
LINEAR STRUCTURES OF HODGE THEORY

COLLEEN ROBLES

Abstract. An introduction to Hodge structures and description of the linear structures

underlying the Hard Lefschetz Theorem and Hodge–Riemann Bilinear Relations. Many

exercises are given, those labelled with a ? are the most important for this lecture.
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1. Introduction: definitions, examples and goal for this lecture

Fix a field F ⊂ R. Let H be a finite dimensional vector space over F.

1.1. Hodge structures.

Definition 1.1. A Hodge structure on H is given by a Hodge decomposition of the complex-

ification HC = H ⊗F C. The latter is a direct sum

(1.2a) HC =
⊕
p,q∈Z

Hp,q

with the property

(1.2b) Hp,q = Hq,p .
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Example 1.3 (†). Historically Hodge structures first arose in the study of compact Kähler man-

ifolds. Given one such manifold X, the Hodge Theorem asserts that the cohomology ring

H•(X,F) of admits a Hodge decomposition with Hp,q(X) ⊂ H•(X,C) the cohomology

classes represented by harmonic (p, q)–forms.

Familiarity with these geometric structures is not prerequisite for reading these notes

– here we focus on abstract Hodge structures. This means that we will be concerned with

relatively simple linear structures, not Kähler geometry (or any geometry). However, the

historical significance of H•(X,F) will merit the occasional comment – reader may regard

this material – labeled with a † – as optional.

Example 1.4. In the case that X is a toric variety, the Hp,q(X) are nonzero only when

p = q; that is, H•(X,C) = ⊕kHk,k(X), [CLS11].

Example 1.5 (†). Fix a lattice Z2g ⊂ Cg, and consider the compact complex torus X =

Cg/Z2g. Given linear coordinates (z1, . . . , zg) on Cg, the differentials {dz1, . . . ,dzg} descend

to well-defined closed 1-forms on X. The set of cohomology classes represented by the (p, q)–

forms

{dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · dz̄bq | a1 < · · · < ap , b1 < · · · < bq}

is a basis of Hp,q(X).

Definition 1.6. The Hodge structure is effective if Hp,q 6= {0} implies that p, q ≥ 0.

Example 1.7. The Hodge structure of Example 1.3 is effective.

For convenience we will assume that

all Hodge structures discussed here are effective.

1.2. Pure Hodge structures.

Definition 1.8. The Hodge decomposition (1.2) defines a pure Hodge structure of weight

w ∈ Z if Hp,q = 0 for all p+ q 6= w. In this case

(1.9) HC =
⊕
p+q=w

Hp,q .

Example 1.10. Every vector space H trivially admits a pure Hodge structure of weight

w = 2k given by HC = Hk,k.

Example 1.11 (†). The Hodge Theorem asserts that the w–th cohomology group Hw(X,F)

admits a pure Hodge structure of weight w with Hodge summands Hp,q(X), p+ q = w.

Remark 1.12. A pure, effective Hodge structure necessarily has non-negative weight w ≥ 0.
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Definition 1.13. A pure Hodge structure of weight w ≥ 0 on H is given by a Hodge filtration

of the complexification HC = H ⊗F C. The latter is a (finite) decreasing filtration

(1.14a) 0 ⊂ Fw ⊂ Fw−1 ⊂ · · · ⊂ F 1 ⊂ F 0 = HC

satisfying

(1.14b) HC = F k ⊕ Fw+1−k .

Exercise 1.15. The definitions 1.8 and 1.13 are equivalent:

(a) Given a pure Hodge decomposition (1.9), show that F k = ⊕p≥kHp,q defines a Hodge

filtration (1.14).

(b) Given a Hodge filtration (1.14), show that Hp,q = F p ∩ F q defines a pure Hodge

decomposition (1.9).

