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Abstract. We consider fully nonlinear parabolic equations on bounded
domains under Dirichlet boundary condition. Assuming that the equa-
tion and the domain satisfy certain symmetry conditions, we prove
that each bounded positive solution of the Dirichlet problem is asymp-
totically symmetric. Compared with previous results of this type,
we do not assume certain crucial hypotheses, such as uniform (with
respect to time) positivity of the solution or regularity of the non-
linearity in time. Our method is based on estimates of solutions of
linear parabolic problems, in particular on a theorem on asymptotic
positivity of such solutions.
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1 Introduction

We consider the Dirichlet problem for a fully nonlinear parabolic equation,

ut = F (t, x, u,Du,D2u), x ∈ Ω, t > 0, (1.1)

u = 0, x ∈ ∂Ω, t > 0. (1.2)

Here Ω is a bounded domain in RN , N ≥ 1,

Du = (uxi
)i=1,...,N , D2u = (uxixj

)i,j=1,...,N ,

and F is an elliptic nonlinearity satisfying suitable regularity assumptions.
We assume that Ω is convex in x1 and symmetric in the hyperplane {x =
(x1, . . . , xN) : x1 = 0}. We also assume certain symmetry and monotonicity
of the function F . A specific example to which our results apply is the
equation

ut = f(t, u, |∇u|,∆u), x ∈ Ω, t > 0,

where f(t, u, η, ξ) is continuous in (t, u, η, ξ) ∈ R4 and Lipschitz in (u, η, ξ), fξ

exists everywhere and fξ ≥ α0 for some positive constant α0. Our goal is to
prove that each global bounded solution u(x, t) is asymptotically symmetric
(even) in x1 and nonincreasing in x1 > 0. In other words, we want to prove
that all limit profiles of u(·, t) as t→∞ are symmetric in x1 and nonincreas-
ing in x1 > 0. Results of this type have been available for parabolic equations
for about a decade (for elliptic equations for much longer). However, using
new ideas, inspired by our recent considerations of similar problems on RN ,
we are now able to remove some essential restrictions imposed in the existing
theorems. We shall be more specific about these theorems, but first let us
briefly discuss similar elliptic results.

There is vast literature on symmetry and monotonicity of positive solu-
tions of elliptic equations. In the classical paper [19], Gidas, Ni and Nirenberg
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proved the following result. If Ω is as above (convex and symmetric in x1),
then each positive solution u of the Dirichlet problem

∆u+ f(u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

has the following symmetry and monotonicity properties:

u(−x1, x2, . . . , xN) = u(x1, x2, . . . , xN) (x ∈ Ω),

ux1(x1, x2, . . . , xN) < 0 (x ∈ Ω, x1 > 0).
(1.4)

The method of moving hyperplanes, which is the basic geometric technique
in this and most of the related papers, was introduced by Alexandrov [1]
and further developed by Serrin [36] ([36] also contains a related result on
radial symmetry). Generalizations and extensions of the original theorems
have been made by many authors, see the surveys [5, 26, 32] for an account
of results, methods and references. In particular, Li [30] considered fully
nonlinear equations on smooth domains and Berestycki and Nirenberg [6]
found a way to deal with general equations on nonsmooth domains (see also
[15]). The following theorem is proved in [6]. Assume u is a positive solution
of the problem

0 = F (x, u,Du,D2u), x ∈ Ω, (1.5)

u = 0, x ∈ ∂Ω, (1.6)

where F satisfies assumptions (F1)-(F3) formulated in Section 2 (of course,
here F is independent of t). Then u has the properties (1.4).

In a very fruitful direction of research, initiated in [20], many results of
a similar flavor were proved for elliptic equations on various unbounded do-
mains; we again refer the reader to the surveys [5, 32]. Other directions
include extensions to more general classes of equations, including degener-
ate ones [14, 37], to elliptic systems [9, 38], and to parabolic equations on
bounded and unbounded domains [2, 3, 4, 8, 13, 16, 18, 23, 33, 34, 35].

Let us discuss in more detail the existing results on asymptotic symmetry
of solutions of nonautonomous parabolic equations. As above, we assume
that Ω is convex in x1 and symmetric in the hyperplane {x ∈ RN : x1 = 0}.
Assume u(x, t) is a solution of a parabolic problem (1.1), (1.2) such that its
orbit {u(·, t) : t > 0} is relatively compact in C(Ω̄) and let us introduce the
ω-limit set of u in this space:

ω(u) := {φ : φ = limu(·, tn) for some tn →∞}.
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By asymptotic monotonicity and symmetry of u we mean the property that
each φ ∈ ω(u) is monotone nonincreasing in x1 > 0 and

φ(−x1, x2, . . . , xN) = φ(x1, x2, . . . , xN) (x ∈ Ω).

In [23], the asymptotic symmetry was proved for positive bounded solutions
of the following semilinear problem

ut = ∆u+ f(t, u) x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0.
(1.7)

It was assumed in [23] that f is locally Lipschitz in u (uniformly with respect
to t ≥ 0) and that for some ϑ > 0 and each M , the (ϑ/2, ϑ)-Hölder norm of f
on [T, T + 1]× [0,M ] is bounded above by a constant independent of T > 0.
In addition to the symmetry of Ω, it is assumed there that dim Ω ≥ 2, that
Ω is of class C2+α, for some α > 0, and that it is strictly convex in x1 (for
each x ∈ ∂Ω with x1 > 0, the exterior normal vector ν(x) has a positive first
component ν1(x)).

In an independent work, Babin [2, 3] proved the asymptotic symme-
try for positive solutions of (1.1), (1.2), assuming that F is independent
of t, it satisfies assumptions (F1)-(F3) of Section 2, and F (x, 0, 0, 0) ≥ 0
(x ∈ Ω). It is also assumed in [2, 3] that the positive solution u has its “orbit”
{u(·, ·+ τ) : τ ≥ 1} relatively compact in C(Ω̄× [0, 1]) and in C2,1(D̄× [0, 1])
for any subdomain D ⊂ D̄ ⊂ Ω. Moreover, a uniform positivity assump-
tion is made which guarantees that all φ ∈ ω(u) are strictly positive in
Ω. In a more recent paper, Babin and Sell [4] extended these results to
nonautonomous equations (1.1), retaining the condition F (t, x, 0, 0, 0) ≥ 0
(x ∈ Ω, t > 0), the compactness condition on u and its derivatives, and
the uniform positivity condition. Also, the t-dependence is assumed to be
regular: F (t, x, u, p, q) is uniformly continuous on any set where the (u, p, q)-
components of (t, x, u, p, q) are bounded. The assumptions of F being Lip-
schitz continuous and elliptic is replaced by a weaker assumptions, which
still guarantees that the difference of two solutions of (1.1) satisfies a linear
uniformly parabolic equation (or inequality).

The above discussion indicates the following limitations of the existing
asymptotic symmetry results.

(I) Regularity requirements: in [23] the domain is smooth, and in both
[4] and [23] some regularity of the time-dependence of the nonlinearities is
assumed.
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(II) Compactness requirements: in the fully nonlinear case, compactness
assumptions are made on {Dj

xu(·, t) : t ≥ 1}, involving spatial derivatives
Dj

xu(·, t) up to order j = 2.

(III) Strong positivity requirements: in the case of nonsmooth domains, a
positivity assumption on the nonlinearity is made and only the solutions
staying away from zero are considered.

Thus, because of (I) and (III), no asymptotic symmetry result was avail-
able so far even for semilinear equations (1.7) on a nonsmooth domain if
f(t, 0) takes negative values for arbitrarily large values of t. Also, the time
regularity assumptions in the available results rule out nonlinearities like
f(t, u) = sin(et)g(u). Now, even letting compactness aside, the boundedness
requirements in (II) are too restrictive as well. While it is often relatively
easy to find a priori bounds on a solution u, using the maximum principle
for example, finding bounds on its derivatives is typically much harder. Al-
though without such bounds it might not be possible to guarantee global
existence, still it is of interest to understand the behavior of a bounded so-
lution which is assumed global. Because of (II), the symmetry results for
such solutions were so far available for semilinear equations only. Finally,
when one wants to use asymptotic symmetry results in a further investiga-
tion of the asymptotic behavior (for example, when attempting to prove a
convergence property of positive solutions, as in [22, 10]) it is important to
have the symmetry without a priori restricting the asymptotic behavior of
the solutions as in (III).

These drawbacks are in the nature of the methods used in [23, 4]. In
particular, they rely on the fact that limits of time translations of a solution,
u(·, ·+τk), solve a suitable limit parabolic equation. Mainly for this reason the
regularity requirements (I), (II) are made. The strong positivity assumptions
(III) are used for relating the asymptotic symmetry of a solution to the
symmetry of positive solutions (of a limit equation) defined for all t ∈ R.

Although our present method shares the basic technical tools, such as
moving hyperplanes, maximum principles and Harnack inequalities, with the
methods of [23, 4], it is substantially different in several aspects. We make
no use of limit equations; the method is based on direct estimates of su-
persolutions of linear parabolic problems. Some of the results we obtain for
linear equations might be of independent interest. Such is, we believe, an
asymptotic positivity result which states that supersolutions that are initially
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positive except for a set of small measure (and they are not large in that set)
are asymptotically nonnegative.

Building on estimates for linear equations, we prove general asymptotic
symmetry results where the restrictions discussed above are removed. In the
most general case, we do need the assumption that at least one function in
ω(u) be strictly positive to get the asymptotic monotonicity and symmetry
about {x : x1 = 0}. This assumption cannot be removed, as we illustrate by
an example, but without it we can still establish some asymptotic symmetry
and monotonicity, although the symmetry hyperplane may not be the canon-
ical one. Some of our theorems provide sufficient conditions for the existence
of a positive element of ω(u). For example, the asymptotic nonnegativity of
F (x, t, 0, 0, 0), as t→∞, or Ω being a ball are such sufficient conditions. In
case Ω is a ball, we can in addition establish, in a usual way, the asymp-
totic radial symmetry of positive solutions. In our general results we assume
more than just boundedness of the solution (we need a certain equicontinuity
property). We show, however, that this assumption can be removed under
minor regularity assumptions on ∂Ω.

In this paper, we consider bounded domains only. For symmetry results
for nonautonomous equations on RN , the reader can consult [33, 34]. Also
for now we leave aside several interesting results that can be proved under
additional conditions involving in particular smoothness of the domain. Ex-
amples of such results are the exponential convergence of positive solutions
to the space of symmetric functions, as proved in [4], or eventual (not just
asymptotic) monotonicity properties of positive solutions as obtained in [23].

