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Questions

(And some Answers)

(And lots of Opinions)

On Shell Theory
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Shells

Q: What is a shell?

A: A three-dimensional elastic body occupying a thin

neighborhood of a two-dimensional submanifold of R3. That

is, a shell is a physical object. Our goal is to predict

the displacement and stress (measurable physical quantities)

arising in response to given loads and boundary conditions.

Q: Is a plate a shell?

A: Of course. Which is not to say that flat shells don’t respond

differently than, say, elliptical shells in certain regimes.
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Shell models

Q: What is a shell model?

A: A systems of equations (usually PDEs) which, when solved,

yields a displacement (and stress) field approximating that of

the physical shell. So the “reconstruction” of the 3D field

is an essential part of the model. Shell models can involve

PDEs in 3 variables (like the equations of 3D elasticity) or be

dimensionally reduced and involve only PDEs in 2 variables.
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The mathematics of shells

Q: What can we mathematicians do with shell models?

I Derive them

I Analyze the behavior of the shell model

I Determine the accuracy of the shell model in relation to

the shell

I Solve the shell model (numerically)

. . . just what this workshop is about.
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Q: How can mathematics, whose universe doesn’t encompass

actual physical objects, be used to derive a model for a

physical shell or to prove that a shell model is accurate?

A: OK, OK, it can’t. Relating the physical object to the

mathematical model ultimately depends on non-mathematical

reasoning: experiment, intuition, faith, . . .

But . . . mathematics can be very useful.

The trick is that you need a supermodel.
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Supermodels
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Supermodels

A supermodel is a mathematical model of a shell that we

accept as sufficiently accurate. We then try to derive other

shell models, in some sense simpler, which are close to the

supermodel, and try to prove that the displacement field

produced by the new model is close to that produced by the

supermodel.

Typical supermodels are the system of 3D elasticity or

linearized 3D elasticity.

Henceforth we will not distinguish between our supermodel

(linear elasticity) and the true shell.
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Derivation of shell models

The mathematical derivation of shell models from a

supermodel is less important than obtaining bounds on the

error.

While a systematic derivation is aesthetically satisfying and

pedagogically sound, if a shell model is provably accurate, it

doesn’t really matter if it was derived via dubious principles.

Of course we may need mathematics to derive good models,

but so far mechanical intuition is holding its own.
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Derivation of shell models

All methods of derivations fall into one of three classes.

I Asymptotic methods Ciarlet, Destuynder, Lods, Miara,

Raoult, Sanchez-Palencia, . . .

I Variational methods Arnold, Babuška, Falk, Madureira,

Pitkäranta, Raoult, Schwab, Vogelius, . . .

I All other methods A cast of thousands . . .
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The asymptotic approach

We start with the given shell of half-thickness ε0, middle

surface Sε0, elasticity tensor Cε0, surface loads gε0, etc.

We then invent problems for each ε with half thickness ε,

middle surface Sε, elasticity tensor Cε, surface loads gε, etc.,

coinciding with the given problem when ε = ε0, and denote

by uε the displacement field solving the corresponding 3D

problem.

E.g., Sε = Sε0, Cε = C, gε = (ε/ε0)pgε0.

We then determine, in some sense, limε↓0 u
ε. If we are lucky

uε can be determined from the solution of a 2D BVP.
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There are infinitely many ways to embed the given shell into

an asymptotic sequence, and so many possible limit models.

Q: How to choose one?

A: Basic rule of thumb: all relevant nondimensionalized

quantities in the given problem which are much greater or

much smaller than 1 should be captured by the asymptotics.
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Example

If
|gε0 · n|
|gε0 × n|

=
1

100
don’t take gε =

(
ε

ε0

)p
gε0.

That gives |g
∼
ε|/|gε3| = O(1) as ε → 0, and misses a

fundamental aspect of the given shell problem.