1.3. Polarized Hodge structures.

Definition 1.16. A polarization of a pure Hodge structure of weight w is given by a nonde-

generate bilinear form Q : H ×H → F satisfying

Q(v, u) = (−1)wQ(u, v) , ∀ u, v ∈ H ,

and the Hodge–Riemann bilinear relations

Q(F k, Fw+1−k) = 0 ,(1.17a)

ip−qQ(u, ū) > 0 , ∀ 0 6= u ∈ Hp,q .(1.17b)

Example 1.18. Recall the trivial, pure Hodge structure HC = Hk,k of weight w = 2k

(Example 1.10). A polarization of this Hodge structure is nothing more than an inner-

product on H.

Example 1.19 (†). Let X be a projective Kahler manifold of dimension n with Kähler class

ω ∈ H1,1 ∩H2(X,R). Given w ≤ n, the primitive cohomology

Pw := {α ∈ Hw(X,R) | ωn−w+1 ∧ α = 0}

inherits a weight w Hodge decomposition Pw,C = ⊕p+q=w P
p,q
w from Hw(X,R) given by

P p,qw = Hp,q(X) ∩ Pw,C .

This Hodge structure is polarized by

Q(α, β) = (−1)w(w−1)
∫
X
α ∧ β ∧ ωn−w .
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1.4. Goal of this lecture. The Hodge–Riemann bilinear relations of Example 1.19 are

consequences of a nice linear structure on the real vector space H•(X,R):

(i) The Lefschetz operator M : H•(X,R) → H•(X,R) mapping α 7→ ω ∧ α can be

completed to an sl(2,R)–triple that is compatible with the inner product and the

Hodge decomposition H•(X,C) = ⊕Hp,q(X,C).

(ii) A Hermitian structure on H•(X,R) that is compatible (in a sense to be made precise,

§§4.3–4.4) with the sl(2,R) action.

The goal of this lecture is to explain how such linear structures yield the Hard Lefschetz

Theorem and the Hodge–Riemann Bilinear Relations. These notes include a number of

exercises; the “key exercises” as marked with a ?.

For a thorough treatment of Hodge theory see [CMSP17].

2. Representations of sl(2): Lefschetz

The punchline of this section is Exercises 2.15–2.16, describing the linear structure under-

pinning the Hard Lefschetz Theorem. The material covered here is classical; there are many

excellent references, including the accessible [EW06, §8].

Let sl(2,F) denote the vector space of 2 × 2, trace-free matrices with entries in F. A

basis is given by

m =

[
0 1

0 0

]
, y =

[
1 0

0 −1

]
, n =

[
0 0

1 0

]
.

The following exercise asserts that sl(2,F) is a Lie algebra: it is closed under the commutator

Lie bracket.

Exercise 2.1. (a) Given A,B ∈ sl(2,F), the commutator

[A,B] = AB − BA

is also an element of sl(2,F).

(b) Show that

[y,m] = 2 m , [m,n] = y , [n,y] = 2 n .

Let V be a F–vector space. Let End(V ) be the F–vector space of all linear maps V → V .

Exercise 2.2. Show that End(V ) is isomorphic to the vector space of m×m matrices with

entries in F, with m = dimV . [Hint. Fix a basis {ei} of V , and consider the action of

X ∈ End(V ) on ei.]

Given A,B ∈ End(V ) the commutator [A,B] = A ◦ B − B ◦ A is also a linear map

V → V . So End(V ) also has the structure of a Lie algebra; this is the endomorphism

algebra.
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Definition 2.3. A representation of sl(2,F) is given by a F–vector space V , and a triple

{M,Y,N} ⊂ End(V ) satisfying

[Y,M ] = 2M , [M,N ] = Y , [N,Y ] = 2N .

Remark 2.4. In this case g = span{M,Y,N} is a Lie subalgebra of End(V ) that is isomorphic

to sl(2,F), and the linear map sl(2,F) → End(V ) defined by m 7→ M , y 7→ Y and n 7→ N

is an injective Lie algebra homomorphism.

Exercise 2.5 (?). Let

Sd = spanF{xayb | a+ b = d} ⊂ F[x, y]

be the vector space of degree d homogeneous polynomials in two variables.