The remainder of the paper is organized as follows. In Section 2 we state
our main symmetry results. The estimates of solutions of underlying linear
problems, including an asymptotic positivity result, are stated and proved
in Subsection 3.2. In Subsection 3.1, which bridges the linear estimates and
the nonlinear problems (1.1), (1.2), we introduce reflections of solutions using
moving hyperplanes. The proofs of the symmetry results are given in Section
4. Examples showing importance of some hypotheses are given in Section 5.

We included two appendices. In the first one we prove the asymptotic
symmetry of positive solutions u such that u(x, t) stays away from 0 for each
x ∈ Ω. This is essentially a result of [4], however, we prove it without the
regularity assumption on the t-dependence of F and without compactness
requirements on the derivatives of u. The reason for separating this result
from the rest of our main theorems is that its proof is much simpler; in fact
most of the estimates from Section 3.2 are not needed in it. The second
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appendix contains details regarding the proof of a Harnack inequality from
Section 3.2.

2 Main results

We assume the following hypotheses.

(D1) Ω ⊂ RN is a bounded domain which is convex in x1 and symmetric
about the hyperplane H0 = {x = (x1, x

′) ∈ RN : x1 = 0}:

{(−x1, x
′) : (x1, x

′) ∈ Ω} = Ω.

(D2) For each λ > 0, the set

Ωλ := {x ∈ Ω : x1 > λ}

has only finitely many connected components.

After the formulation of our first theorem below, we include a few comments
on hypothesis (D2).

Via a canonical isomorphism, we identify the space of N × N -matrices
with RN2

. The nonlinearity F is defined on [0,∞) × Ω × B, where B is an
open convex set in R×RN×RN2

which is invariant under the transformation
Q defined by

Q(u, p, q) = (u,−p1, p2, . . . , pN , q̄), (2.1)

q̄ij =

{
−qij if exactly one of i, j equals 1,

qij otherwise.

We assume that F satisfies the following conditions:

(F1) (Regularity) F is continuous on [0,∞)×Ω̄×B and Lipschitz in (u, p, q),
uniformly with respect to (x, t): there is L > 0

sup
x∈Ω,t≥0

|F (t, x, u, p, q)− F (t, x, ũ, p̃, q̃)| ≤ L|(u, p, q)− (ũ, p̃, q̃)|

((u, p, q), (ũ, p̃, q̃) ∈ B). (2.2)

Moreover, F is differentiable with respect to q on [0,∞)× Ω× B.
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(F2) (Ellipticity) There is a constant α0 > 0 such that

Fqij
(t, x, u, p, q)ξiξj ≥ α0|ξ|2 ((t, x, u, p, q) ∈ [0,∞)×Ω×B, ξ ∈ RN).

(2.3)
Here and below we use the summation convention (summation over
repeated indices).

(F3) (Symmetry and Monotonicity) For any (t, u, p, q) ∈ [0,∞)×B and any
(x1, x

′), (x̃1, x
′) ∈ Ω with x̃1 > x1 ≥ 0 one has

F (t,±x1, x
′, Q(u, p, q)) = F (t, x1, x

′, u, p, q) ≥ F (t, x̃1, x
′, u, p, q).

Note that the previous relations imply

F (t, 2λ− x1, x
′, Q(u, p, q)) ≥ F (t, x1, x

′, u, p, q)

((x1, x
′) ∈ Ωλ, (t, u, p, q) ∈ [0,∞)× B) (2.4)

for all λ ≥ 0.

Remark 2.1. (i) We assume the global Lipschitz continuity of F (and sim-
ilarly the ellipticity) on the set B only. This is no more than local Lipschitz
continuity, uniform in x and t, in case B is bounded. However, we shall
make no assumption on the boundedness of the derivatives of the solutions
in question. Thus the range of (u,Du,D2u) may be unbounded and then we
need global Lipschitz continuity of F on this range.

(ii) The differentiability assumption on F with respect to q can be relaxed.
For example, it is sufficient to assume that each derivative Fqij

(which is de-

fined almost everywhere by (H1)) extends to a bounded function F̃ij defined
on [0,∞) × Ω̄ × B which is the pointwise limit of a sequence of continuous
functions. In the ellipticity condition (F2) and in the Hadamard formulas in
Section 3.1, the functions Fqij

are then replaced by F̃ij.

We consider global classical solutions u of (1.1), (1.2). By this we mean
functions u ∈ C2,1(Ω× (0,∞)) ∩ C(Ω̄× [0,∞)) such that

(u(x, t), Du(x, t), D2u(x, t)) ∈ B (x ∈ Ω, t > 0)

and (1.1), (1.2) are satisfied everywhere. We assume the following conditions
on u.
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(U1) ‖u(·, t)‖L∞(Ω) is bounded uniformly in t.

(U2) The functions u(·, ·+ s), s ≥ 1, are equicontinuous on Ω× [0, 1]:

lim
h→0

sup
x,x̄∈Ω̄, t,t̄∈[s,s+1],
|x−x̄|,|t−t̄|<h,

s≥1

|u(x, t)− u(x̄, t̄)| = 0.

Under a minor boundedness assumption on F , it can be proved, see
Proposition 2.7 below, that if (U1) holds, then (U2) follows from, and hence
is equivalent to, the following stronger form of the boundary condition

(U2)’ u(x, t) → 0 as dist(x, ∂Ω) → 0, uniformly with respect to t ≥ 1.

If one is willing to make regularity assumptions on Ω, then condition (U2)’
is a consequence of (U1) and Hölder boundary estimates for solutions of
(1.1), (1.2), see Proposition 2.7. In that situation, assumption (U2) can be
omitted in our theorems. Note that no assumption on compactness or even
boundedness of derivatives of u is made or can be derived from boundedness
without extra assumptions on F .

Hypotheses (U1), (U2) imply in particular that {u(·, t) : t > 0} is rela-
tively compact in C(Ω̄). We introduce the ω-limit set of u in this space:

ω(u) = {z ∈ C(Ω̄) : ‖u(·, tk)− z‖L∞(Ω) → 0 for some tk →∞}.

Observe that {u(·, t) : t > 0} is also compact in C0(Ω̄), the closed subspace
of C(Ω̄) consisting of all continuous functions on Ω̄ vanishing on ∂Ω. Hence
ω(u) ⊂ C0(Ω̄).

Our first result is as follows.

Theorem 2.2. Let (D1), (D2), (F1)–(F3) hold and let u be a nonnegative
global solution of (1.1), (1.2) satisfying (U1), (U2). Assume that there is
φ ∈ ω(u) such that φ > 0 on Ω. Then u is asymptotically symmetric and
monotone in x1. More specifically, for each z ∈ ω(u) one has

z(−x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ Ω), (2.5)

and either z ≡ 0 or else z is strictly decreasing in x1 on Ω0 := {x ∈ Ω : x1 >
0}. The latter holds in the form zx1 < 0 on Ω0, provided zx1 ∈ C(Ω0).
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We remark that zx1 ∈ C(Ω0) for each z ∈ ω(u), provided {ux1(·, t) : t > 1}
is relatively compact in C(B̄) for each closed ball B̄ ⊂ Ω0.

The assumption that φ be positive everywhere can be relaxed somewhat,
but it cannot be completely removed. This is illustrated in Example 2.3
below. One can give several sufficient conditions for the existence of a positive
limit profile of u, see for example Theorem 2.5 and Corollary 2.6 below.
Observe that Theorem 2.2 in particular implies that if some φ ∈ ω(u) is
positive in Ω then each φ ∈ ω(u) \ {0} is positive in Ω.

Hypotheses (D2) can be relaxed so as to require that the number of
connected components of Ωλ is infinite for all λ > 0 if it is infinite for some
λ > 0. If all elements of ω(u) are positive (that is, u(x, t) stays away from 0
for each x), then the hypothesis can be dropped (see Appendix I). We do not
know whether in the general fully nonlinear setting (D2) is merely a technical
condition.

Example 2.3. Let Ω = [−1, 1]× [−1, 1]. There is a Lipschitz function f on
[−1, 1]× R such that the problem

ut = ∆u+ f(y, u) (x, y) ∈ Ω, t > 0, (2.6)

u = 0, (x, y) ∈ ∂Ω, t > 0, (2.7)

has a global bounded positive solution u with ω(u) = {z}, where z ∈ C0(Ω̄)
is a nonnegative function satisfying z(x, y) > 0 if (x, y) ∈ Ω, x > 0, and
z(0, y) = 0 for each y ∈ [−1, 1]. In particular, z is not monotone in x > 0.

See Section 5 for details regarding this example. As the next theorem
shows, without the assumption of the existence of a positive φ ∈ ω(u), the
elements in ω(u) still have some monotonicity and partial symmetry prop-
erties, but not necessarily with respect to the hyperplane {x1 = 0} (in the
above example the hyperplane is {x1 = 1/2}).

Theorem 2.4. Let (D1), (D2), (F1)–(F3) hold and let u be a nonnegative
global solution of (1.1), (1.2) satisfying (U1), (U2). Then there exists λ ≥ 0
such that for each z ∈ ω(u) the following is true: z is monotone nonincreasing
in x1 on Ωλ and there is a connected component U of Ωλ such that

z(2λ− x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ U). (2.8)

If Ωλ is connected, then for each z ∈ ω(u) ( (2.8) holds with U = Ωλ and)
either z ≡ 0 in Ωλ or else z is strictly decreasing in x1 on Ωλ. The latter
holds in the form zx1 < 0 if zx1 ∈ C(Ωλ).
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In the next theorem we show, that under an asymptotic nonnegativity
condition on F , the existence of a positive φ in ω(u) can be omitted in
hypotheses of Theorem 2.2. Note that under that condition it is still possible
for ω(u) to contain 0, as no uniform positivity on u or F is assumed.

Theorem 2.5. Assume that (D1), (D2), (F1)–(F3) hold. Further assume
that (0, 0, 0) ∈ B and

lim inf
x∈Ω, t→∞

F (t, x, 0, 0, 0) ≥ 0. (2.9)

Let u be a global nonnegative solution of (1.1), (1.2) satisfying (U1), (U2).
Then either ω(u) = {0} or else there exists φ ∈ ω(u) with φ > 0 in Ω.
Consequently, the conclusion of Theorem 2.2 holds.

It is a standard consequence of the above symmetry results that if the do-
main and the equation are invariant under all rotations of RN (or a subspace
of RN), then one gets the corresponding asymptotic rotational symmetry of
positive solutions. Such consequences are proved by applying the reflectional
symmetry in any admissible direction. We formulate just one result of this
sort, leaving formulations of other radial symmetry results to the reader.

