic problems (see also [6]). For n = 1, a
different proof is given in [27].

In the radial case, the following result was recently proved in [27] by using argu-
ments of intersection-comparison with (sign-changing) stationary solutions (see [25]
for an earlier partial result).

Theorem B. Let 1 < p < pS(n). Then equation (2.1) has no nontrivial (nonnegative)
classical solution u, such that u is radial and bounded.

Theorem B is optimal, since it is well-known that, for n ≥ 3 and p ≥ pS, (2.1)
admits positive stationary solutions which are radial and bounded. In view of Theo-
rems A and B (and Theorem 2.3 below), one may conjecture that Theorem A should
be true in the whole range p < pS. However this remains an open problem.

Liouville theorems in a half-space Rn
+ = {x ∈ Rn : x1 > 0} will also play an

important role in our proof of singularity estimates for problems with boundary con-
ditions. We will show the following.

Theorem 2.1. Let p > 1.

(i) Assume n ≤ 2, or p < pB(n− 1) and n ≥ 3. Then the problem

ut −∆u = up, x ∈ Rn
+, t ∈ R,

u = 0, x ∈ ∂Rn
+, t ∈ R,

}
(2.2)

has no nontrivial (nonnegative) bounded classical solution.
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(ii) Assume p < pB(n). Then problem (2.2) has no nontrivial (nonnegative) classical
solution.

Remarks 2.2. (a) Note that pB(n− 1) > pS(n) if n ≥ 3.

(b) Up to now, the only available result of this kind in a half-space was the
Fujita-type theorem from [21, 22] which states that (2.2) has no nontrivial solutions
in Rn

+ × R+ if (and only if) 1 < p ≤ (n + 3)/(n + 1).

(c) The proof of Theorem 2.1 shows in fact the following:

(i) if the equation ut−∆u = up has no nontrivial bounded solution in Rn−1×R for
given p > 1 and n ≥ 2, then (2.2) has no nontrivial bounded solution for those
p and n ;

(ii) if the equation ut −∆u = up has no nontrivial bounded solution in Rn × R for
given p > 1 and n ≥ 1, then (2.2) has no nontrivial solution for those p and n.

Therefore, any improvement of Liouville theorems in the whole space would accord-
ingly improve the half-space case. (Note of course that if the Liouville theorem is true
in Rn×R for given p > 1 and n ≥ 2, then so is it in Rn−1×R: otherwise just consider
ũ(x1, . . . , xn−1, xn, t) := u(x1, . . . , xn−1, t).)

(d) It was proved in [26] that equation (2.1) with 1 < p < pS has no nontrivial
solution u such that |t|1/(p−1)‖u(t)‖∞ is bounded as t → −∞. However, it does not
seem possible to use this form of Liouville-type theorem to derive our results on
universal singularity and decay estimates.

Finally, getting back to the radial case in the whole space, we can improve The-
orem B by removing the boundedness assumption.

Theorem 2.3. Let 1 < p < pS(n). Then equation (2.1) has no nontrivial (nonnega-
tive) classical, radial solution.

Theorems 2.1(ii) and 2.3 will be proved in Section 5. Theorem 2.1(i) is a conse-
quence of Theorem A and the following theorem concerning the more general problem

ut −∆u = f(u), x ∈ Rn
+, t ∈ R,

u = 0, x ∈ ∂Rn
+, t ∈ R,

}
(2.3)

where f is a C1-function.

Theorem 2.4. Assume f : [0,∞) → R is a C1-function satisfying f(0) = 0 and
f ′(0) ≤ 0. Then the following statements hold true.
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(c1) Each positive bounded solution u of (2.3) is increasing in x1:

∂x1u(x, t) > 0, x ∈ Rn
+, t ∈ R.

(c2) If there is a positive bounded solution of (2.3), then there exists a positive
bounded solution of

ut −∆u = f(u), x ∈ Rn−1, t ∈ R. (2.4)

For n = 1, equation (2.4) should be understood as the ordinary differential equa-
tion ut = f(u).

The proofs of both statements (c1) and (c2) use extensions of arguments of [9]
to parabolic equations. The idea to use these arguments was suggested to us by
B. Sirakov. A straightforward modification of the proof below shows that (c1), (c2)
hold for positive bounded solutions defined on (−∞, T ) for some T > 0.

Proof of Theorem 2.4. First we prove (c1). We use the following notation. For λ > 0
let

Tλ = {x ∈ Rn : 0 < x1 < λ}. (2.5)

For a function z defined on Rn
+ let zλ and Vλz be functions on Tλ defined by

zλ(x) = z(2λ− x1, x
′),

Vλz(x) = zλ(x)− z(x),
(2.6)

where x′ = (x2, x3, . . . , xn).

Let u be a positive bounded solution of (2.3). Observe that for each λ > 0,
v = Vλu satisfies

vt −∆v = cλ(x, t)v, x ∈ Tλ, t ∈ R,

v = 0, x1 = λ, x′ ∈ Rn−1, t ∈ R,

v > 0, x1 = 0, x′ ∈ Rn−1, t ∈ R,

(2.7)

where

cλ(x, t) =

∫ 1

0

f ′(u(x, t) + s(uλ(x, t)− u(x, t))) ds. (2.8)

Our goal is to prove that the statement

(S)λ Vλu(x, t) ≥ 0, x ∈ Tλ, t ∈ R,

holds for each λ > 0. Once this done, the maximum principle applied to the above
linear problem implies that we have in fact the strict inequality in (S)λ and the Hopf
boundary principle then gives

2∂x1u(x, t)


x1=λ
= −∂x1Vλu(x, t)


x1=λ

> 0

for each λ > 0, proving (c1).

We shall use the following lemma of Dancer [9].



Singularity estimates via Liouville-type theorems 7

Lemma 2.5. Given any positive constants q, λ satisfying λ−2π2 > q, there exists a
smooth function h on T̄λ such that

∆h + qh = 0, x ∈ Tλ,

h(x) > 0, x ∈ T̄λ,

h(x) →∞, |x| → ∞, x ∈ T̄λ.

(2.9)

Note that the function h necessarily satisfies h ≥ ε for some positive constant ε.
We first prove that (S)λ holds for λ ≈ 0. Fix a positive constant γ and set

q := sup
t∈R, x∈Rn

+

f ′(u(x, t)) + γ. (2.10)

If λ > 0 is sufficiently small, so that λ−2π2 > q, we can apply Lemma 2.5. With the
resulting function h, we consider the problem satisfied by w := eγtv/h, where v = Vλu.
A simple computation using (2.7), (2.9) shows that

wt −∆w − 2∇h

h
· ∇w−(γ + cλ(x, t)− q)w = 0, x ∈ Tλ, t ∈ R,

w ≥ 0, x ∈ ∂Tλ, t ∈ R,

w(x, t) → 0, |x| → ∞, x ∈ T̄λ, t ∈ R.