(a) Prove that

M = x
∂

∂y
, Y = x

∂

∂x
− y

∂

∂y
, N = y

∂

∂x

is an sl(2,F)–triple.

(b) Prove that xa yb is an eigenvector of Y with eigenvalue a − b ∈ Z. In particular, the

Y –eigenvalues are

{d, d− 2, d− 4, . . . , 4− d, 2− d,−d}

(c) Prove that {yd , M(yd) , M2(yd) , · · · ,Md(yd)} is a basis of Sd.

(d) Prove that Md+1 = 0 and Nd+1 = 0.

Remark 2.6. Assume that F = F is algebraically closed. The content of Theorem 2.11 is

that the Sd are the building blocks of sl(2,F) representations: every representation can be

decomposed into a direct sum of the Sd, and the Sd are themselves “irreducible”.

Definition 2.7. A representation V of sl(2,F) is irreducible if there exists no nontrivial

subspace U ( V that is invariant under the action of sl(2,F). That is, M(U), Y (U), N(U) ⊂
U implies U = 0 or U = V .

Exercise 2.8 (?). The representation Sd is irreducible.

Definition 2.9. The vector space Sd is the irreducible representation of sl(2,F) of highest

weight d.

Definition 2.10. Two sl(2,F)–representations V and U are isomorphic, and we write V ' U ,

if there is a linear isomorphism λ : V → U such that λ(X(v)) = X(λ(v)) for all v ∈ V and

X ∈ sl(2,F).

For the remainder of §2 we

assume F = F is algebraically closed.
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Theorem 2.11 (Weyl). Every finite–dimensional representation V of sl(2,F) is completely

reducible: there exist 0 ≤ md ∈ Z so that

(2.12) V '
⊕
d≥0

S⊕md
d

as sl(2,F)–representations.

Exercise 2.13. (a) Suppose that V is an sl(2,F)–representation, and that the eigenvalues

of Y are {2, 1, 1, 0,−1,−1,−2} (listed with multiplicity). Prove that the decomposition

(2.12) is V = S2 ⊕ S⊕21 .

(b) Prove that the decomposition (2.12) is determined by the eigenvalues of Y . That is,

any sl(2,F) representation is determined by its Y –eigenvalues.

Definition 2.14. We call the summand Id ' Smd
d in (2.12) the isotypic component of highest

weight d, and md is the multiplicity of Sd in V .

Exercise 2.15 (?). Given k ∈ Z, define

Vk = {v ∈ V | Y (v) = k} .

Suppose that k ≥ 0 and prove that Mk : V−k → Vk is an isomorphism.

Exercise 2.16 (?). Let V be a finite dimensional representation of sl(2,F). Given d ≥ 0,

define

(2.17) Pd = {v ∈ V | Y (v) = −d , Md+1(v) = 0} .

(a) Prove that dimPd = md.

(b) Prove that the isotypic component of highest weight d is

Id =

d⊕
k=0

Mk(Pd)

(c) Conclude that

V =
⊕
d≥0

d⊕
k=0

Mk(Pd) .

Exercise 2.18. Show that ⊕Pd = ker{N : V → V }.

3. Representations of sl(2): compatible bilinear forms

Lurking in the background of (many instances of) Poincaré duality and the Hodge–

Riemannian bilinear relations are some basic results (Exercises 3.3–3.4) about sl(2,R)–

representations that are compatible with a bilinear form. These are implicit in the con-

structions of §4, and the discussion here is not necessary for that material. But while the
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construction of §4 has the advantage of being explicit, it has the disadvantage of being

somewhat complicated and so obscuring those aforementioned basic results. So here we

outline the essential underlying linear structure.

Let Aut(V ) be the group of invertible linear maps V → V .

Exercise 3.1. Show that Aut(V ) is isomorphic to the group GLmF of invertible m × m

matrices with entries in F. [Hint. See Exercise 2.2.]