Assume Ω is the unit ball centered at the origin and consider the problem

ut = f(t, |x|, u, |∇u|,∆u) x ∈ Ω, t > 0, (2.10)

u = 0, x ∈ ∂Ω, t > 0, (2.11)

where f(t, r, u, η, ξ) is defined on [0,∞) × [0, 1] × B, where B is an open
ball in R3 centered at the origin. We assume that f satisfies the following
conditions:

(F1)rad f : [0,∞)× [0, 1]×B → R is continuous in all variables, Lipschitz in
(u, η, ξ), uniformly with respect to (x, t) and differentiable with respect
to ξ.

(F2)rad f̃ξ ≥ α0 on [0,∞)× [0, 1]× B for some positive constant α0.

(F3)rad f is monotone nonincreasing in r.

Corollary 2.6. Let Ω be the unit ball, (F1)rad–(F3)rad hold, and let u be a
nonnegative global solution of (2.10), (2.11) satisfying (U1), (U2). Then u is
asymptotically radially symmetric and radially nonincreasing. More specifi-
cally, each z ∈ ω(u) is a radial function and either z ≡ 0 or else z is strictly
decreasing in r = |x|. If z ∈ C1(Ω) and z 6≡ 0 then zr < 0 for r ∈ (0, 1).
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Proof. The statement is trivial if ω(u) = {0}, so we assume that φ 6≡ 0 for
some φ ∈ ω(u). It is sufficient to prove that φ > 0 in Ω; an application of
Theorem 2.2 after an arbitrary rotation of the coordinate system then gives
the radial symmetry.

By Theorem 2.4, there is λ ≥ 0 such that Vλφ ≡ 0 in Ωλ and φ is
decreasing in x1 > 0. In particular, φ > 0 in Ω̄λ \ ∂Ω, as φ = 0 on ∂Ω.
If λ = 0 we are done. We show that λ > 0 is impossible. First we apply
Theorem 2.4, after any rotation, to infer that ϕ > 0 in Ω near ∂Ω. Now
if λ > 0 then Pλ(∂Ω) contains points in Ω arbitrarily close to ∂Ω. Since
Vλφ ≡ 0 implies that φ = 0 on Pλ(∂Ω) we have a contradiction.

We end this section with a regularity result on bounded solutions of (1.1),
(1.2), which is a consequence of well-known Hölder estimates. It implies
that if F (·, ·, 0, 0, 0) is bounded and u satisfies (U1), (U2)’, then it has the
equicontinuity property (U2). If, in addition, Ω satisfies the exterior cone
condition or a more general condition (A) stated below, mere boundedness
of u implies (U2). Thus under these conditions on Ω and F , the assumption
(U2) can be omitted in all the above theorems (or it can be replaced by (U2)’
without the additional regularity requirement on Ω).

We say that Ω satisfies condition (A) if there exist numbers ς ∈ (0, 1) and
R > 0 such that for each x ∈ ∂Ω, ρ ∈ (0, R)) one has

|Ω ∩B(x, ρ)| ≤ ς|B(x, ρ)|,

where B(x, ρ) is the ball of radius ρ centered at x and |A| stands for the
(Lebesgue) measure of a set A.

Proposition 2.7. Let Ω be a bounded domain in RN and let (F1), (F2) hold.
Further assume that (0, 0, 0) ∈ B and the function F (·, ·, 0, 0, 0) is bounded
on [0,∞) × Ω. Then for any global solution u of (1.1) satisfying (U1) the
following holds. For any domain G ⊂ Ω with Ḡ ⊂ Ω, there are constants
α > 0 and C such that

sup
x,x̄∈Ḡ,x 6=x̄

t,t̄∈[s,s+1],t6=t̄
s>0

|u(x, t)− u(x̄, t̄)|
|x− x̄|α + |t− t̄|α2

≤ C. (2.12)

If, in addition, Ω satisfies condition (A) then the above conclusion holds with
G = Ω.
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Proof. We have

ut − F (t, x, u,Du,D2u) + F (t, x, 0, 0, 0) = F (t, x, 0, 0, 0), x ∈ Ω, t > 0.

It follows, by (F1), (F2) and the Hadamard integral formulas (cp. Subsec-
tion 3.1), that u is a solution of a linear uniformly parabolic equation with
bounded coefficients and bounded right-hand side. Interior Hölder estimates
for such equations (see [27, Sect. IV.2] or [31, Sect. VII.8]) imply that (2.12)
holds for some C > 0 and α > 0. If condition (A) is satisfied, the interior
Hölder estimates combined with boundary Hölder estimates found in [31,
Sect. VII.9] (also in [27], under more restrictive conditions; a recent work of
Cho and Safonov, see [11, 12], contains more general results) give (2.12) for
G = Ω.

3 Reflection in hyperplanes and linear equa-

tions

In this section we introduce linear parabolic inequalities associated with the
method of moving hyperplanes. A major part of the section is devoted to
estimates of solutions and supersolutions of such inequalities.

The following general notation is used throughout the paper. For x0 ∈ RN

and r > 0, B(x0, r) stands for the ball centered at x0 with radius r. For a
set Ω ⊂ RN and functions v and w on Ω, the inequalities v ≥ 0 and w > 0
are always understood in the pointwise sense:

v(x) ≥ 0, w(x) > 0 (x ∈ Ω).

For a function z, supQ z denotes the supremum of z over a set Q, similarly
for the infimum; z+, z− stand for the positive and negative parts of z, re-
spectively:

z+(x) = (|z(x)|+ z(x))/2 ≥ 0,

z−(x) = (|z(x)| − z(x))/2 ≥ 0.

If D0 and D are bounded sets in RN or RN+1, the notation D0 ⊂⊂ D means
D̄0 ⊂ D, diam(D) stands for the diameter of D, and |D| for the (Lebesgue)
measure of D (if D is measurable). For D0 ⊂⊂ D we denote

dist(D̄0, ∂D) = inf{|x− y| : x ∈ D0, y ∈ ∂D}.
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The parabolic boundary of a cylindrical domain U × (τ, T ) is the set

∂P (U × (τ, T )) = (∂U × (τ, T ]) ∪ (Ū × {τ}).

3.1 Reflections in hyperplanes

Assume that the hypotheses (D1), (F1)–(F3) are satisfied and u is a positive
global solution of (1.1), (1.2) satisfying (U1), (U2).

Let
` := max{x1 : (x1, x

′) ∈ Ω̄ for some x′ ∈ RN−1},

and, for λ ∈ [0, `),
Ωλ := {x ∈ Ω : x1 > λ},
Hλ := {x ∈ RN : x1 = λ},
Γλ := Hλ ∩ Ω̄.

(3.1)

Let Pλ denote the reflection in the hyperplane Hλ. For a function z(x) =
z(x1, x

′), let zλ and Vλz be defined by

zλ(x) = z(Pλx) = z(2λ− x1, x
′),

Vλz(x) = zλ(x)− z(x) (x ∈ Ωλ).
(3.2)

For the positive solution u, let us now consider the function uλ(x, t) =
u(Pλx, t) for any λ ∈ [0, `). Hypothesis (F3) implies

uλ
t ≥ F (t, x, uλ, Duλ, D2uλ) x ∈ Ωλ, t > 0. (3.3)

Moreover, we obviously have

u(x, t) = 0 (x ∈ Γλ, t > 0),

u(x, t) ≥ 0 (x ∈ ∂Ωλ \ Γλ, t > 0).
(3.4)

It follows that the function v = Vλu = uλ − u satisfies

vt ≥ aij(x, t)vxixj
+ bi(x, t)vxi

+ c(x, t)v, x ∈ Ωλ, t > 0, (3.5)

v ≥ 0, x ∈ ∂Ωλ, t > 0, (3.6)
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where the coefficients are obtained from the Hadamard formula. Specifically,
we define (omitting the argument (x, t) of of u and uλ)

c(x, t) =


∫ 1

0

Fu(t, x, u+ s(uλ − u), Du,D2u) ds if uλ(x, t) 6= u(x, t),

0 if uλ(x, t) = u(x, t),

bi(x, t) =


∫ 1

0

Fpi
(t, x, uλ, . . . , uλ

xi−1
, uxi

+ s(uλ
xi
− uxi

), uxi+1
, . . . , D2u) ds

if uλ
xi

(x, t) 6= uxi
(x, t),

0 if uλ
xi

(x, t) = uxi
(x, t),

aij(x, t) =

∫ 1

0

Fqij
(t, x, uλ, Duλ, . . . ,

uλ
xi−xj−

, uxixj
+ s(uλ

xixj
− uxixj

), uxi+xj+
, . . . , uxNxN

) ds

where (i−, j−), (i+, j+) stand for the pairs of indices preceding, respectively
following, (i, j) in the identification of N × N matrices with RN2

. By
(F1), the integrals make sense and give the right quotients for the right
hand side of (3.5) to be equal to the difference of F (t, x, uλ, Duλ, D2uλ) and
F (t, x, u,Du,D2u). For example:

c(x, t) =
F (t, x, uλ, Du,D2u)− F (t, x, u,Du,D2u)

uλ − u

if uλ(x, t) 6= u(x, t). This also implies that the coefficients are (everywhere-
defined) measurable functions. Note that under the relaxed assumption men-
tioned in Remark 2.1, one replaces Fqij

with F̃ij in the definition of aij. The

measurability of aij then follows from the assumption on F̃ij (which is clearly
satisfied by F̃ij = Fqij

if Fqij
are defined everywhere). By (F1), (F2), there

is β0 > 0 independent of λ such that (with α0 as in (F2))

|aij(x, t)|, |bi(x, t)|, |c(x, t)| < β0 (x ∈ Ωλ, t > 0) (3.7)

aij(x, t)ξiξj ≥ α0|ξ|2 (ξ ∈ RN , x ∈ Ωλ, t > 0). (3.8)

The proofs of our symmetry results depend on the fact that Vλu satisfies
(3.5), (3.6) and on the estimates of solutions of such linear problems that we
now derive.
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3.2 Estimates of solutions of linear equations

In this subsection we derive several estimates of solutions of the linear prob-
lem (3.5). The relation of the coefficients aij, bi, c to the nonlinearity F is
irrelevant here. We consider a general linear problem

vt = aij(x, t)vxixj
+ bi(x, t)vxi

+ c(x, t)v, (x, t) ∈ U × (τ, T ), (3.9)

v = 0 (x, t) ∈ ∂U × (τ, T ), (3.10)

where U is an open subset of some fixed bounded domain Ω ⊂ RN , 0 ≤
τ < T ≤ ∞, the coefficients are defined on U × (τ, T ) and for some positive
constants α0, β0 they satisfy the following conditions

(L1) aij, bi, c are measurable and

|aij(x, t)|, |bi(x, t)|, |c(x, t)| < β0 (i, j = 1, . . . , N, x ∈ U, t ∈ (τ, T )),

aij(x, t)ξiξj ≥ α0|ξ|2 (ξ ∈ RN , x ∈ U, t ∈ (τ, T )).