(2.11)

The choice of q implies that γ+cλ−q ≤ 0 in Tλ×R. Applying the maximum principle
on Tλ × (t0, t), for any t0 < t, we obtain

sup
x∈Tλ

w−(x, t) ≤ sup
x∈Tλ

w−(x, t0), (2.12)

where z− stands for the negative part of z: z− = −min(z, 0). For v the above inequality
means

sup
x∈Tλ

v−(x, t)

h(x)
≤ e−γ(t−t0) sup

x∈Tλ

v−(x, t0)

h(x)
. (2.13)

In view of boundedness of v = Vλu, letting t0 → −∞ we obtain that v ≥ 0 everywhere,
hence (S)λ holds.

In the next step we denote

λ0 = sup{µ > 0 : (S)λ holds for all λ ∈ (0, µ)}. (2.14)

As proved above, λ0 > 0. We now show by contradiction that λ0 = ∞. Assume
λ0 < ∞. Then there is a sequence λk ≥ λ0 such that λk → λ0 and the set

Zk := {(x, t) ∈ Tλk
× R : Vλk

u(x, t) < 0}

is nonempty. Set

mk := sup{u(y1, x
′, t) : y1 ∈ (0, λk), x′ ∈ Rn−1, t ∈ R, and

there exists x1 ∈ (0, λk) such that (x1, x
′, t) ∈ Zk}.

We consider the following two possibilities.
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(a) mk → 0,

(b) passing to a subsequence we have mk ≥ ε0 for some ε0 > 0.

First assume that (b) holds. Then there are sequences xk
1, y

k
1 ∈ (0, λk), zk ∈ Rn−1,

tk ∈ R such that Vλk
u(xk

1, z
k, tk) < 0 and u(yk

1 , z
k, tk) ≥ ε0. We may assume that

xk
1 → a and yk

1 → b for some a, b ∈ [0, λ0] . Consider the functions

uk(x, t) := u(x1, x
′ + zk, t + tk), x = (x1, x

′) ∈ Rn, t ∈ R.

Each of them is a positive solution of (2.3) satisfying Vλk
uk(x

k
1, 0, 0) < 0, uk(y

k
1 , 0, 0) ≥

ε0 and Vλ0uk ≥ 0 in Tλ0 × R (the last inequality follows from the definition of λ0

and continuity). Moreover, the sequence uk is uniformly bounded. Using standard
parabolic estimates, one shows that if uk is replaced by a subsequence, then it con-
verges in C2,1

loc (Rn+1) to a nonnegative solution ũ of (2.3). The above properties of
uk imply that Vλ0ũ(a, 0, 0) ≤ 0, ũ(b, 0, 0) ≥ ε0, and Vλ0ũ ≥ 0 in Tλ0 × R. Since ũ is
nontrivial and f(0) = 0 the maximum principle implies that ũ is positive everywhere.
Consequently, ṽ := Vλ0ũ solves the corresponding problem (2.7) with λ = λ0 and
therefore ṽ > 0 in Tλ0 × R. It follows in particular that necessarily a = λ0. By the
Hopf principle,

2ũx1(λ0, 0, 0) = −∂x1Vλ0ũ(x1, 0, 0)


x1=λ0
> 0.

Consequently, ũx1(x1, 0, 0) is bounded below by a positive constant on an interval
around λ0 and this remains valid if ũ is replaced by uk ≈ u. That is, there is δ > 0
such that

∂x1u(x1, z
k, tk) = ∂x1uk(x1, 0, 0) > 0, x1 ∈ [λ0 − δ, λ0 + δ], (2.15)

for all sufficiently large k. However, since 2λk−xk
1 > xk

1 both belong to [λ0− δ, λ0 + δ]
for large k, (2.15) contradicts the assumption that Vλk

u(xk
1, z

k, tk) < 0.

We have shown that (b) leads to a contradiction. Assume now that (a) holds.
Consider the problem (2.7) with λ = λk and k sufficiently large. We are going to
apply the maximum principle on the set Zk (assumed to be nonempty). The boundary
conditions in (2.7) imply that v = Vλk

u = 0 on ∂Zk. Next observe that property (a),
in conjunction with (2.8), f ′(0) ≤ 0 and the definition of mk, implies that for

q̃k := sup
(x,t)∈Zk

cλk(x, t)

we have
lim sup

k→∞
q̃k ≤ 0.

Fix k so large that q := q̃k + γ < λ−2
k π2 (≈ λ−2

0 π2), where γ is some positive constant
and set λ = λk. Apply Lemma 2.5 and let h be the resulting function. As in our
arguments above, w := eγtv/h satisfies problem (2.11). This time we know that γ +
cλ − q ≤ 0 on Zk only. However, since v vanishes on ∂Zk, we can still apply the
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maximum principle on Zk to conclude that (2.12) holds and, consequently, that v ≥ 0
in Zk. This of course contradicts the definition of Zk. Thus possibility (a) leads to a
contradiction, too, which proves that λ0 = ∞.

We have completed the proof of (c1).

To prove (c2), let u be a positive bounded solution of (2.3). For k = 1, 2, . . .
consider the functions

uk(x1, x
′, t) := u(x1 + k, x′, t), (x1, x

′, t) ∈ (−k,∞)× Rn × R.

Each of them solves the equation ut = ∆u + f(u) on its domain. Since the sequence
is uniformly bounded, using parabolic estimates one shows that a subsequence of
uk converges uniformly on each compact to a bounded nonnegative solution ũ of
ut = ∆u + f(u) on Rn+1. From the monotonicity of u proved in (c1), we further
conclude that ũ is positive and independent of x1. This proves (c2).

Remarks 2.6. (a) In [5], for any positive solution u of (1.1) on {x : |x| < 2}×(−2, 2),
the author proved the integral estimate:∫ 1

−1

∫
|x|<1

ur dx dt ≤ C(n, p), (2.16)

with r = 2p > (n + 2)(p − 1)/2. A pointwise (initial blow-up rate) estimate was
then deduced from (2.16), by using the Harnack inequality for the heat equation
with a potential, and such estimate implies the Liouville-type Theorem A. However,
we observe that Theorem A can be deduced directly from estimate (2.16) by the
following simple homogeneity argument. Fix R > 0. If u is a solution of (2.1), then
so is v(x, t) := R2/(p−1)u(Rx, R2t). If follows from (2.16) applied to v that∫ R2

−R2

∫
|y|<R

ur(y, s) dy ds = Rn+2

∫ 1

−1

∫
|x|<1

ur(Rx, R2t) dx dt

= Rn+2−2r/(p−1)

∫ 1

−1

∫
|x|<1

vr(x, t) dx dt ≤ C(n, p)Rn+2−2r/(p−1).

Since r > (n+2)(p−1)/2, by letting R →∞, we conclude that
∫∞
−∞

∫
Rn ur(y, s) dy ds =

0, hence u ≡ 0.