Fix F = R, and let

Q : V × V → R

be a nondegenerate (skew-)symmetric bilinear form. Then the group of automorphisms

Aut(V,Q) = {A ∈ Aut(V ) | Q(Au,Av) = Q(u, v) , ∀u, v ∈ V }

is Sp(2r,R) if Q is skew-symmetric, and O(a, b) if Q is symmetric. Likewise the associated

Lie algebra

End(V,Q) = {X ∈ End(V ) | Q(Xu, v) +Q(u,Xv) = 0 , ∀u, v ∈ V }

is either sp(2r,R) or o(a, b).

Exercise 3.2. Prove that End(V,Q) is a Lie subalgebra of End(V ); that is, if A,B ∈
End(V,Q), then [A,B] = A ◦B −B ◦A ∈ End(V,Q).

An sl(2,R)–representation is compatible with Q if

{M,Y,N} ⊂ End(V,Q) .

Exercise 3.3 (?). Given a Q–compatible sl(2,R)–representation, show that:

(a) If k + ` 6= 0, then Q(Vk, V`) = 0.

This implies a type of “Poincaré duality”: the pairing Q : Vk × V−k → R is perfect.

(b) If c 6= d, then Q(Ic, Id) = 0.

In particular, the isotypic decomposition V = ⊕d Id is Q–orthogonal.

Specify s ∈ {0, 1} so that

Q(v, u) = (−1)sQ(u, v) .

(That is, s = 0 if Q is symmetric, and s = 1 if Q is skew-symmetric.) Define a bilinear form

Qd : Pd × Pd → R by

Qd(u, v) = Q(u,Mdv) .

Exercise 3.4 (?). (a) Prove that Qd is nondegenerate. (This result, combined with Exer-

cise 3.3(b), gives us a weak form of the Hodge–Riemann bilinear relations.)

(b) Prove that Qd(v, u) = (−1)s+dQd(u, v).
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Example 3.5 (?). We can define a pure Hodge structure of weight w = 2k on Pd by specifying

that Pd,C = P k,k, cf. Example 1.10. If s+ d ≡ 0 mod 2, so that Qd is symmetric, then the

nondegenerate Qd is a polarization if and only if it is positive definite, cf. Example 1.18.

4. Linear structures underlying the “Kähler package”

We now turn to the linear structures underlying the Hodge–Riemann bilinear relations.

One begins with a Hermitian structure on a real vector space T that is given by an inner

product 〈·, ·〉 and a compatible complex structure I : T → T . From this data one constructs

an sl(2)–triple acting on the exterior algebra V =
∧•T , cf. §A. The complex structure

naturally endows the exterior algebra with a Hodge structure, which the primitive subspace

(2.17) inherits. The inner-product and sl(2) action (in particular, the Lefschetz operator)

endow the primitive subspace with a polarization satisfying the Hodge–Riemann bilinear

relations.

The material here largely follows the discussion of [Huy05, §1.2].

4.1. Hermitian structures. Let T be a real, finite dimensional vector space.

Definition 4.1. A linear map I : T → T is a complex structure if I2 = −id.

Exercise 4.2. (a) Show that the complexification TC = T ⊗R C decomposes as a direct

sum T 1,0 ⊕ T 0,1 of I–eigenspaces, with eigenvalues ±i, respectively.

(b) Prove that T 1,0 = T 0,1.

(c) Prove that T admits a basis {x1, y1, . . . , xn, yn} so that I(xa) = −ya.
(d) Prove that {za = xa + iya}na=1 is a basis of T 1,0.

(e) Define an orientation on T by specifying that {x1, y1, . . . , xn, yn} is an oriented basis.

Prove that this definition is independent of our choice of basis.

Exercise 4.3. Prove that the k–th exterior exterior power (§A) decomposes as

(4.4)
∧kTC =

⊕
p+q=k

∧p,qT , where
∧p,qT = (

∧pT 1,0)⊗ (
∧qT 0,1) .

Note that
∧p,qT =

∧p,qT and (4.4) is a pure Hodge decomposition of weight k.

Fix an inner-product 〈·, ·〉 on T that is compatible with the complex structure; that is,

〈u, v〉 = 〈I(u), I(v)〉 , ∀ u, v ∈ T .