When referring to a solution, respectively supersolution, of (3.9), we mean
a function v in the Sobolev space W 2,1

N+1,loc(U × (τ, T )) such that (3.9), re-
spectively (3.9) with “=” replaced by “≥”, is satisfied almost everywhere. A
solution, respectively supersolution, of (3.9), (3.10), is in addition continuous
on Ū × [τ, T ) and satisfies (3.10), respectively (3.10) with “=” replaced by
“≥”. A subsolution is defined as supersolution with both inequality signs
reversed. Below we often use standard maximum and comparison principles
for super and subsolutions of (3.9) as found in [31], for example.

The main technical results of this section are Lemmas 3.1, 3.3, and 3.4.
At the end of this subsection, building on these lemmas, we prove a theorem
on asymptotic positivity of supersolutions that plays a prominent role in our
proof of the symmetry results.

Lemma 3.1. Given any k > 0 there is a constant δ determined only by α0,
β0, N , diam(Ω), and k such that for any open set U ⊂ Ω with |U | < δ the
following holds. If v ∈ C(Ū × [τ, T )) is a supersolution of a problem (3.9),
(3.10) whose coefficients satisfy (L1), then

‖v−(·, t)‖L∞(U) ≤ 2e−k(t−τ)‖v−(·, τ)‖L∞(U) (t ∈ (τ, T )). (3.11)

In the proof we employ, similarly as in [2, 4], the following result of
Varadhan (as attributed to in [6]).
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Lemma 3.2. Given any a0 > 0, b0 ≥ 1, there exists δ > 0 determined only
by a0, b0, N , and diam(Ω) such that for any closed set K ⊂ Ω with |K| ≤ δ
there exists a smooth function g on Ω such that 1 ≤ g ≤ 2 and for any
symmetric positive definite matrix (aij) with

det(aij) ≥ aN
0 (3.12)

one has
aijgxixj

+ b0(|∇g|+ g) < 0 (x ∈ K). (3.13)

The result follows from [6, Theorem 3.1] which differs from our formula-
tion in that K ⊂ B(0, 1) (rather than K ⊂ Ω) and det(aij) ≥ 1 instead of
(3.12) is assumed. Our statement is easily derived from this result by scaling
the variable x and then multiplying the matrix (aij) by a suitable constant.

Proof of Lemma 3.1. Fix any k ≥ 1 and let δ be as in Lemma 3.2 with
a0 = α0 and b0 =

√
Nβ0 + k. We claim that the conclusion holds for this

δ. Indeed, let U ⊂ Ω and v satisfy the assumptions in Lemma 3.1. Suppose
that (3.11) fails. Then there are T1 ∈ (τ, T ) and x0 ∈ U such that

r0 := ekT1v−(x0, T1) > 2ekτ‖v−(·, τ)‖L∞(U). (3.14)

Since v ∈ C(Ū × [τ, T )) and v ≥ 0 on ∂U × [τ, T ), we can find an open set
D ⊂⊂ U such that

ektv−(x, t) <
1

2
r0 (x ∈ U \D, t ∈ [τ, T1]). (3.15)

Now let g be as in Lemma 3.2 with K = D̄ (|K| < δ as D ⊂⊂ U). A simple
calculation shows that w := v/g is a supersolution of

wt = aij(x, t)vxixj
+ b̂i(x, t)vxi

+ ĉ(x, t)v, (x, t) ∈ D × (τ, T1], (3.16)

where

b̂i = 2aij
gxi

g
+ bi,

ĉ = aij

gxixj

g
+ bi

gxi

g
+ c.
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We have

ĉ ≤
aijgxixj

+
√
Nβ0(g + |∇g|)
g

=
aijgxixj

+ (b0 − k)(g + |∇g|)
g

≤ −k(g + |∇g|)
g

≤ −k.

The maximum principle implies that the function ektw assumes its nonposi-
tive minimum on ∂P (D × (τ, T1)). However, by (3.14) we have

ekT1w−(x0, T1) ≥
1

2
r0 > ekτ‖v−(·, τ)‖L∞(D) ≥ ekτ‖w−(·, τ)‖L∞(D).

Similarly, by (3.15),

ekT1w−(x0, T1) ≥
1

2
r0 > v−(x, t) ≥ w−(x, t) (x ∈ U \D, t ∈ [τ, T1]).

Since x0 ∈ D1, we have (x0, T1) 6∈ ∂P (D × (τ, T1)), a contradiction proving
(3.11).

The above proof can be simplified a little if |Ū | < δ. However, with no
assumption on the boundary, |U | < δ does not imply |Ū | < δ.

Lemma 3.3. For any ρ > 0 there exist a constant γ > 0 determined only by
N , ρ, α0, and β0, and a smooth function hρ on B(0, ρ) with

hρ(x) > 0 (x ∈ B(0, ρ)), hρ(x) = 0 (x ∈ ∂B(0, ρ)) (3.17)

such that the following holds. For any x0 ∈ Ω with U := B(x0, ρ) ⊂ Ω, and
any coefficients satisfying (L1), the function ϕ(x, t) = e−γthρ(x − x0) is a
(strict) subsolution of (3.9):

ϕt − (aijϕxixj
+ biϕxi

+ cϕ) < 0 in B(x0, ρ)× [τ, T ]. (3.18)

Proof. Let η be a smooth function on [0, 1] such that

η(1) = η′(1) = 0 < η′′(1), (3.19)

η ≡ 1 near 0, and η > 0 in [0, 1). (3.20)

Set hρ(x) = η(|x|/ρ). We verify that hρ and a suitable γ = γ(N, ρ, α0, β0) > 0
have the stated properties. Let x0 ∈ Ω be such that B(x0, ρ) ⊂ Ω. Using a
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translation, we may assume without loss of generality that x0 = 0. Taking
ϕ(x, t) = e−γthρ(r), r = |x|, a simple computation shows that the left-hand
side of (3.18) is equal to

− e−γt

(
(γ + c)η + aijxixj

(
η′′

ρ2r2
− η′

ρr3

)
+ aii

η′

ρr
+ bixi

η′

ρr

)
≤ e−γt

(
(−γ + β0)η − α0

η′′

ρ2
+ β0(N

2 +N)
|η′|
ρr

+
β0N |η′|

ρ

)
,

where we have omitted the argument r/ρ of η. Assuming ρ is fixed, the
expression is negative (for any γ > 0) if r/ρ > 1− ε and ε > 0 is sufficiently
small. In the remaining region, η ≥ δ1, for some δ1 > 0, and η′′, η′/r are
bounded (by (3.20)). Choosing γ = γ(ρ, α0, β0, N) large enough, we make
the expression negative in that region, as well.

If Q is an open bounded set in RN+1, u is a bounded continuous function
on Q and p > 0, we denote

[u]p,Q =

(
1

|Q|

∫
Q

|u(x, t)|p dxdt
) 1

p

.

Also we set
[u]∞,Q = sup

Q
|u|.

Lemma 3.4. Given d > 0, ε > 0, θ > 0, there are positive constants
κ, p determined only by N , diam(Ω), α0, β0, d, ε, and θ with the following
property. If D, U are domains in Ω with D ⊂⊂ U , dist(D̄, ∂U) ≥ d, |D| > ε,
and v ∈ C(Ū × [τ, τ + 4θ]) is a supersolution of an equation (3.9) (with
T = τ + 4θ) whose coefficients satisfy (L1), then

inf
D×(τ+3θ,τ+4θ)

v(x, t) ≥ κ[v+]p,D×(τ+θ,τ+2θ) − sup
∂P (U×(τ,τ+4θ))

e4mθv−, (3.21)

where m = supU×(τ,τ+4θ) c. If v is a solution of (3.9), then one can take
p = ∞ and κ is independent of ε.

For solutions the lemma is proved, in a slightly weaker form, in [33]. The
above formulation is the one that we use below. For the proof, however, it
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is more convenient to have a more general formulation dealing with nonho-
mogeneous equation

vt = aij(x, t)vxixj
+bi(x, t)vxi

+c(x, t)v+g(x, t), (x, t) ∈ U×(τ, T ), (3.22)

where g ∈ LN+1(U × (τ, T )). Lemma 3.4 readily follows from the following
result.

Lemma 3.5. Given numbers d > 0, ε > 0, θ > 0, 0 < τ1 < τ2 < τ3 < τ4,
there are positive constants κ, κ1, p determined only by N , diam(Ω), α0, β0,
d, ε, θ, τ2− τ1, τ3− τ2, and τ4− τ3, with the following property. If D, U are
domains in Ω with D ⊂⊂ U , dist(D̄, ∂U) ≥ d, |D| > ε, and v ∈ C(Ū×[τ, T ])
is a supersolution of an equation (3.22), where τ1− 2θ ≤ τ ≤ τ1− θ, T ≥ τ4,
the coefficients satisfy (L1) and g ∈ LN+1(U × (τ, τ4)), then

v(x, t) ≥ κ[v+]p,D×(τ1,τ2) − κ1‖g−‖LN+1(U×(τ,τ4)) − sup
∂P (U×(τ,τ4))

em(τ4−τ)v−,

((x, t) ∈ D × (τ3, τ4)), (3.23)

with m = supU×(τ,τ4) c. If v is a solution of (3.22), then one can take p = ∞
and κ, κ1 are independent of ε.

In the proof we shall use the following weak Harnack inequality for non-
negative supersolutions.

Lemma 3.6. Lemma 3.5 holds under the additional assumptions that g ≡ 0
and v ≥ 0.

The statement regarding solutions is a form of the Krylov-Safonov Har-
nack inequality [27, 28]. For supersolutions the statement is proved (without
the restriction g ≡ 0) in [21], see also [31, Section VII.8]. Although only
standard parabolic cylinders are considered there, the extension to general
cylindrical domains follows by a construction of a chain of parabolic cylinders.
The arguments are rather standard, however, we were unable to locate them
in literature. For the reader’s convenience, we give the details in Appendix
II.