(b) In the case n = 1, Theorem 2.1(i) can be proved alternatively by using
intersection-comparison arguments similar to those in [27].

3 Problems without boundary conditions

We consider equation (1.2) for x ∈ Ω and t ∈ (0, T ), where Ω is an arbitrary domain
in Rn and T > 0. By a solution we mean a classical solution u ∈ C2,1(Ω× (0, T )). We
use the usual distance function in dist(x, ∂Ω), which we assume to equal ∞ if Ω = Rn.
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Theorem 3.1. Let p > 1, T > 0, Ω be an arbitrary domain of Rn, f : [0,∞) → R be
a continuous function such that

lim
u→∞

u−pf(u) = ` ∈ (0,∞), (3.1)

and u be a (nonnegative) solution of (1.2) on Ω× (0, T ). Assume that either

p < pB, or p < pS, Ω is symmetric and u is radial. (3.2)

(i) Then there holds

u(x, t) ≤ C
(
1 + t−

1
p−1 + (T − t)−

1
p−1 + dist−

2
p−1 (x, ∂Ω)

)
, x ∈ Ω, 0 < t < T, (3.3)

with a constant C = C(n, f) > 0, independent of Ω, T and u.

(ii) If f(u) = up, then conclusion (3.3) can be replaced by

u(x, t) ≤ C(n, p)
(
t−

1
p−1 +(T−t)−

1
p−1 +dist−

2
p−1 (x, ∂Ω)

)
, x ∈ Ω, 0 < t < T. (3.4)

As immediate consequences of Theorem 3.1 in the case of Rn, we obtain a universal
decay rate for all global solutions of (1.1) in Rn × (0,∞) and universal initial and
final blow-up rates for solutions of (1.2) in Rn × (0, T ).

Corollary 3.2. Let p > 1 and u be a global (nonnegative) solution of (1.1) on Rn ×
(0,∞). Assume (3.2). Then there holds

u(x, t) ≤ C(n, p) t−
1

p−1 , x ∈ Rn, t > 0. (3.5)

Corollary 3.3. Let p > 1, T > 0 and u be a (nonnegative) solution of (1.2) on
Rn × (0, T ). Assume (3.1), (3.2).

(i) Then there holds

u(x, t) ≤ C(n, f)
(
1 + t−

1
p−1 + (T − t)−

1
p−1

)
, x ∈ Rn, 0 < t < T. (3.6)

(ii) If f(u) = up, then conclusion (3.6) can be replaced by

u(x, t) ≤ C(n, p)
(
t−

1
p−1 + (T − t)−

1
p−1

)
, x ∈ Rn, 0 < t < T. (3.7)

Corollary 3.2 in the case p < pB is a direct consequence of [5]. The radial case
for p < pS is new. Besides [5], this partially improves various known results. In [21],
the same decay rate was obtained for global solutions of the Cauchy problem for all
p < pS, but under the strong assumption that the initial data u0 has Gaussian decay
at ∞ (and with a constant C depending on u0). In [34], for p < pS and u0 ∈ L2 ∩L∞,
the decay of global solutions was shown, but with no determined decay rate. In [25],
the universal decay rate (3.5) was shown for n ≤ 3 and p < pS, but only for radial
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solutions which are nonincreasing in |x|. Finally in [27], for p < pS, the decay of global
solutions was shown (without definite rate) when u0 ∈ L∞ and u is radial or n = 1.

Corollary 3.3 for p < pB and f(u) = up is also a direct consequence of [5]. The
other cases are new. As for final blow-up rates for the Cauchy problem with p < pS

and f satisfying (3.1), the classical result of [17] shows that u(x, t) ≤ C(T − t)−1/(p−1)

in Rn × (0, T ), but with a constant depending on the initial data u0. The universal
estimate (3.7) for p < (n + 2)/n is a consequence of [1] (see also [2, 3]). In [25], it
was shown for f(u) = up, p < pS and n ≤ 3, but only for radial, radially decreasing
solutions.

Remarks 3.4. (a) The conclusions of Theorem 3.1 and Corollaries 3.2 and 3.3 remain
true if we replace assumption (3.2) by the assumption that equation (2.1) does not
admit any bounded nontrivial solution. Conversely, it is clear that any of the estimates
(3.4), (3.5) or (3.7) implies the nonexistence of nontrivial (even unbounded) solutions
to (2.1). Therefore, we see that all these properties are essentially equivalent (see [28]
for a similar phenomenon in the case of elliptic problems).

(b) The assumption p < pS in the above results cannot be improved, in general,
due to the existence of nontrivial bounded (radial) solutions of ∆u + up = 0 in Rn for
p ≥ pS. For n ≥ 11 and p larger than a certain exponent p∗(n) (> pS), it has even
been shown [29] that unbounded global (classical) solutions of (1.1) in Rn × [0,∞)
exist for some bounded initial data. On the other hand, if we consider the radial case
and we restrict ourselves to symmetric domains Ω that do not contain the origin then
Theorem 3.1 (and Theorem 4.1 below) remain true for any p > 1. This follows from
the proofs of those theorems.

(c) Consider the case f(u) = up and Ω = Rn. It is well-known (for any p > 1)
that if u ceases to exist (in the classical sense) at t = T , then the blow-up rate satisfies
supRn u(·, t) ≥ C(p)(T − t)−1/(p−1), which shows the optimality of estimate (3.7) on
(T/2, T ). As for the decay rate in (3.5) and the initial blow-up rate (i.e. (3.7) on
(0, T/2)), they are optimal for (n + 2)/n < p < pS, due to the existence of positive
(radial) self-similar solutions of the form t−1/(p−1)f(|x|t−1/2) [19]. When p ≤ (n+2)/n,
there are no global solutions in Rn × [0,∞) due to the well-known Fujita result, but
the order of the (optimal) initial blow-up rate for local solutions is then t−n/2 [5]. More
precisely, [5] implies u(x, t) ≤ C(n, p)T (n/2)−1/(p−1)t−n/2 in Rn × (0, T/2].

(d) Estimate (3.3) can be expressed in a more concise equivalent form by using
the parabolic distance

dP ((x, t), (y, s)) := |x− y|+ |t− s|1/2.

Namely, denote D = Ω× (0, T ), ∂D = (∂Ω× [0, T ])∪ (Ω×{0, T}) the topological (not
parabolic) boundary of D in Rn+1, and dP ((x, t), ∂D) = inf(y,s)∈∂D dP ((x, t), (y, s)).
Then estimate (3.3) can be restated as

u(x, t) ≤ C
(
1 + d

− 2
p−1

P ((x, t), ∂D)
)
, (x, t) ∈ D. (3.8)
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In fact, in the nonradial case we will prove this estimate for any domain D ⊂ Rn+1, not
necessarily of the form Ω× (0, T ). In the radial case we will assume D = Ω× (T1, T2),
where Ω is symmetric and −∞ ≤ T1 < T2 ≤ ∞.