Given an orthonormal basis {e1, . . . , e2n} of T , we specify an inner-product on
∧kT by

declaring {ei1 ∧ . . . ∧ eik | 1 ≤ i1 < · · · < ik ≤ 2n} to be an orthonormal basis.

Exercise 4.5. Show that you can choose the basis in Exercise 4.2(c) so that {xa, ya}na=1 is

also orthonormal.
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4.2. Lefschetz operator.

Definition 4.6. The fundamental form is

ω = i
2

∑
a

za ∧ za =
∑
a

xa ∧ ya ∈ (
∧2T ) ∩ (

∧1,1T ) .

The inner product on T naturally induces one on T ∗. If {e1, . . . , e2m} is an orthonormal

basis of T , then we declare the dual basis of T ∗ to be orthonormal as well. This inner

product is also denoted 〈·, ·〉.

Exercise 4.7. Show that ω(u, v) = 〈I(u), v〉 = −〈u, I(v)〉 for all u, v ∈ T ∗. In particular, ω

is independent of our choice of basis.

Definition 4.8. The Lefschetz operator

M :
∧•T →

∧•T

maps α 7→ ω ∧ α.

Observe that M(
∧kT ) ⊂

∧k+2T . And, extending M to a C–linear operator
∧•TC →

∧•TC,

we have

(4.9) M(
∧a,bT ) ⊂

∧a+1,b+1T .

Definition 4.10. The dual Lefschetz operator

N :
∧•T →

∧•T

is the adjoint to M ; that is

〈Nα, β〉 = 〈α,Mβ〉 .

The dual Lefschetz operator may be expressed as

(4.11) N = ∗−1 ◦M ◦ ∗ ,

where ∗ is the Hodge ∗–operator. The latter is defined as follows. Set

vol = (x1 ∧ y1) ∧ · · · ∧ (xn ∧ yn) ∈
∧2nT .

Define

∗ :
∧kT →

∧2n−kT

by

α ∧ ∗β = 〈α, β〉vol .

Exercise 4.12. (a) Given an oriented, orthonormal basis {e1, . . . , e2n} of T and a disjoint

union I ∪ J = {1, . . . , 2m} we have

∗ei1 ∧ · · · ∧ eik = ±ej1 ∧ · · · ∧ ej2n−k
,

where ± is the sign of the permutation (I, J) = (i1, . . . , ik , j1, . . . , j2n−k) ∈ S2n, cf. §A.
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(b) Prove ∗1 = vol .

(c) Given α ∈
∧kT , show that ∗2α = (−1)k(2n−k)α.

(d) Given α ∈
∧kT , show that 〈α, ∗β〉 = (−1)k(2n−k)〈∗α, β〉. (This says the Hodge ∗

operator is self-adjoint up to a sign.)

Exercise 4.13 (?). (a) Verify (4.11).

(b) Show that N(
∧p,qT ) ⊂

∧p−1,q−1T .

4.3. The sl(2)–triple. Define Y :
∧•T →

∧• by specifying that Y acts on
∧kT by (k−n)id;

that is,
∧•T = ⊕k

∧kT is the Y –eigenspace decomposition, and the Y –eigenvalue of
∧kT

is k − n.

Exercise 4.14 (?). Prove that

(4.15) [Y,M ] = 2M and [N,Y ] = 2N .

To see that {M,Y,N} is an sl(2)–triple (§2) it remains to show that

(4.16) [M,N ] = Y .

The trick is to reduce the proof of (4.16) to the case that dimT = 2. For this, the basic

idea is that if T = T1 ⊕ T2 is orthogonal and preserved by the complex structure, then

ω = ω1 + ω2 with ωi the fundamental form of Ti. Since
∧•T = (

∧•T1) ⊗ (
∧•T2) it follows

that M = M1 ⊗ id + id⊗M2. See [Huy05, Prop. 1.2.26] for details.

Exercise 4.17. Verify (4.16) for dimT = 2.