If ε0 = 1/10, better asymptotics uses

gε · n =
(
ε

ε0

)2

gε0 · n, gε × n = gε0 × n
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A literary quiz

Q: Who said “There are three kinds of lies: lies, damn lies,
and statistics”?

A: Mark Twain

Q: Why did he say it?

A: Because he wasn’t familiar with asymptotic analysis.

The point: AA, like statistics, can be used to bring

understanding to complex situations . . . or not.

Q: Is the partially clamped elliptic shell really a monster? Can

more appropriate asymptotics tame the monster?
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The variational approach

In the variational approach to deriving shell models,

1. We characterize the solution of the supermodel by a

variational principle or weak formulation (minimum energy,

minimum complementary energy, Hellinger–Reissner)

2. We then determine an approximation by restricting to a trial

space of functions that are finite dimensional with respect

to the transverse variable
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Example: Reissner–Mindlin (a la AAFM ’96)

1. Characterize uε, σε as the unique critical point of the

Hellinger–Reissner functional

(u, σ) 7→
∫

Ωε
(Aσ : σ + div σu)

subject to the given traction boundary conditions on top and

bottom.

2. Define uεR, σεR as the critical point restricted to functions

with the following polynomial degree in the transverse

direction:

deg u =
(

1
2

)
, deg σ =

(
1 2
2 3

)
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The resulting model

uεR(x
∼
, x3) =

(
η
∼
ε(x
∼

)
ρε(x
∼

)x3

)
+

(
−x3θ∼

ε(x
∼

)
wε(x
∼

) + yε(x
∼

)r(x3/ε))

)

I r(z) = (3/2)(z2 − 1/5)

I η
∼
ε is determined by a plane elasticity problem

I ρε is determined by η
∼
ε

I wε and θ
∼
ε are determined by the Reissner–Mindlin system

I yε is determined by wε and θ
∼
ε
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Stretching solution

Specifically

−2εdivA
∼∼∼∼

−1e
∼∼

(η
∼

) = 2ḡ
∼

+ ε
2λ

2µ+ λ
∇
∼

(g̃3 +
ε

3
div ḡ
∼

) in ω,

with

g̃3(x
∼

) =
1
2
[g3(x
∼
, ε)− g3(x

∼
,−ε)], ḡ

∼
(x
∼

) =
1
2
[g
∼

(x
∼
, ε) + g

∼
(x
∼
,−ε)]

Then ρε = a1 div ηε + a2g̃3 + a3εdiv ḡ
∼

.

(ai rational functions of µ and λ)
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RM vs. KL for stretching

Note that the RM model is richer than the KL model. It takes

into account that a plate can stretch in response to an odd

transverse load and that a plate which is compressed will also

expand in the transverse direction.

These effects, which are usually of higher order, are lost in

the limit with the usual asymptotics.
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Reissner–Mindlin bending solution

−ε32
3

div C
∼∼∼∼

∗e
∼∼

(θ
∼
ε) +

5
3
εµ(θ
∼
ε −∇

∼
wε) = G

∼
ε
R,

5
3
εµdiv(θ

∼
ε −∇

∼
wε) = F εR,

where C
∼∼∼∼
∗τ
∼∼

= 2µτ
∼∼

+ λ∗ tr(τ
∼∼

)δ
∼∼

and

G
∼
ε
R = −5

3
εg̃
∼
ε − 2

15
λ

2µ+ λ
ε2∇
∼

(6ḡε3 + εdiv g̃
∼
ε),

F εR =
ε

3
div g̃
∼
ε + 2ḡε3.

yε = a1ε
2 div θ

∼
ε + a2εḡ

ε
3 + a3ε

2 div g̃
∼
ε
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For deriving shell models, the variational approach is more

natural than the asymptotic approach in several ways.
I It doesn’t require that we embed the given shell problem in

an infinite sequence of problems which don’t really exist.

I It definitely reduces dimension: by its very nature its leads to

a displacement field determined by finitely many functions

of two variables.