Proof of Lemma 3.5. First we prove the result under the extra assumptions
that the coefficients aij are continuous on Ū × [τ, T ] and U has smooth
boundary.
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Set σ := sup∂P (U×(τ,τ4)) v
− ≥ 0. We write v as v = v1 + v2 + v3, where

v1 := v− v2− v3, v2 is the solution of (3.9) on U × (τ, τ4) satisfying v2 ≡ −σ
on ∂P (U × (τ, τ4)), and v3 is the solution of the problem

vt = aij(x, t)vxixj
+ bi(x, t)vxi

+ c(x, t)v − g−(x, t), (x, t) ∈ U × (τ, τ4),

v = 0, (x, t) ∈ ∂P (U × (τ, τ4)).
(3.24)

The (unique) solvability of these boundary value problem follows from stan-
dard theorems (see [29, 31]) thanks to our extra regularity assumptions. A
simple computation shows that v1 is a supersolution of (3.9) satisfying

v1(x, t) = v(x, t) + σ ≥ 0 ((x, t) ∈ ∂P (U × (τ, τ4)).

By the maximum principle,

v1(x, t) ≥ 0, 0 ≥ e−mtv2(x, t) ≥ −e−mτσ, 0 ≥ v3(x, t) (x ∈ U, t ∈ (τ, τ4)).

This implies in particular that v1 ≥ v+. Applying Lemma 3.6 to v1, a
nonnegative supersolution of the homogeneous equation, we obtain

v1(x, t) ≥ κ[v1]p,D×(τ1,τ2) ≥ κ[v+]p,D×(τ1,τ2) ((x, t) ∈ D × (τ3, τ4)),

for some constants κ and p determined by N , diam(Ω), α0, β0, d, ε, and θ,
τ2 − τ1, τ3 − τ2, and τ4 − τ3.

Next, the Alexandrov-Krylov estimate for solutions of (3.24) (see [27,
Theorem III.3.9] or [31, Theorem VII.7.1]) states that there is a constant κ1

determined by N , diam(Ω), α0, β0, and τ4 − τ1 + 2θ ≥ τ4 − τ such that

sup
U×(τ,τ4)

|v3| ≤ κ1‖g−‖LN+1(U×(τ,τ4)).

Therefore, for any (x, t) ∈ D × (τ3, τ4),

v(x, t) = v1(x, t) + v2(x, t) + v3(x, t)

≥ κ[v+]p,D×(τ1,τ2) − em(τ4−τ)σ − κ1‖g−‖LN+1(U×(τ,τ4))

as stated in (3.23).
We now remove the restrictions imposed on U and aij. For that we use an

approximation argument. Choose (employing a mollification, for example)
sequences (an

ij)n, i, j = 1, . . . , N , of continuous functions such that (L1) is
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satisfied with aij replaced by an
ij and β0 replaced by 2β0 (we leave bi and

c unchanged) and such that an
ij → aij almost everywhere as n → ∞. Fur-

ther choose a real sequence τ k ↘ τ and a sequence of domains Uk with
smooth boundary such that D ⊂⊂ Uk ⊂⊂ U and ∂Uk approaches ∂U in the
Hausdorff metric as k →∞. A supersolutions v of (3.22) also satisfies

vt ≥ an
ij(x, t)vxixj

+bi(x, t)vxi
+c(x, t)v+gn(x, t)+g(x, t), (x, t) ∈ Uk×(τ k, T ),

where gn(x, t) = (aij(x, t) − an
ij(x, t))vxixj

. Note that, since v ∈ W 2,1
N+1(U

k ×
(τ k, τ4), the dominated convergence theorem implies that for each k

gn → 0 in LN+1(Uk × (τ k, τ4)) as n→∞. (3.25)

Now, if k is sufficiently large, replacing U , τ , aij by their approximations,
and further replacing d by d/2, θ by θ/2, and β0 by 2β0, we may apply the
result proved above to obtain the following. For some positive constant κ,
κ1 and p determined as specified in the lemma, we have

sup
D×(τ3,τ4)

v(x, t) ≥κ[v+]p,D×(τ1,τ2)

− κ1(‖g−‖LN+1(U×(τk,τ4)) + ‖g−n ‖LN+1(U×(τk,τ4)))

− sup
∂P (Uk×(τk,τ4))

em(τ4−τk)v−.

Taking first the limit as n→∞, making use of (3.25), and then the limit as
k →∞, using continuity of v, we obtain (3.23).

The above lemmas are used at several places in the proofs of the symmetry
results in the next section. Attempting to make the proofs more transparent,
we decided to single out one of our key arguments and formulate it still in the
context of general linear equations (3.9), (3.10) without burdening it with
additional notation and relations of Section 4. Although the formulation is
somewhat lengthy, see Theorem 3.7 below, having it prepared will make the
proofs of the symmetry results considerably simpler. Also the result might
be of independent interest.

Intuitively, the statement can be described as follows. If v is a super-
solution of (3.9), (3.10) with T = ∞, v is positive on a bounded cylinder
D×[τ, τ+8θ], where D ⊂⊂ U is sufficiently “large in U”, and supU\D v

−(·, τ)
is not too large (compared with an integral of v in D × [t+ θ, τ + 2θ]), then
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v is positive in the unbounded cylinder D× [τ,∞) and the positivity domain
of v(·, t) spreads all over U as t → ∞. We remark that using recent results
of [25], a stronger result can be proved if ∂U is Lipschitz. One then has
v(·, t) > 0 in U for all sufficiently large t, that is, v(·, t) is eventually posi-
tive. On nonlipschitz domains the eventual positivitity cannot be expected
in general (see [24] for a relevant example in this regard).

For a domain D ⊂ Ω, we define the inner radius of D to be

inrad(D) := sup{ρ > 0 : B(x0, ρ) ⊂ D for some x0 ∈ D}.

If D ⊂ Ω is an open set, we let inrad(D) stand for the infimum of the inner
radii of all connected components of D. Note that inrad(D) ≥ ρ > 0 for D ⊂
Ω necessarily means that D has only finitely many connected components,
each of them having measure at least |B(0, ρ)|.

Theorem 3.7. Fix ρ ∈ (0, diam(Ω)/2), let γ = γ(N,α0, β0, ρ) be as in
Lemma 3.3, and let δ > 0 be such that the conclusion of Lemma 3.1 holds
with k = γ + 1 (thus δ = δ(N, diam(Ω), α0, β0, ρ)). Given any d > 0,
θ > 0, there exist positive constants p = p(N, diam(Ω), α0, β0, d, θ, ρ) and
µ = µ(N, diam(Ω), α0, β0, d, θ, ρ) with the following properties. If D ⊂ U are
open sets in Ω satisfying

inrad(D) > ρ, |U \ D̄| < δ, (3.26a)

dist(D̄, ∂U) > d, (3.26b)

if v ∈ C(Ū × [τ,∞)) is a supersolution of a problem (3.9), (3.10) whose
coefficients satisfy (L1) (with T = ∞), and if

v(x, t) > 0 ((x, t) ∈ D̄ × [τ, τ + 8θ)), (3.27a)

‖v−(·, τ)‖L∞(U\D̄) ≤ µ[v]p,D0×(τ+θ,τ+2θ) (3.27b)

for each connected component D0 of D, then the following statements hold
true:

(s1) v(x, t) > 0 ((x, t) ∈ D̄ × [τ,∞));

(s2) ‖v−(·, t)‖L∞(U) → 0 as t→∞, in fact,

‖v−(·, t)‖L∞(U) ≤ 2e−(γ+1)(t−τ)‖v−(·, τ)‖L∞(U) (t > τ); (3.28)
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(s3) for any domain G ⊂⊂ U with G∩D 6= ∅ there is TG such that v(·, t) > 0
on G for all t ≥ TG.

We remark that once δ is fixed, for the conditions in (3.26) to be com-
patible (i.e. to apply to some D ⊂⊂ U), d must be sufficiently small. If v is
a solution, then one can take p = ∞ in (3.27b).

It will become clear from the proof that (3.26b) can be replaced by the
following set of conditions

∂D = Γ1 ∪ Γ2, dist(Γ̄1, ∂U) > d,

v(x, t) > 0 (x ∈ Γ2 × (τ,∞)).

Proof of Theorem 3.7. Fix ρ ∈ (0, diam(Ω)/2) and let γ and δ be as stated.
Also let hρ be as in Lemma 3.3.

Next take ε = |B(0, ρ)| and fix arbitrary θ > 0, d > 0. Corresponding
to these numbers, let κ, p be as in Lemma 3.4; they are determined by N ,
diam(Ω), α0, β0, d, θ, ρ. Finally, we define µ = C2/(2C3), where C2 and
C3 are certain constants specified below, see (3.33), which are determined by
the same quantities as κ and p. We prove that the conclusion of the theorem
holds with this choice of p and µ.

To this end, let D, U and v satisfy all the stated conditions. The proof
of (s1) is by contradiction. Assume it does not hold. Then there exists
T ≥ τ + 8θ such that

v(x, t) > 0 ((x ∈ D̄, t ∈ [τ, T )), (3.29a)

v(x∗, T ) = 0 for some x∗ ∈ ∂D. (3.29b)

Let D0 be a connected component of D such that x∗ ∈ ∂D0.
Since v ≥ 0 on ∂(U \ D) × [τ, T ], and |U \ D̄| < δ, the conclusion of

Lemma 3.1 (with U replaced by U \ D̄ and with our choice k = γ + 1) gives

‖v−(·, t)‖L∞(U) = ‖v−(·, t)‖L∞(U\D̄) ≤ 2e−(γ+1)(t−τ)‖v−(·, τ)‖L∞(U\D̄)

(t ∈ [τ, T ]). (3.30)

Denote
r0 := ‖v−(·, τ)‖L∞(U\D̄).
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From Lemma 3.4 (replacing D by D0 and noting that c ≤ β0 and |D0| ≥ ε =
|B(0, ρ)|) we have

v(x, t) ≥ κ[v]p,D0×(τ+θ,τ+2θ) − sup
∂P (U×(τ,τ+4θ))

e4β0θv−

≥ κ[v]p,D0×(τ+θ,τ+2θ) − 2e4β0θr0

≥ r0

(
κ

µ
− 2e4β0θ

)
=: r1 ((x, t) ∈ D̄0 × (τ + 3θ, τ + 4θ)),

(3.31)

where we have used (3.30) and (3.27b).
Since inrad(D) > ρ, there is x0 ∈ D0 such that B0 := B(x0, ρ) ⊂ D0.