Remark 4.18. It follows from (4.15) and (4.16) that {M,Y,N} is an sl(2)–triple; in particu-

lar, V =
∧•T is an sl(2,R)–representation. While Theorem 2.11 and Exercises 2.15–2.16 are

stated for an algebraically closed field; the same results hold here for the real representation.

This is because:

• The complex structure I : T → T gives T the structure of a complex vector space;

scalar multiplication by a+ ib ∈ C is defined to be (a+ ib)v = av+ bI(v) for all v ∈ T .

• The action of the triple {M,Y,N} on V commutes with the complex structure I; in

particular the action is complex linear.

Exercise 4.19 (?). Recall the primitive space (2.17).

(a) Show that Pd ⊂
∧n−dT .

(b) Given p+ q = n− d, define P p,q = Pd,C ∩
∧p,qT . Use (4.9) to show that

(4.20) Pd,C =
⊕

p+q=n−d
P p,q .

(c) Prove that (4.20) is a pure Hodge decomposition of weight w = n− d.
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(d) Show that ∧p,qT =
⊕

Mk(P p−k,q−k) .

4.4. The Hodge–Riemann bilinear relations. Extend the inner-product 〈·, ·〉 on V =∧•T to a Hermitian form on the complexification VC =
∧•TC by specifying

〈λu, µv〉 = λµ̄〈u, v〉 ,

for all λ, µ ∈ C and u, v ∈
∧•T .

Example 4.21. Recall the basis {za}na=1 ⊂ T 1,0 of Exercise 4.2. We have 〈za, zb〉 = 〈za, zb〉 =

2δαβ and 〈za, zb〉 = 0.

Extend the Hodge ∗ operator to a C–linear
∧•TC →

∧•TC.

Exercise 4.22. (a) Given α, β ∈
∧•TC, verify that α ∧ ∗β = 〈α, β〉vol .

(b) Show that ∗(
∧p,qT ) ⊂

∧n−q,n−pT .

(c) Show that the Hodge decomposition
∧•TC = ⊕

∧p,qT is orthogonal with respect to

the Hermitian pairing.

Definition 4.23. Given k ≤ n, the Hodge–Riemann pairing

Q :
∧kT ×

∧kT → R

is given by

Q(α, β)vol = (−1)k(k−1)/2α ∧ β ∧ ωn−k .

We also let Q denote the extension to a C–bilinear pairing on
∧kTC.

Exercise 4.24 (?). (a) Show that Q(α, β) = (−1)kQ(β, α). [Hint. Exercise A.11.]

(b) Show that Q(
∧p,qT ,

∧r,sT ) = 0 if (r, s) 6= (q, p).

In order to show that Q polarizes the weight k Hodge structure on Pn−k ⊂
∧kT it

remains to establish

(4.25) ip−q Q(α, α) = (n− k)!〈α, α〉 ,

for all α ∈ P p,q. We will need the following fact

(4.26) ∗Mn−kα = (−1)k(k+1)/2(n− k)! ip−qα ,

cf. [Huy05, Prop. 1.2.31]; the argument is again by induction on dimT , but with dimR T1 =

2. Define β ∈
∧kT by ∗β = Mn−kα. Then Exercise 4.12(c) and (4.26) yield

β = (−1)k+k(k+1)/2(n− k)! ip−q α .
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The desired (4.25) follows from

Q(α, α) = (−1)k(k−1)/2α ∧ (Mn−kα)

= (−1)k(k−1)/2〈α, β〉vol .

4.5. The Kähler package (†). For the reader interested in Kähler geometry, what one

has in the back of one’s mind is that T = T ∗pX is the (real) cotangent space of a compact

Kähler manifold X. Then T 1,0 is the holomorphic cotangent space at p, and T 0,1 is its

conjugate. The inner product 〈·, ·〉 is dual to the Riemannian metric on TpX, and the

fundamental form ω is the Kähler form at p. One obtains the Hard Lefschetz Theorem and

Hodge–Riemann bilinear relations for the cohomology H•(X) as follows:

(i) Let Ak(X) denote the space of smooth, complex-valued k forms; and the Ap,q(X) the

space of smooth (p, q)–forms. The Kähler form defines the Lefschetz operator M :

Ap,q(X)→ Ap+1,q+1 point-wise on X. The Hodge ∗ operator ∗ : Ak(X)→ A2n−k(X)

is likewise defined point-wise.