Recall that the typical singularity estimate in the elliptic case (cf. [28]) takes the
form

u(x) ≤ C
(
1 + dist−

2
p−1 (x, ∂Ω)

)
, x ∈ Ω.

Formula (3.8) thus allows us to state the elliptic and parabolic versions of our results
in a unified and natural way.

(e) Let dP be as in the previous remark and let D be any domain in Rn+1 (or, in
the radial case, D = Ω × (T1, T2), where Ω is symmetric and −∞ ≤ T1 < T2 ≤ ∞).
In the proof of Theorem 3.1 we will prove stronger estimates than announced:

u(x, t) + |∇u(x, t)|
2

p+1 ≤ C
(
1 + d

− 2
p−1

P ((x, t), ∂D)
)
, (x, t) ∈ D, (3.9)

instead of (3.3), and

u(x, t) + |∇u(x, t)|
2

p+1 ≤ Cd
− 2

p−1

P ((x, t), ∂D), (x, t) ∈ D, (3.10)

instead of (3.4). If f is Hölder continuous then an obvious modification of the proof
guarantees estimates for the second spatial derivatives and the first time derivative.
More precisely, one obtains the estimate

u + |∇u|
2

p+1 + max
i,j

|uxixj
|
1
p + |ut|

1
p ≤ C

(
1 + d

− 2
p−1

P ((x, t), ∂D)
)
, (x, t) ∈ D,

instead of (3.3) and analogously for (3.4).

(f) Similarly as in [28, Theorem 2.3], Theorem 3.1 can be used in order to estab-
lish spatial decay of solutions of (1.1) in the case of exterior (spatial) domains. For
example, if p < pB and u is a (nonnegative) solution of (1.1) in {x ∈ Rn : |x| > R}×R
then

u(x, t) ≤ C(n, p)|x|−
2

p−1 , |x| > 2R, t ∈ R.

Remark (b) above guarantees that this bound remains true for any p > 1 provided u
is radial.

4 Problems with boundary conditions

We now consider the boundary value problem:

ut −∆u = f(u), x ∈ Ω, 0 < t < T,

u = 0, x ∈ ∂Ω, 0 < t < T.

}
(4.1)

Here Ω is a (possibly unbounded, uniformly C2) smooth domain in Rn. By a solution
of (4.1), we mean a classical solution u ∈ C2,1(Ω× (0, T )) ∩ C(Ω× (0, T )).
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Theorem 4.1. Let p > 1, 0 < T ≤ ∞, f : [0,∞) → R be a continuous function
satisfying (3.1), and u be a (nonnegative) solution of (4.1). Assume that either

p < pB, or p < pS, Ω is symmetric and u is radial. (4.2)

(i) If T < ∞, then there holds

u(x, t) ≤ C(1 + t−
1

p−1 + (T − t)−
1

p−1 ), x ∈ Ω, 0 < t < T, (4.3)

where C = C(f, Ω).

(ii) If u is global (i.e. T = ∞), then we have

u(x, t) ≤ C(1 + t−
1

p−1 ), x ∈ Ω, t > 0,

where C = C(f, Ω).

We first point out that, even letting the universality of the constant C aside,
Theorem 4.1 improves the known results concerning final blow-up rate estimates of
the form

u(x, t) ≤ C(T − t)−1/(p−1), x ∈ Ω, 0 < t < T. (4.4)

Indeed, estimate (4.4) with C depending on the solution u was known before for
f(u) = up, p < pS, and for all blowing-up positive solutions, but under the assumption
that Ω is convex [17, 18], or in general domains, but only for p ≤ (n + 3)/(n + 1)
[11]. If one restricts to particular classes of solutions, (4.4) is known to be true for
all p > 1, in general bounded domains if ut ≥ 0 [13], or in an annulus if u is radial
[24]. Theorem 4.1 implies (4.4) in general domains whenever p < pB (greater than
(n + 3)/(n + 1)).

Theorem 4.1 also provides universal bounds for global solutions (away from t = 0),
as well as universal estimates for the initial and final blow-up rates of local solutions.
For general bounded domains, such results have been obtained (by completely different
methods) in [33] for f(u) = up under the assumption p < pS if n ≤ 4, and p <
(n− 1)/(n− 3) (< pB) if n ≥ 5. However, while we here find 1/(p− 1) as initial blow-
up rate exponent, no explicit value was obtained in [33]. In fact, the exponent 1/(p−1)
is optimal when (n + 3)/(n + 1) < p < pS, but not when 1 < p < (n + 3)/(n + 1).
Indeed it was shown in [33] that the optimal initial blow-up rate in that range is
t−(n+1)/2 (note the difference with the Cauchy problem, cf. Remark 3.4(c)). Earlier
results on universal bounds for bounded domains were proved in [12, 31]. For more
general nonlinearities f(u), some results without assumption of power behavior at
infinity (but with relatively slow growth) can be found in [12, 33].

Finally, let us recall that an a priori estimate of global solutions in bounded
domains is known in the full range 1 < p < pS [16] (and for sign-changing solutions as
well [30]). In these results, the constants depend on the sup norm of the initial data.
Recall also that universal bounds fail for sign-changing solutions (see e.g. [12]).
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In the case of the model equation (1.1) in a half-space, we have a stronger estimate
which in particular yields a universal time decay of global solutions.

Theorem 4.2. Assume 1 < p < pB, 0 < T < ∞ (respectively T = ∞), and let u be
a (nonnegative) solution of (4.1) with f(u) = up and Ω = Rn

+. Then there holds

u(x, t) ≤ C(n, p)(t−
1

p−1 + (T − t)−
1

p−1 ), x ∈ Rn
+, 0 < t < T,

respectively

u(x, t) ≤ C(n, p)t−
1

p−1 , x ∈ Rn
+, t > 0.

Remarks 4.3. (a) Theorem 4.1 remains true under the assumption that (2.1) does not
admit any bounded nontrivial solution (instead of assumption (4.2)). In particular, if
one were able to prove Theorem A up to p < pS, this would imply universal estimates
for problem (4.1) in the optimal range 1 < p < pS (without symmetry restrictions).

(b) For monotone in time solutions, the symmetry assumption in Theorem 4.1
can be removed (and the conclusion strengthened). Assume p < pS, (3.1), and let u
be a solution of (4.1), or of (1.2) if Ω = Rn, such that ut ≥ 0. Then one can prove
(see Remark 5.3(b)) that

u(x, t) ≤ C(Ω, f)(1 + (T − t)−1/(p−1)), x ∈ Ω, 0 < t < T, (4.5)

and that
u(x, t) ≤ C(n, p)(T − t)−1/(p−1), x ∈ Rn, 0 < t < T (4.6)

if Ω = Rn and f(u) = up.