We next use a comparison between the supersolution v and the subsolution
ϕ(x, t) = e−γthρ(x− x0) (cf. Lemma 3.3). Since,

v > 0 in D0 × [τ + 4θ, T )

ϕ = 0 on ∂B0 × [τ + 4θ, T ),

and, by (3.31),

v(x, τ + 4θ) ≥ r1
ϕ(x, τ + 4θ)

‖ϕ(·, τ + 4θ)‖L∞(B0)

(x ∈ B0),

we have

v(x, t) ≥ r1
ϕ(x, t)

‖ϕ(·, τ + 4θ)‖L∞(B0)

= r1e
−γ(t−τ−4θ) hρ(x− x0)

‖hρ‖L∞(B(0,ρ))

(x ∈ B0, t ∈ [τ + 4θ, T ]).

(3.32)

Next we use the estimate from Lemma 3.4 on the time interval [T − 4θ, T ]
and subsequently we use (3.32), (3.30):

v(x, T ) ≥ κ[v]p,D0×(T−3θ,T−2θ) − sup
∂P (U×(T−4θ,T ))

e4β0θv−

≥ κe−γ(T−τ−4θ)r1C1(p, ρ)− 2e4β0θe−γ(T−τ−4θ)r0 (x ∈ D̄0),

where

C1(p, ρ) =

(
1

|D0|

∫
B(0,ρ)

hp
ρ

) 1
p 1

‖hρ‖L∞(B(0,ρ))

> 0.
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Substituting for r1 from (3.31), we obtain

v(x, T ) ≥ r0e
−γ(T−τ−4θ)

(
C1(p, ρ)κ

2

µ
− 2C1(p, ρ)κe

4β0θ − 2e4β0θ

)
= r0e

−γ(T−τ−4θ)

(
C2

µ
− C3

)
(x ∈ D̄0),

where
C2 = C1(p, ρ)κ

2, C3 = 2C1(p, ρ)κe
4β0θ + 2e4β0θ (3.33)

(thus C2, C3 depend only on N , α0, β0, d, θ and ρ). It follows that with µ
defined by µ = C2/(2C3), the above estimates give

v(x, T ) > 0 (x ∈ D̄0)

contradicting (3.29b). This contradiction proves (s1).
Once (s1) is proved, we also know that (3.30) holds for all T > τ + 4θ,

which proves (3.28).
To prove the last statement, let G ⊂⊂ U be a domain intersecting a

component D0 of D. Replacing G by G ∪D0, we may assume D0 ⊂ G. By
(s1), estimate (3.32) is valid for any T > τ + 8θ and any ball B0 = B(x0, ρ)
contained in D0. This gives a lower estimate on [v+]p,G×(T−3θ,T−2θ) for any
p, T > 0. On the other hand, we still have the upper estimate (3.30) on
v− valid for all t. Since the exponent γ + 1 in (3.30) is larger than the
the exponent in (3.32), an application of Lemma 3.4 to G ⊂⊂ U (with
d := dist(Ḡ, ∂U)) shows that v(·, t) > 0 on G if t is sufficiently large. This
proves (s3) and completes the proof.

4 Proofs of the symmetry results

We use the notation introduced in Subsection 3.1. Without further notice,
we shall also use the fact if u is a solution of (1.1), (1.2), then v = Vλu
satisfies (3.5), (3.6), and the coefficients in (3.5) satisfy (3.7), (3.8).

In the whole section we assume that hypotheses (D1), (D2), (F1)–(F3)
are satisfied and u is a positive global solution of (1.1), (1.2) satisfying (U1),
(U2). We want to prove that for some λ ≥ 0, we have ‖Vλu(·, t)‖L∞(Ωλ) → 0.
By relative compactness of {u(·, t) : t > 0} in C(Ω̄), this is equivalent to

Vλz ≡ 0 on Ωλ (z ∈ ω(u)). (4.1)
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Moreover, under the extra assumption of Theorem 2.2, we prove that this is
true for λ = 0. This gives the symmetry part of the statements of Theorems
2.2, 2.4. Then we prove the monotonicity part.

For λ ∈ [0, `), consider the following statement.

(S)λ ‖(Vλu)
−(·, t)‖L∞(Ωλ) → 0 as t→∞.

We use moving hyperplanes to carry out the following steps of the proofs.

Lemma 4.1. There is δ1 > 0 such that for each λ ∈ [0, `) the following
statement holds. If K is a closed subset of Ωλ with |Ωλ \K| < δ1 and there
is t0 ≥ 0 such that Vλu(·, t) ≥ 0 on K for t ≥ t0, then

‖(Vλu)
−(·, t)‖L∞(Ωλ) ≤ 2e−(t−t0)‖(Vλu)

−(·, t0)‖L∞(Ωλ) (t ≥ t0). (4.2)

In particular, (S)λ holds if λ < ` is sufficiently close to `.

Lemma 4.2. Suppose λ0 ∈ [0, `) is such that (S)λ holds for all λ ∈ (λ0, `).
Then (S)λ0

holds and for each z ∈ ω(u) and each connected component U of
Ωλ0 either Vλ0z > 0 on U or else Vλ0z ≡ 0 on U .

In the previous two lemmas, hypothesis (D2) is not needed. It is mainly
because of the next lemma that it is assumed.

Lemma 4.3. If λ0 > 0 is as in Lemma 4.2 and Vλ0z > 0 on Ωλ0 for some
z ∈ ω(u), then there exists ε > 0 such that (S)λ holds for each λ ∈ (λ0−ε, λ0].

In the following lemmas we set

λ0 = inf{µ > 0 : (S)λ holds for all λ > µ}. (4.3)

Lemma 4.4. If φ > 0 in Ω for some φ ∈ ω(u), then λ0 = 0.

Lemma 4.5. If λ0 > 0 or if φ > 0 in Ω for some φ ∈ ω(u), then for each
z ∈ ω(u), Vλ0z ≡ 0 on some connected component of Ωλ0.

Lemma 4.6. Each z ∈ ω(u) is monotone nonincreasing in x1 on Ωλ0. More-
over, if Ωλ0 is connected (in particular if λ0 = 0) then either z ≡ 0 on Ωλ0

or else z is strictly decreasing in x1 on Ωλ0. If z ∈ C1(Ωλ0) and z 6≡ 0 on
Ωλ0, then zx1 < 0 on Ωλ0.
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Proof of Lemma 4.1. Let δ1 = δ be as in Lemma 3.1 with k = 1. Taking
U = Ωλ \ K̄ and using the assumption on K, the conclusion follows upon
application of Lemma 3.1. The last statement follows since |Ωλ| < δ1 for
λ ≈ `.

Proof of Lemma 4.2. First observe that (S)λ0
holds. Indeed, by compactness

of {u(·, t) : t > 0} in C(Ω̄), (S)λ is equivalent to

Vλz ≥ 0 on Ωλ (z ∈ ω(u)).

Taking the limit λ↘ λ0 we obtain (S)λ0
.

Fix any z ∈ ω(u) and any connected component U of Ωλ0 . Assume
Vλ0z 6≡ 0 on U . Since Vλ0z ≥ 0, we have

Vλ0z > 0 on B̄0

for some ball B0 ⊂⊂ U . We prove that Vλ0z > 0 on U . Let tn → ∞ be
such that u(·, tn) → z in C(Ω̄). Then also Vλ0u(·, tn) → Vλ0z, hence there
are r0 > 0, n0 such that

Vλ0u(·, tn) > 2r0 (x ∈ B̄0, n > n0).

By the equicontinuity property (U2), there is ϑ > 0 such that

Vλ0u(·, t) > r0 (x ∈ B̄0, t ∈ [tn − 4ϑ, tn], n > n0).

Since (S)λ0
holds, applying Lemma 3.4 (with v = Vλ0u, τ = tn−4ϑ, θ = ϑ/4),

one shows that for any open set D ⊂⊂ Ωλ0 there exists r1 > 0 such that

Vλ0u(·, t) > r1 (x ∈ D̄, t ∈ [tn − ϑ, tn], n > n0). (4.4)

Taking t = tn and sending n to ∞, we in particular obtain

Vλ0z ≥ r1 (x ∈ D̄).

This shows that Vλz > 0 in U , as claimed.

Proof of Lemma 4.3. By (D2), Ωλ0 has only finitely many connected com-
ponents, hence ρ := inrad(Ωλ0)/2 > 0. With this choice of ρ, let δ, γ be
as in Theorem 3.7 (so they are some constants determined by ρ, N , α0, β0
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and diam(Ω)). Choose an open set D ⊂⊂ Ωλ0 such that D intersects each
connected component of Ωλ0 and

|Ωλ0 \ D̄| < δ/2 (4.5)

inrad(D) > ρ. (4.6)

Let z ∈ ω(u) be such that Vλ0z > 0 on Ωλ0 ⊃ D̄. Taking a sequence tn →∞
such that u(·, tn) → z and using the equicontinuity as in the proof of Lemma
4.2, we find r1 > 0, ϑ ∈ (0, 1), and n0 such that

Vλ0u(·, t) > 2r1 (x ∈ D̄, t ∈ [tn − ϑ, tn], n ≥ n0). (4.7)

Set d := dist(D̄, ∂Ωλ0), θ := ϑ/8, and take the corresponding µ and p as in
Theorem 3.7. Using Theorem 3.7 we want to show that (S)λ holds for all
λ ∈ [λ0 − ε, λ0], provided ε > 0 is sufficiently small. As the first requirement
on ε, we postulate that

|Ωλ \ Ωλ0| < δ/2 (λ ∈ [λ0 − ε, λ0)). (4.8)

Assuming λ ∈ [λ0−ε, λ0] (making ε smaller, as necessary), we now verify that
Theorem 3.7 applies with U = Ωλ, D as chosen above, v = Vλu, and τ = tn−ϑ
with n is sufficiently large. We have dist(D̄, ∂U) ≥ dist(D̄, ∂Ωλ0) = d. By
(4.5) and (4.8), |U \D| < δ. We have thus verified conditions (3.26a), (3.26b).
Clearly, v ∈ C(Ū × [τ,∞)) is a supersolution of a problem (3.9), (3.10), as
required in Theorem 3.7. It remains to verify conditions (3.27).

By the equicontinuity,

sup
D×[tn−ϑ,tn]

|Vλu− Vλ0u| → 0 as λ→ λ0.