(ii) The Hodge decomposition theorem asserts that Hk(X,C) = ⊕p+q=kHp,q(X), and that

each cohomology class in Hp,q(X) can be uniquely represented by a harmonic (p, q)–

form α ∈ Ap,q(X).

(iii) The “Kähler identities” assert that the Laplacian commutes with ∗ and the sl(2)–triple

{M,Y,N}. This means that they descend to well-defined operators on H•(X,R).

Whence H•(X,R) inherits the Lefschetz decomposition (Hard Lefschetz theorem).

(iv) One obtains a polarization on Hk(X,R) by integrating Q over X (Hodge–Riemann

bilinear relations).

For details, see [Huy05, Chap. 3].

Appendix A. Exterior Algebra

Let T be a real, finite dimensional vector space.

Definition A.1. A k–tensor is a k–linear map

τ : T ∗ × · · · × T ∗ → R .

Let T⊗k denote the vector space of k–tensors.

Example A.2. One-tensors are just linear maps T ∗ → R. Two-tensors are bilinear forms.

For example, an inner product on T ∗ is a 2–tensor.

Given v1, . . . , vk ∈ T , let v1 ⊗ · · · ⊗ vk denote the k–tensor defined by

v1 ⊗ · · · ⊗ vk(µ1, . . . , µk) = µ1(v1) · · ·µk(vk) , ∀ µi ∈ T ∗ .

Exercise A.3. If {ε1, . . . , εn} is a basis of T , then {εii ⊗ · · · ⊗ εik} is a basis of T⊗k.
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Definition A.4. Let Sk be the permutation group on k–letters. If {e1, . . . , ek} is a basis

of Rk, then σ ∈ Sk defines a linear map Rk → Rk by ei 7→ eσ(i); the sign of σ is the

determinant of this linear map, and is denoted (−1)σ.

Definition A.5. A k–tensor τ is alternating if

τ(µσ(1), . . . , µσ(k)) = (−1)στ(µ1, . . . , µk) ,

for all µi ∈ T ∗ and σ ∈ Sk. Let
∧kT ⊂ T⊗k denote the vector subspace of alternating

k–tensors.

Example A.6. Every 1–tensor is (trivially) alternating: T =
∧1T . The alternating 2–tensors

are the skew-symmetric forms: τ(µ1, µ2) = −τ(µ2, µ1).

Example A.7. Let × denote the cross-product on R3, and fix v ∈ R3. Then

τv(u1, u2) = (u1 × u2) · v

is an alternating 2–tensor on T = (R3)∗.

Example A.8. If we regard elements x = (xi) ∈ Rn as column vectors, then a choice of

n–elements x1, . . . , xn ∈ Rn determines an n× n matrix (xij), and

δ(x1, . . . , xn) = det(xij) =
∑
σ∈Sn

(−1)σxiσ(j)

is an alternating n–tensor.

Definition A.9. Given v1, . . . , vk ∈ T , let v1 ∧ · · · ∧ vk be the k–tensor defined by

v1 ∧ · · · ∧ vk =
1

k!

∑
σ∈Sk

(−1)σvσ(1)⊗ · · · ⊗ vσ(k) .

Exercise A.10. Prove that {εii ∧ · · · ∧ εik | 1 ≤ i1 < · · · < ik ≤ dimT} is a basis of
∧kT .

Exercise A.11. Given α ∈
∧kT and β ∈

∧`T , prove that

α ∧ β = (−1)k`β ∧ α .

Definition A.12. We call
∧kT the k–the exterior power of T . By convention

∧0T = R. We

call
∧•T = ⊕k

∧kT the exterior algebra.
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