(c) A similar improvement as in Remark 3.4(e) is valid for problems with bound-
ary conditions as well.

5 Proof of universal a priori estimates

A key-ingredient in our proofs is the following Lemma from [28].

Lemma 5.1. Let (X, d) be a complete metric space and let ∅ 6= D ⊂ Σ ⊂ X, with Σ
closed. Set Γ = Σ \D. Finally let M : D → (0,∞) be bounded on compact subsets of
D and fix a real k > 0. If y ∈ D is such that

M(y) dist(y, Γ) > 2k, (5.1)

then there exists x ∈ D such that

M(x) dist(x, Γ) > 2k, M(x) ≥ M(y), (5.2)

and
M(z) ≤ 2M(x) for all z ∈ D ∩BX

(
x, k M−1(x)

)
.
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Remarks 5.2. (a) In [28], Lemma 5.1 was used with X = Rn, Σ = Ω (Ω domain of
Rn), and Γ ⊂ ∂Ω, with the usual Euclidean distance d(x, y) = |x− y|. Here, we shall
usually take X = Rn+1 with the parabolic distance dP

(
(x, t), (y, s)

)
= |x−y|+|t−s|1/2,

D ⊂ Rn+1 and Γ will be a part (or the whole of) the topological boundary of D in X.

(b) If Σ = Ω× [0, T ] and one knows that M is bounded on Ω× [ε, T − ε] for each
ε > 0, then it is sufficient to apply Lemma 5.1 to the function N(t) = ‖M(·, t)‖∞ with
X = R, Σ = [0, T ] and D = (0, T ). However this need not be the case if one deals
with a parabolic equation without boundary conditions (or in an unbounded spatial
domain Ω).

We turn to the proof of Theorem 3.1. We will assume that u solves equation (1.2)
in D, where D is an arbitrary domain of Rn+1 in the nonradial case, or D = Ω×(T1, T2)
with −∞ ≤ T1 < T2 ≤ ∞ and Ω a symmetric domain in the radial case. We will prove
estimates (3.9) and (3.10) from Remark 3.4(e). We first consider the case f(u) = up.

Proof of Theorem 3.1 (ii). Assume that estimate (3.10) fails. Then, there exist se-
quences Dk, uk, (yk, τk) ∈ Dk, such that uk solves (1.1) in Dk and the functions

Mk := u
p−1
2

k + |∇uk|
p−1
p+1 , k = 1, 2, . . . , (5.3)

satisfy
Mk(yk, τk) > 2k dP

−1((yk, τk), ∂Dk), (5.4)

where
dP

(
(x, t), (y, s)

)
= |x− y|+ |t− s|1/2. (5.5)

We will use Lemma 5.1 with X = Rn+1, equipped with the parabolic distance dP ,
Σ = Σk = Dk, D = Dk, and Γ = ∂Dk, the topological boundary of Dk in X. By this
lemma, it follows that there exists (xk, tk) ∈ Dk such that

Mk(xk, tk) ≥ Mk(yk, τk), Mk(xk, tk) > 2k dP
−1((xk, tk), ∂Dk), (5.6)

and

Mk(x, t) ≤ 2Mk(xk, tk), for all (x, t) ∈ Rn+1

such that dP ((x, t), (xk, tk)) ≤ k λk,
(5.7)

where
λk = M−1

k (xk, tk).

(Notice that (5.6) implies dP ((xk, tk), ∂Dk) > 2k λk. Hence any (x, t) satisfying the
condition dP ((x, t), (xk, tk)) ≤ k λk in (5.7) is automatically contained in Dk.)

We now consider the nonradial and radial cases separately.

A. Nonradial Case. We rescale uk by setting

vk(y, s) := λ
2/(p−1)
k uk(xk + λky, tk + λ2

ks), (y, s) ∈ D̃k, (5.8)
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where
D̃k := {y ∈ Rn : |y| < k/2} × (−k2/4, k2/4).

The function vk solves

∂svk −∆yvk = vp
k, (y, s) ∈ D̃k, (5.9)

Moreover, [
v

p−1
2

k + |∇vk|
p−1
p+1

]
(0, 0) = λkMk(xk, tk) = 1 (5.10)

and [
v

p−1
2

k + |∇vk|
p−1
p+1

]
(y, s) ≤ 2, (y, s) ∈ D̃k. (5.11)

By using parabolic Lq estimates, Schauder estimates and standard imbeddings, we
deduce that some subsequence of vk converges in C2,1

loc (Rn×R) to a (classical) solution

v ≥ 0 of (1.1) in Rn × R. Moreover, [v
p−1
2 + |∇v|

p−1
p+1 ](0, 0) = 1 by (5.10), so that v

is nontrivial, and v, ∇v are bounded, due to (5.11). This contradicts Theorem A and
proves Theorem 3.1(ii) in the non-radial case.

B. Radial Case. In this case, there exist −∞ ≤ T1k < T2k ≤ ∞, 0 ≤ R1k < R2k ≤
∞ such that Dk = Ωk × (T1k, T2k), with Ωk = {x : R1k < |x| < R2k} if R1k > 0 and
Ωk = {x : |x| < R2k} if R1k = 0.

Since uk is radial, we will write (without fearing confusion) uk = uk(r, t) and
Mk = Mk(r, t), where r = |x|. Then uk solves the equation

ut − urr −
n− 1

r
ur = up (5.12)

for (r, t) ∈ (R1k, R2k) × (T1k, T2k). If R1k = 0 (that is Ωk is a ball or the whole of
Rn) then the function uk is a C2,1 function defined on [0, R2k) × (T1k, T2k) satisfying
∂ruk(0, t) = 0, t ∈ (T1k, T2k). Since uk is radial, we may assume xk = (rk, 0, · · · , 0).
Formula (5.7) then implies that

Mk(r, t) ≤ 2Mk(rk, tk) for all r > 0, t ∈ R such that |r − rk|+ |t− tk|1/2 ≤ k λk.

Next we distinguish two cases:

(a) the sequence {rk/λk} is bounded;

(b) the sequence {rk/λk} is unbounded.

In case (a) we may assume rk/λk → ρ0 ≥ 0 as k →∞. Notice also that if R1k > 0
then (5.6) implies

rk > rk −R1k ≥ dP ((xk, tk), ∂Dk) > 2kλk,

which is not possible for k large due to the boundedness of {rk/λk}. Hence R1k = 0
for k sufficiently large and we also have rk/λk < k/2 for k sufficiently large. For such
k, set

vk(ρ, s) := λ
2/(p−1)
k uk(λkρ, tk + λ2

ks), (ρ, s) ∈ D̃k,
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where
D̃k := (0, k/2)× (−k2/4, k2/4).