This and (4.7) imply that, making ε smaller if necessary,

Vλu(x, t) > r1 (x ∈ D̄, t ∈ [tn − ϑ, tn], n ≥ n0, λ ∈ [λ0 − ε, λ0]). (4.9)

Since [τ, τ +8θ] = [tn−ϑ, tn], (3.27a) is satisfied. From (4.9) we also see that
the right hand side of (3.27b) is bounded below by µr1. We prove that for
all large n and small ε

‖(Vλu)
−(·, sn)‖L∞(U\D̄) = ‖(Vλu)

−(·, sn)‖L∞(Ωλ\D̄) ≤ µr1, (4.10)

where sn = tn − ϑ (= τ).
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By (S)λ0
, there is n1 > n0 such that for each n > n1 we have

‖(Vλ0u)
−(·, sn)‖L∞(Ωλ0

\D̄) ≤
µr1
2
.

Consequently, by the equicontinuity, if ε > 0 is sufficiently small,

‖(Vλu)
−(·, sn)‖L∞(Ωλ0

\D̄) ≤ µr1 (n > n1, λ ∈ [λ0 − ε, λ0]). (4.11)

Next, by (U2)’ (which clearly follows from (U2) and (1.2)), there exists a
neighborhood E of ∂Ω independent of λ such that

(Vλu)
−(·, t) = (u(2λ− x1, x

′, t)− u(x1, x
′, t))− ≤ u(x1, x

′, t) < µr1

(x = (x1, x
′) ∈ E ∩ Ωλ, t > 0). (4.12)

Finally, the remaining set Ω̄λ \ (E ∪Ωλ0) is contained in an arbitrarily small
neighborhood G0 of Γλ0 \E if λ ≈ λ0. Since Vλ0u(·, t) vanishes on Γλ0 \E ⊂⊂
Ω, using the equicontinuity we can choose G0 so that G0 ⊂⊂ Ω and

‖(Vλ0u)
−(·, sn)‖L∞(G0) ≤ ‖Vλ0u(·, sn)‖L∞(G0) ≤

µr1
2
.

For λ ≈ λ0 we have Ω̄λ \ (E ∪ Ωλ0) ⊂ G0 and, again by equicontinuity,

‖(Vλu)
−(·, sn)‖L∞(G0) ≤ µr1. (4.13)

With (4.11), (4.12), (4.13), we have shown (4.10) and thus all conditions
(3.27) are satisfied. We have verified all the hypotheses of Theorem 3.7.
Statement (s2) of that theorem gives (S)λ. The lemma is proved.

Remark 4.7. Theorem 3.7, as applied in the above proof, also gives the
following property (see statement (s3)). For any open set G ⊂⊂ Ωλ such
that G∩D 6= ∅ there exists T = T (λ,G) such that Vλu(·, t) > 0 on G for all
t ≥ T .

Proof of Lemma 4.4. We show that if λ > 0 then Vλφ 6≡ 0 on any connected
component of Ωλ. Lemmas 4.2 and 4.3 then readily imply that λ0 = 0. If
Vλφ ≡ 0 on some component U of Ωλ, then, since φ = 0 on ∂Ω, φ vanishes
on Pλ(∂Ωλ)∩ Ū . But for λ > 0 this intersection contains points of Ω and we
have a contradiction with φ > 0.
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Proof of Lemma 4.5. By Lemma 4.2, it is sufficient to show that Vλ0z > 0
on Ωλ0 is impossible. If λ0 > 0, this follows directly from Lemma 4.3 and the
definition of λ0.

Assume that φ > 0 for some φ ∈ ω(u) so that by Lemma 4.4 we have
λ0 = 0. Using analogous arguments as above, moving the hyperplanes from
the left starting with λ ≈ −`, one shows that

Vλz ≥ 0 on Ω−
λ := {x ∈ Ω : x1 < λ} (z ∈ ω(u)), (4.14)

for all λ ≤ 0. (The fact that the process can be continued up to λ = 0 follows
from the positivity of φ.) Thus for λ = 0 and each z ∈ ω(u) we have V0z ≤ 0
in Ω0 and also in Ω−

0 which gives V0z ≡ 0.

Proof of Lemma 4.6. Let z ∈ ω(u) be arbitrary. We have Vλz ≥ 0 for each
λ ∈ [λ0, `). This readily implies that z is monotone nonincreasing in x1 on
Ωλ0 . Next assume that Ωλ0 is connected (this is clearly the case, by the
symmetry assumption, if λ0 = 0). If z is constant in x1 in Ωλ0 then z ≡ 0 on
Ωλ0 by the boundary condition. Assume z is not constant and let dhz denote
its difference quotient:

dhz(x) :=
z(x1 + h, x′)− z(x1, x

′)

h
.

By the monotonicity and continuity of z, for each sufficiently small h > 0,
we can find a ball B̄0 ⊂⊂ Ωλ0 such that

dhz(x) < −2r0 (x = (x1, x
′) ∈ B̄0). (4.15)

Here B0 and r0 depend on h in general, but if zx1 ∈ C(Ωλ0), we can choose
them independent of h (for h sufficiently small).

Let tn → ∞ be such that u(·, tn) → z in C(Ω̄). Given any sufficiently
small h > 0 (and the corresponding B0, r0), there is n0 such that for n > n0

we have
dhu(x, tn) < −2r0 (x ∈ B̄0).

By the equicontinuity, there is θ > 0 such that

dhu(x, t) < −r0 (x ∈ B̄0, t ∈ [tn − 4θ, tn], n > n0). (4.16)

Let U ⊂⊂ Ωλ0 be any domain such that U+he1 := {x+he1 : x ∈ U} ⊂⊂ Ωλ0

(e1 = (1, 0, . . . , 0)) and B0 ⊂⊂ U . Then, by the monotonicity of F in x1,
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v := −dhu is a supersolution of a linear equation (3.9) with coefficients
satisfying condition (L1) of Subsection 3.2, with α0 and β0 independent of h.
By the monotonicity of all z̃ ∈ ω(u) we have

‖v−(·, t)‖L∞(U) → 0 as t→∞. (4.17)

For an arbitrary domain D ⊂⊂ U containing B0 set d := dist(D̄, U) and let
κ, p be as in Lemma 3.4 (they depend only on α0, β0 d, N , θ and d). Then,
using (3.21), (4.16) and (4.17), we obtain

v(x, tn) ≥ κr0
2

(
|B0|
|D|

) 1
p

> 0 (x ∈ D̄)

for all sufficiently large n. Taking n→∞ gives

−dhz(x) ≥
κr0
2

(
|B0|
|D|

) 1
p

(x ∈ D̄).

We have thus shown that dhz is negative in D̄ and, since D was arbitrary,
also in U . This holds for all sufficiently small h showing that z is strictly
decreasing in Ωλ0 . Moreover, if zx1 ∈ C(Ωλ0), then the above arguments
apply with B0 and r0 independent of h > 0. This implies zx1 < 0 in Ωλ0 .
The lemma is proved.

Proof of Theorems 2.2 and 2.4. Let λ0 be as in (4.3). By Lemma 4.1, λ0 < `
and, by Lemma 4.4, λ0 = 0 under the assumptions of Theorem 2.2. The
symmetry and monotonicity properties stated in the theorems follow from
Lemmas 4.5, 4.6 (using again that Ω0 is connected).

Proof of Theorem 2.5. We have

ut ≥ F (t, x, u,Du,D2u)− F (t, x, 0, 0, 0)− (F (t, x, 0, 0, 0))− (x ∈ Ω, t > 0).

Hence, denoting g(x, t) := −(F (t, x, 0, 0, 0))−, u is a supersolution of (3.22)
with coefficients satisfying (L1). If ω(u) = {0}, there is nothing to prove.
Assume that for some tn →∞ we have

u(·, tn) → z

and z > 0 in some ball B̄0 ⊂ Ω. Then there is a constant r0 such that for all
large n

u(x, tn) ≥ 2r0 (x ∈ B̄0).
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Consequently, by the equicontinuity,

u(x, t) ≥ r0 (x ∈ B̄0, t ∈ [tn, tn + 4θ]), (4.18)

where θ > 0 is independent of n. Given any domain D ⊂⊂ Ω, we now obtain,
using (4.18) and Lemma 3.5 (remembering that u > 0), that

u(·, tn + 3θ) ≥ r1 − κ1‖g‖LN+1(Ω×(tn,tn+4θ) (x ∈ D̄), (4.19)

where r1 and κ1 are independent of n (they depend on dist(D̄, ∂Ω)). Passing
to a subsequence we may assume that u(·, tn + 3θ) → φ ∈ ω(u). Then (4.19)
and (2.9) give φ ≥ r1 = r1(D) > 0 in D. Since D is arbitrary, we have φ > 0
is Ω. Thus Theorem 2.2 applies and the conclusion follows.

5 Examples

First consider the one dimensional problem

ut = uxx + g(u), x ∈ (−1, 1) (5.1)

u(−1, t) = u(1, t) = 0, t > 0. (5.2)

We show that for a suitable nonlinearity, there is a positive solution which
approaches an equilibrium which is not monotone in (0,1).

Choose a smooth bounded Lipschitz function g such that g(0) < 0 and
for some a > 0

G(u) :=

∫ u

0

g(ξ) dξ < 0 (u ∈ (0, a))

G(a) = 0 and g(a) > 0.

By elementary phase plane analysis, the equation

φxx + g(φ) = 0

has a solution φ such that, for some L > 0

φ(0) = φ(±L) = φ′(0) = φ′(±L) = 0, (5.3)

φ > 0 in (−L, 0) ∪ (0, L). (5.4)
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Also φ is an even function. Rescaling x and replacing g by L2g, we may
assume L = 1.

Consider the linear eigenvalue problem

vxx + g′(φ(x))v + µv = 0, x ∈ (−1, 1),

v(−1) = v(1) = 0,

v is even.

(5.5)

This is equivalent to the eigenvalue problem with the same equation and
boundary conditions

vx(0) = v(1) = 0. (5.6)

Let µk →∞, denote the eigenvalues of the problem and vk, k = 1, 2, . . . the
corresponding eigenfunctions normalized such that vk(0) = 1 (the normal-
ization is always possible by (5.6)). Let k be odd and so large that µk > 0.
Since vk has k zeros in (0, 1], we have

vk(0) = 1, v′k(1) < 0, v′k(−1) > 0. (5.7)

There exist a solution of (5.1), (5.2) which is even in x (equivalently, this is a
solution of the equation under the boundary conditions ux(0, t) = 0 = u(1, t))
such that

u(x, t) = φ(x) + q(t)(vk(x) +R(x, t)), (5.8)

where q(t) = ‖u(·, t)−φ‖C1[−1,1] → 0, as t→∞, and R is a function satisfying

R(−1, t) = R(1, t) = 0 (t ≥ 0), (5.9)

R(t, ·) → 0 as t→∞ in C1[−1, 1]. (5.10)

The existence can be established using the simplicity of the eigenvalue µk

and employing suitable invariant manifolds, see [7].
By (5.10) and (5.7) there is ε > 0 such that for all large t we have

vk(x) +R(x, t) > 0 (x ∈ (−ε, ε)),
v′k(x) +Rx(x, t) < 0 (x ∈ (1− ε, 1)),

v′k(x) +Rx(x, t) > 0 (x ∈ (−1,−1 + ε)).