The function vk solves the equation

vs − vρρ −
n− 1

ρ
vρ = vp (5.13)

in D̃k, ∂ρvk(0, s) = 0 for |s| < k2/4,[
v

p−1
2

k + |∂ρvk|
p−1
p+1

]
(rk/λk, 0) = 1

and [
v

p−1
2

k + |∂ρvk|
p−1
p+1

]
(ρ, s) ≤ 2, (ρ, s) ∈ D̃k.

As in the nonradial case, passing to the limit we obtain a nonnegative bounded solution
v of (5.13) in (0,∞)× R satisfying vρ(0, s) = 0 for all s and[

v
p−1
2 + |∂ρv|

p−1
p+1

]
(ρ0, 0) = 1,

which contradicts Theorem B.

In case (b) we may assume rk/λk →∞ as k →∞. Now we set

vk(ρ, s) := λ
2/(p−1)
k uk(rk + λkρ, tk + λ2

ks), (ρ, s) ∈ D̃k,

where
D̃k := (−min(rk/λk, k/2), k/2)× (−k2/4, k2/4).

Then vk solves the equation

vs − vρρ −
n− 1

ρ + rk/λk

vρ = vp

in D̃k, [
v

p−1
2

k + |∂ρvk|
p−1
p+1

]
(0, 0) = 1

and [
v

p−1
2

k + |∂ρvk|
p−1
p+1

]
(ρ, s) ≤ 2, (ρ, s) ∈ D̃k.

Passing to the limit we obtain a nonnegative bounded solution of the equation

vs − vρρ = vp in R× R

satisfying [
v

p−1
2 + |∂ρv|

p−1
p+1

]
(0, 0) = 1,

which contradicts Theorem A with n = 1. This concludes the proof of Theorem 3.1(ii).
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Next we deal with general f .

Proof of Theorem 3.1 (i). We first consider the nonradial case. Assume that estimate
(3.9) fails. Keeping the same notation as in the proof of part (ii), we have sequences
Dk, uk, (yk, τk) ∈ Dk, such that uk solves (1.2) in Dk and

Mk(yk, τk) > 2k
(
1 + dP

−1((yk, τk), ∂Dk)
)

> 2k dP
−1((yk, τk), ∂Dk).

Then, formulae (5.6)–(5.11) are unchanged except that the function vk now solves

∂svk(y, s)−∆yvk(y, s) = fk(vk(y, s)) := λ
2p

p−1

k f(λ
−2
p−1

k vk(y, s)), (y, s) ∈ D̃k (5.14)

instead of (5.9), and that (since Mk(xk, tk) ≥ Mk(yk, τk) > 2k) we also have

λk → 0, k →∞.

Since −C ≤ f(s) ≤ C(1+ sp), s ≥ 0, due to (3.1) (and f being continuous), it follows
that

−Cλ
2p/(p−1)
k ≤ fk(vk(y, s)) ≤ C ′, (y, s) ∈ D̃k. (5.15)

By using parabolic Lq estimates, standard imbeddings, and (3.1), we deduce that some
subsequence of vk converges in C1,0

loc (Rn × R) to a function 0 ≤ v ∈ W 2,1,q
loc (Rn × R),

1 < q < ∞, which satisfies vs−∆v ≥ 0. Moreover [v
p−1
2 + |∇v|

p−1
p+1 ](0, 0) = 1 by (5.10).

Therefore, v is nontrivial, and by the maximum principle there exists s∗ ∈ [−∞, 0)
such that v(y, s) = 0 for any y ∈ Rn and s ≤ s∗, v(y, s) > 0 for any y ∈ Rn and
s > s∗. Using assumption (3.1) again, we deduce that for each (y, s) ∈ Rn × (s∗,∞),
fk(vk(y, s)) → ` vp(y, s) as k →∞. Consequently, v is a solution of

vs −∆v = ` vp, in Rn × (s∗,∞)

(and furthermore, v and ∇v are bounded due to (5.11)). Now the uniqueness of
the (continuous bounded) solution of the corresponding Cauchy problem guarantees
s∗ = −∞. However, this contradicts Theorem A and proves Theorem 3.1(i) in the
non-radial case.

The proof of Theorem 3.1(i) in the radial case is a straightforward modification
of the above proof and of that of part (ii) in the radial case.

Proof of Theorem 4.1. It is obviously sufficient to prove assertion (i), i.e. the case
T < ∞.

Assume that estimate (4.3) fails. Then, there exist sequences Tk ∈ (0,∞), uk,
yk ∈ Ω, sk ∈ (0, Tk), such that uk solves (4.1) (with T replaced by Tk) and the
functions

Mk := u
p−1
2

k , k = 1, 2, . . . ,

satisfy
Mk(yk, sk) > 2k (1 + d−1

k (sk)), (5.16)
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where dk(t) := (min(t, Tk − t))1/2. We will use Lemma 5.1 with X = Rn+1, equipped
with the parabolic distance dP defined by (5.5), Σ = Σk = Ω × [0, Tk], D = Dk =
Ω× (0, Tk), and Γ = Γk = Ω× {0, Tk}. Notice that

dk(t) = dP

(
(x, t), Γk

)
, (x, t) ∈ Σk.

By Lemma 5.1, it follows that there exist xk ∈ Ω, tk ∈ (0, Tk) such that

Mk(xk, tk) > 2k d−1
k (tk), (5.17)

Mk(xk, tk) ≥ Mk(yk, sk) > 2k,

and
Mk(x, t) ≤ 2Mk(xk, tk), (x, t) ∈ Dk ∩ B̃k, (5.18)

where
B̃k :=

{
(x, t) ∈ Rn+1; |x− xk|+ |t− tk|1/2 ≤ k λk

}
,

and
λk := M−1

k (xk, tk) → 0. (5.19)

Observe that for all (x, t) ∈ B̃k, we have |t − tk| ≤ k2λ2
k < d2

k(tk) = min(tk, Tk − tk)
by (5.17), hence t ∈ (0, Tk). It follows that(

Ω ∩ {|x− xk| < kλk

2
}
)
× (tk −

k2λ2
k

4
, tk +

k2λ2
k

4
) ⊂ Dk ∩ B̃k. (5.20)

We now consider the nonradial and radial cases separately.

A. Nonradial Case. We rescale uk by setting

vk(y, s) := λ
2/(p−1)
k uk(xk + λky, tk + λ2

ks), (y, s) ∈ D̃k,

where
D̃k :=

(
λ−1

k (Ω− xk) ∩ {|y| < k/2}
)
× (−k2/4, k2/4).

The function vk solves

∂svk −∆yvk = fk(vk(y, s)), (y, s) ∈ D̃k,

vk = 0, y ∈ λ−1
k (∂Ω− xk), |y| < k/2, |s| < k2/4,

}
(5.21)

where

fk(vk(y, s)) := λ
2p

p−1

k f(λ
−2
p−1

k vk(y, s)).

Moreover we have vk(0, 0) = 1 and (5.18) implies

vk ≤ C := 2
2

p−1 , (y, s) ∈ D̃k, (5.22)

hence
−Cλ

2p/(p−1)
k ≤ fk(vk(y, s)) ≤ C, (y, s) ∈ D̃k (5.23)
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due to (3.1), with C > 0 independent of k. Let ρk := dist(xk, ∂Ω). By passing to a
subsequence, we may assume that either

ρk/λk →∞, (5.24)

or

ρk/λk → c ≥ 0. (5.25)

In case (5.24) holds, by using (5.21), (5.22), (5.23), (3.1), (5.19), interior parabolic
estimates and standard imbeddings, and arguing as after formula (5.15), we deduce
that some subsequence of vk converges in Cα

loc(Rn × R), 0 < α < 1, to a (classical)
solution v ≥ 0 of

∂sv −∆yv = ` vp, x ∈ Rn, s ∈ R, (5.26)

with v(0, 0) = 1. This contradicts Theorem A.

In case (5.25) holds, denote Hc := {y ∈ Rn; y1 > −c}. By performing a suitable
orthogonal change of coordinates, (cf. [16] or [32] for example) using (5.19), (5.21),
(5.22), (5.23), (3.1), interior-boundary parabolic estimates and standard imbeddings,
we obtain a subsequence of vk which converges in Cα

loc(Hc), 0 < α < 1, to a (classical)
bounded solution v ≥ 0 of

∂sv −∆yv = ` vp, y ∈ Hc, s ∈ R,

u = 0, y ∈ ∂Hc, s ∈ R,

}
(5.27)

with v(0, 0) = 1 (hence c > 0). This contradicts Theorem 2.1(i).

B. Radial Case. The end of the proof is a modification of the “nonradial” proof
as in the case of Theorem 3.1. Since Ω is symmetric, there exist 0 ≤ R1 < R2 ≤ ∞
such that Ω = {x : R1 < |x| < R2} if R1 > 0 and Ω = {x : |x| < R2} if R1 = 0.
As in the proof of Theorem 3.1 we will write uk = uk(r, t) and Mk = Mk(r, t), where
r = |x|. Then uk solves the equation

ut − urr −
n− 1

r
ur = f(u) (5.28)

in (R1, R2)× (0, Tk) and uk ∈ C2,1([0, R2)× (0, T )), ∂ruk(0, t) = 0 if R1 = 0. By (5.18)
and (5.20) we have

Mk(r, t) ≤ 2Mk(rk, tk), for all (r, t) ∈ (R1, R2)× R
such that |r − rk| ≤ k λk/2 and |t− tk| ≤ k2 λ2

k/4.

Next we distinguish two cases:

(a) the sequence {rk/λk} is bounded (this is possible only if R1 = 0);

(b) the sequence {rk/λk} is unbounded.
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In case (a) we may assume rk/λk → ρ0 ≥ 0 as k → ∞. Then rk/λk < k/2 for k
sufficiently large and we set

vk(ρ, s) := λ
2/(p−1)
k uk(λkρ, tk + λ2

ks), (ρ, s) ∈ D̃k,

where
D̃k := (0, min{k/2, R2/λk})× (−k2/4, k2/4).

The function vk solves the equation

∂svk − ∂2
ρρvk −

n− 1

ρ
∂ρvk = fk(vk(ρ, s)) := λ

2p
p−1

k f(λ
−2
p−1

k vk(ρ, s)) (5.29)

in D̃k, ∂ρvk(0, s) = 0 for |s| < k2/4,

vk(rk/λk, 0) = 1, v
p−1
2

k (ρ, s) ≤ 2, (ρ, s) ∈ D̃k.

Passing to the limit we obtain a nontrivial nonnegative bounded solution of

vs − vρρ −
n− 1

ρ
vρ = `vp, ρ ∈ (0,∞), s ∈ R,

satisfying vρ(0, s) = 0 for any s, which contradicts Theorem B.

In case (b) we may assume rk/λk →∞ as k →∞. Now we set

vk(ρ, s) := λ
2/(p−1)
k uk(rk + λkρ, tk + λ2

ks), (y, s) ∈ D̃k,

where

D̃k := {ρ ∈ ((R1 − rk)/λk, (R2 − rk)/λk) : |ρ| < k/2} × (−k2/4, k2/4).

Then vk solves

∂svk − ∂2
ρρvk −

n− 1

ρ + rk/λk

∂ρvk = fk(vk), in D̃k,

vk = 0, ρ ∈ {(R1 − rk)/λk, (R2 − rk)/λk} ∩ {|ρ| < k/2}, |s| < k2/4,

where fk is as in (5.29). Moreover, vk(0, 0) = 1, v
p−1
2

k ≤ 2 in D̃k, hence |fk(vk)| ≤ C1

in D̃k.

Let ηk := min{R2 − rk, rk − R1}. By passing to a subsequence, we may assume
that either

ηk/λk →∞, (5.30)

or
ηk/λk → c0 ≥ 0. (5.31)

If (5.30) holds then passing to the limit we obtain a nontrivial nonnegative
bounded solution of the equation

vs − vρρ = `vp
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in R× R, which contradicts Theorem A.

If (5.31) holds then passing to the limit we obtain a nontrivial nonnegative
bounded solution of the problem

vs − vρρ = `vp, ρ ∈ H, s ∈ R,

v = 0, ρ ∈ ∂H, s ∈ R,

where either H = (−c0,∞) or H = (−∞, c0), which contradicts Theorem 2.1(i).

Proof of Theorem 4.2. The proof is similar to that of Theorem 4.1 in the nonradial
case. The only difference is that we assume

Mk(yk, sk) > 2k d−1
k (sk)

instead of (5.16). Also we no longer have λk → 0, but since fk(vk) = vp
k in (5.21) and

Ω = Rn
+, the rest of the proof carries over.

Proof of Theorems 2.1(ii) and 2.3. Let u be a nonnegative solution of (2.1), resp. (2.2).
Fix t0 ∈ R and τ > 0. Applying Corollary 3.2, resp. Theorem 4.2, to the global solution
ut0,τ := u(·, ·+ t0 − τ), t > 0, we obtain

u(x, t0) = ut0,τ (x, τ) ≤ C(n, p)τ−1/(p−1),

for x ∈ Rn, resp. x ∈ Rn
+. Letting τ →∞, we conclude that u ≡ 0.