Consequently, by the boundary conditions,

vk(x) +R(x, t) > 0 (x ∈ [−1,−1 + ε) ∪ (−ε, ε) ∪ (1− ε, 1])
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for all sufficiently large t. Since φ ≥ 0 everywhere and φ > 0 in [−1+ ε,−ε]∪
[ε, 1− ε] we conclude that u(x, t) > 0 in (−1, 1) for all large t. Thus we have
a positive solution u(·, t) → φ as t→∞ and φ is not monotone in (0, 1).

We now give the details for Example 2.3. Let Ω = [−1, 1] × [−1, 1]. Let
g, u and φ be as above. For a large T set

U(x, y, t) = u(x, t+ T )ψ(y) ((x, y) ∈ Ω, t > 0)),

where ψ = cos(πy/2), that is, ψ solves

ψ′′ + µψ = 0, (y ∈ (−1, 1)),

ψ(−1) = ψ(1) = 0,

ψ > 0 in (−1, 1),

with µ = (π/2)2. Then U > 0 in Ω× (0,∞) and it satisfies

Ut = ∆U + f(y, U) (x, y) ∈ Ω, t > 0, (5.11)

U = 0, (x, y) ∈ ∂Ω, t > 0, (5.12)

where

f(y, U) =

 g

(
U

ψ(y)

)
ψ(y) + µU if |y| 6= 1,

µU if |y| = 1.

Clearly f is continuous and its derivative

fU(y, U) =

 g′
(

U

ψ(y)

)
+ µ if |y| 6= 1,

µ if |y| = 1,

is bounded. We have U(·, t) → φψ in C1(Ω̄) and φψ has the nodal set as
stated in Example 2.3. In particular, it is not monotone in x > 0 (it is
monotone in x > 1/2 and symmetric about the hyperplane {x = 1/2}).

6 Appendix I: Positive limit profiles

Here we prove the conclusion of Theorem 2.2 assuming that z > 0 in Ω for
all z ∈ ω(u). The proof is much simpler in this case, as Theorem 3.7 is not
needed. Moreover, hypothesis (D2) is not needed and hypotheses (U1), (U2)
can be relaxed somewhat. We shall assume the following instead.
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(U3) The set {u(·, t) : t ≥ 1} is relatively compact in C(Ω̄) and hypothesis
(U2) holds with Ω replaced by any domain G ⊂⊂ Ω.

Theorem 6.1. Let (D1), (F1)–(F3) hold and let u be a nonnegative global
solution of (1.1), (1.2) satisfying (U3). Assume that z > 0 on Ω for each
z ∈ ω(u). Then for each z ∈ ω(u)

z(−x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ Ω), (6.1)

and z is strictly decreasing in x1 on Ω0 = {x ∈ Ω : x1 > 0}. The latter holds
in the form zx1 < 0, provided zx1 ∈ C(Ω0).

Proof. Consider the statement (S)λ as in Section 4. Lemma 4.1 and 4.2
remain valid under the present hypotheses. Define λ0 as in (4.3). We show
that λ0 = 0. Assume λ0 > 0. Then for each z ∈ ω(u), the assumption z > 0
in Ω implies Vλ0z 6≡ 0 on each connected component of Ωλ0 (see the proof of
Lemma 4.4), hence Vλ0z > 0 in Ωλ0 by Lemma 4.2. With δ1 as in Lemma
4.1, choose any closed set K ⊂ Ωλ0 with |Ωλ0 \K| < δ1/2. By compactness
of ω(u) in C(Ω̄), there is ε0 > 0 such that

Vλ0z ≥ 3ε0 on K (z ∈ ω(u)).

Consequently, there is t0 such that

Vλ0u(·, t) ≥ 2ε0 on K (t ≥ t0),

and, by equicontinuity,

Vλu(·, t) ≥ ε0 on K (t ≥ t0), (6.2)

for all λ ≈ λ0. Now, let λ < λ0 be so close to λ0 that (6.2) holds and
|Ωλ \Ωλ0 | < δ1/2. Then |Ωλ \K| < δ1 and applying Lemma 4.1 we conclude
that (S)λ holds for all such λ, which is a contradiction to the definition of
λ0. We have thus proved that λ0 = 0.

As in Lemma 4.6 one shows that each z ∈ ω(u) is decreasing in x1 > 0
and if zx1 ∈ C(Ω0) then zx1 < 0 in Ω0. The symmetry statement is obtained
by an analogous procedure, moving the hyperplanes from the left starting
near −`. The proof is complete.
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7 Appendix II: Proof of Lemma 3.6

Assuming the hypotheses of the lemma, we say that a constant is determined
by the given quantities if it is determined by d, ε, θ, N , diam(Ω), α0, β0, and
τ2 − τ1, τ3 − τ2, τ4 − τ3.

For R, ϑ ∈ R let

Q(R, ϑ) = {(x, t) ∈ RN+1 : |x| < R, t ∈ (−ϑR2, 0)}.

If Q = (x0, t0) +Q(R, ϑ), we denote

Qb := (x0, t0) + {(x, t) ∈ RN+1 : |x| < R, t ∈ (−ϑR2,−3

5
ϑR2)},

Qt := (x0, t0) + {(x, t) ∈ RN+1 : |x| < R, t ∈ (−2

5
ϑR2, 0)}.

We use the fact, proved in [21] (and in [31, Section VII.8]) that the lemma
is valid for standard parabolic cylinders. Specifically, if R ∈ (0, 1/2) and
(x0, t0) +Q(2R, ϑ) is contained in U × (τ, τ4) (U , τ4, v ≥ 0 etc. are as in the
lemma), then for some constants C1 and p determined by N , α0, β0, R, and
ϑ we have

inf
Qt
v(x, t) ≥ C1[v]p,Qb (7.1)

If v is a solution, one can take p = ∞.
We now choose suitable R, ϑ determined by the given quantities. Assum-

ing d and θ are given, first we take R := min{1/2, 4d}. There is an integer σ
depending on N and diam(Ω), such that any subdomain D of Ω is covered
by σ balls having centers in D and radius R/2. Define ϑ by

4ϑR2 = min{θ, τ3 − τ2
σ + 1

}. (7.2)

With this choice of R and ϑ, let C1 and p be as above (cf. (7.1)). Further,
let s be the minimal positive integer with (τ2 − τ1)/s < ϑR2/5, and let

τ i
1 = τ1 + i

(τ2 − τ1)

s
, i = 0, . . . , s.

For D given as in Lemma 3.6, let B(y,R/2), y ∈ S, be a system of σ balls
covering D; here S ⊂ D. The cylinders

B(y,R)× [τ i
1, τ

i+1
1 ], y ∈ S, i = 0, . . . , s,
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cover D × (τ1, τ2), therefore

[v]p,D×(τ1,τ2) ≤ C2[v]p,B(y0,R)×(τ
i0
1 ,τ

i0+1
1 )

,

where (y0, i0) maximizes the integral∫
B(y,R)×(τ i

1,τ i+1
1 )

vp(x, t) dxdt

over (y, i) ∈ S × {0, . . . , s} and

C2 :=

(
σ|B(y0, R)|

ε

) 1
p

≥
(
σ|B(y0, R)|

|D|

) 1
p

(thus C2 is determined by the given quantities). It follows that the lemma
will be proved if we show that for any (x0, t0) ∈ D × (τ3, τ4) we have

v(x0, t0) ≥ C0[v]p,B(y0,R)×(τ
i0
1 ,τ

i0+1
1 )

, (7.3)

where C0 is determined by the given quantities.
To show this, we construct a chain of cylinders Qj, j = 1, . . . ,m, with the

following properties: each Qj is of the form B(y,R) × (t, t + ϑR2) for some
t ≤ τ4 − ϑR2 and y ∈ S, and one has

(x0, t0) ∈ Qt
1,

B(y0, R)× (τ i0
1 , τ

i0+1
1 ) ⊂ Qb

m,

|Qb
j ∩Qt

j+1| ≥ ν,

where m ≤ m0 and m0, ν > 0 are some constants determined by the given
quantities. The chain can be found as follows. Take a chain of balls Bi =
B(yi, R), i = 1, . . . , σ, with yi ∈ S, such that

x0 ∈ B1, Bσ = B(y0, R), |Bi ∩Bi+1| > µ,

where µ = µ(R,N) > 0. Such a chain exists as B(y,R/2), y ∈ S, cover
D (if necessary, we repeat some balls in the sequence to have their number
equal to σ). Next set Q1 = B1 × (t1, t1 + ϑR2) for some t1 ≤ τ4 − ϑR2 with
t0 ∈ (t1 + 3ϑR2/5, t1 + ϑR2). If Qi = Bi × (ti, ti + ϑR2) is defined, we set
Qi+1 = Bi+1 × (ti − 2ϑR2/5, ti + 3ϑR2/5), where Bi ≡ Bσ for i > σ. We
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continue the recursion until Qb
i contains B(y0, R) × (τ i0

1 , τ
i0+1
1 ), which does

occur since τ i0+1
1 − τ i0

1 < ϑR2/5 and it does not occur for i < σ due to
the choice of ϑ (see (7.2)). The chain constructed this way has the desired
properties with ν := µϑR2/5 and with m ≥ σ estimated above by a constant
m0 which depends on τ4 − τ1.

Having constructed the chain, we can now estimate, using (7.1):

inf
Qt

i

v(x, t) ≥ C1[v]p,Qb
i
≥ C1

(
|Qb

i ∩Qt
i+1|

|Qb
i |

) 1
p

[v]p,Qb
i∩Qt

i+1

≥ C1C3[v]p,Qb
i∩Qt

i+1
≥ C1C3 inf

Qt
i+1

v,

where

C3 =

(
5ν

2|B(yi, R)|ϑR2

)1/p

is determined by the given quantities. Repeating these estimates m times,
we obtain (7.3). This completes the proof.
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[12] S. Cho and M.V. Safonov, Hölder regularity of solutions to second order
elliptic equations in non-smooth domains, preprint.
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