Remarks 5.3. (a) Lemma 5.1 and the method of proof of Theorems 3.1 and 4.1 are
a generalization of an idea of B. Hu [20] (see also e.g. [7, 11, 23, 32, 25]). In those
works, blow-up rate estimates and a priori bounds of global solutions were derived
for various types of superlinear parabolic problems. By using a property similar to
Lemma 5.1 (but concerning functions of the time variable only), it was shown that
if a solution u were violating a suitable estimate, then the function M(t) := ‖u(t)‖∞
would satisfy M(s) ≤ 2M(tk) for all s ∈ [tk, tk + kM1−p(tk)] and some sequence of
times tk. Then, by a rescaling argument similar to that used in the proof of Theorem
3.1, one was led to a contradiction with the corresponding nonexistence theorem.
However, in all those works, the constants in the estimates depend on initial data. A
main novelty in the present paper is the universality of the estimates and, in relation
to this, the derivation of initial blow-up rates (and also of time decay and spatial
singularity estimates). These improvements are made possible by Lemma 5.1 and by
an appropriate application of the rescaling procedure.

(b) Let us justify Remark 4.3(b) concerning monotone in time solutions. If ut ≥ 0,
then, in the proof of Theorem 4.1 (nonradial case), the rescaled solutions vk(y, s)
satisfy ∂svk ≥ 0. Consequently, the bounded, positive solution v(y, s) of the limiting
problem (5.26) or (5.27) also satisfies vs ≥ 0. It is then easy to show that v(y, s)
converges, as s → +∞, to a (bounded) positive solution w of the stationary problem
−∆w = wp, contradicting elliptic Liouville-type theorems for p < pS: see [14] or [8]
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for the whole space, [15] for the half-space. Thus we arrive at estimate (4.3). Now,
since ut ≥ 0, we have

u(x, t) ≤ u(x, T/2) ≤ C(f, Ω)(1 + T−1/(p−1))

for 0 < t < T/2, and

u(x, t) ≤ C(f, Ω)(1 + t−1/(p−1) + (T − t)−1/(p−1)) ≤ C(f, Ω)(1 + (T − t)−1/(p−1))

for T/2 ≤ t < T , hence (4.5) holds. In the case f(u) = up, Ω = Rn, (4.5) implies (4.6)
if T = 1. For general T > 0, (4.6) follows by an obvious scaling argument (replacing
u(x, t) by ũ(y, s) := T 1/(p−1)u(

√
Ty, Ts)).

6 Applications and generalizations

Let us first mention an application of the universal estimate (4.3) to non-uniqueness
for an initial-boundary value problem. In [4, Proposition 3] P. Baras proved a universal
bound of the form

u(x, t) ≤ C(δ), t ∈ (δ, T − δ),

for positive radial, radially decreasing solutions of (4.1) with Ω being a ball, f(u) = up

and p < min{n/(n− 2)+, (n + 3)/(n− 1)}. This result was used in order to prove the
non-uniqueness of solutions of the problem

ut −∆u = up, x ∈ Ω, 0 < t < T,

u = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,

 (6.1)

in the class

X(q) = X(q, T ) := C([0, T ), Lq(Ω)) ∩ C2,1(Ω× (0, T )),

1 ≤ q < n(p − 1)/2. (Note that problem (6.1) is well posed in X(q) for any q >
n(p− 1)/2.) Using Theorem 4.1 it is easy to modify the arguments of Baras in order
to show the following assertion (cf. [4, Théorème 1]).

Proposition 6.1. Let Ω be a ball in Rn and (n + 2)/n < p < pS. Fix r > n(p− 1)/2
and assume that u0 ∈ Lr(Ω) is a positive radial, radially decreasing function. Let Tm

denote the maximal existence time of the corresponding solution um of (6.1) in the
class X(r). Denote by ‖ · ‖q the norm in Lq(Ω). Then the following holds true.

(a) For any T ∈ (0, Tm) there exists a function u ≥ um, u 6= um, such that u is a
solution of (6.1) in the class X(q, T ) for any q ∈ [1, n(p− 1)/2), u(·, t) is radial and
radially decreasing,

lim
t→0

‖u(·, t)− u0‖q = 0 for any q ∈ [1, n(p− 1)/2), (6.2)
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lim
t→0

‖u(·, t)‖q = ∞ for any q > n(p− 1)/2, (6.3)

lim
t→T

‖u(·, t)‖q = ∞ for any q > n(p− 1)/2.

(b) If ‖u0‖n(p−1)/2 ≤ c0 (where c0 = c0(Ω, p) > 0 is a certain constant independent
of u0) then Tm = ∞, ‖u(·, t)‖∞ → 0 as t → ∞, and there exists a function u ≥
um, u 6= um, such that u is a solution of (6.1) in the class X(q,∞) for any q ∈
[1, n(p − 1)/2), u(·, t) is radial and radially decreasing, (6.2) and (6.3) are true and
‖u(·, t)‖n(p−1)/2 ≥ c0 for any t > 0.

We next consider some generalizations of our universal bounds. Similarly as in
[28, Theorem 6.1], Theorems 3.1(i) and 4.1 can be easily generalized for nonlinearities
of the form f = f(x, t, u,∇u). More precisely, let f be a Carathéodory function
satisfying

−C1(1 + sp1 + |ξ|q1) ≤ f(x, t, s, ξ) ≤ C1(1 + sp + |ξ|q), (x, t) ∈ D, s ≥ 0, ξ ∈ Rn,

and, for all (x, t) ∈ D,

lim
s→∞, D3(z,τ)→(x,t)

s−pf(z, τ, s, s(p+1)/2ξ) = `(x, t) ∈ (0,∞), (6.4)

uniformly for ξ bounded. Here q = 2p/(p + 1), p1 ∈ (0, p), q1 ∈ (0, q) and if D is
unbounded then we assume that (6.4) also holds for x = ∞ and t = ±∞. Under these
assumptions, Theorems 3.1(i) and 4.1 remain valid. Typical examples meeting these
conditions are given by f = up ± |∇u|q, with 1 ≤ q < 2p/(p + 1). For previous results
on (nonuniversal) blow-up rate estimates and a priori bounds for gradient-depending
nonlinearities, see [7, 11, 32, 25, 35] and the references therein.

Finally, as in the elliptic case (see [28]) we could also prove an analogue of The-
orems 3.1 and 4.1 for systems of the form

ut −∆u = vp,

vt −∆v = uq,

where p, q > 1 (cf. [28, Theorems 4.1–4.3 and Theorems 7.3, 7.5]). However, even
in the elliptic case, optimal Liouville-type theorems are not known (except for the
spatial dimensions n ≤ 3). The situation in the parabolic case is much worse: the only
nonexistence result for the above system in Rn × R is a consequence of the Fujita
result [10] guaranteeing the nonexistence in Rn × R+ for max(α, β) ≥ n, where

α =
2(p + 1)

pq − 1
and β =

2(q + 1)

pq − 1
.

Let us recall from [28] that an optimal condition for an elliptic Liouville-type theorem
should be α + β > n− 2. It is a natural conjecture that this condition plays the same
role in the parabolic case.
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Analyse non linéaire 14 (1997), 1–53.

[3] D. Andreucci and A. Tedeev, Universal bounds at the blow-up time for nonlinear
parabolic equations, Adv. Differ. Equations 10 (2005), 89–120.
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