I By construction it yields a displacement and/or stress field

on the given physical plate, not on the midsurface or on an

imaginary reference domain.

I If the resulting model is not accurate enough we can always

improve it by using a larger trial space. Hierarchical systems

of models.
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For plates the asymptotic method leads to the fundamental

Kirchhoff–Love model. But only this model. It doesn’t seem

to be possible to derive the better Reissner–Mindlin model,

for instance. Taking more terms in the asymptotic expansion

does not lead to a dimensionally reduced model.

The variational model leads to a precisely defined Reissner–

Mindlin model (but not to KL), and also to a hierarchy of

other models, including ones that had been derived before by

other methods.

For shells, the asymptotic approach doesn’t lead to any of

the classical shell models, neither Koiter, Naghdi, Budiansky-

Sanders, . . .

The variational approach for shells is not completely worked

out. The work of Chapelle and Bathe fits here. Sheng Zhang

derived a variant of Naghdi in this way.
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Error estimates for shell models

Now let’s go to error estimates, which are more important

any way.
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Error estimates for shell models: What?

The quantity to bound is the difference

uε∗ − uεM or σε∗ − σεM

A norm relevant to the given problem should be used. It will

of course live on the physical domain. E.g.:

‖uε∗ − uεM‖L2(Ωε), ‖uε∗3 − uεM3‖L2(Ωε),∫
Ωε

Ce(uε∗ − uεM) : e(uε∗ − uεM) dxε, . . .

Since we don’t know the size, we should use the relative error :

‖uε∗ − uεM‖Ωε
‖uε∗‖Ωε
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An alternative is to post-process the 3D solution to obtain

functions on the middle surface and compare these to the

solution of the 2D PDEs. But this is less satisfying: it

doesn’t directly address the given problem of approximating

the displacement and/or stress fields in the given shell.

“Ask not what the shell can do for your model, ask what your

model can do for the shell.”
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Error estimates for shell models: How?

There are two main approaches:

I Asymptotic methods: embed the given shell problem into

a family of problems with varying domains, varying loads,

etc., parametrized by the shell thickness. Determine the

first several terms of the asymptotic expansion, subtract

the shell model solution, and compute the norms of the

remaining terms.

I Variational methods: based upon the two energies principle.
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The two energies principle

The 3D boundary value problem consists of

1. the constitutive equation Ce(uε∗) = σε∗

2. the equilibrium equation divσε∗ = f ε

3. the boundary conditions

If the model solution uεM , σεM satisfies the equilibrium equation

and boundary conditions exactly, the error can surely be

bounded by the residual in the constitutive equation.
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The two energies principle

In fact, if we use the energy norms, we have a simple identity

‖A1/2(σε∗ − σεM)‖2L2(Ωε) + ‖C1/2e(uε∗ − uεM)‖2L2(Ωε)

= ‖σεM − AσεM‖2L2(Ωε)

as long as uεM is kinematically admissable and σεM is statically

admissable. (No ε-dependence.)
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This is an a posteriori error estimate. It bounds the error in

the model in terms of residual of the model solution, and so

doesn’t require detailed knowledge of the 3D solution.

We don’t need to embed the problem in a parametrized family

or to make assumptions on the load.

However, if we want to determine an order of convergence

with respect to ε, than probably we will have to do so.

Q: Can Koiter’s hope for a universal estimate be achieved?



29

Applicability of the variational approach

The two energies principle can be used to prove error estimates

for any models, not just one derived by variational principles.

In the 1950’s Morgenstern used it to prove the first rigorous

error convergence estimates for KL plate bending. He

constructed admissable stress and displacement fields starting

from a solution of the biharmonic equation and computed

the constitutive residual. This approach leads to O(
√
ε)

convergence in relative energy norm.

The two energies principle is particularly suited to

analyzing complementary energy variational models, which

automatically yield statically admissable stress fields.
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Applicability of the asymptotic approach

The asymptotic method can be used to analyze any models,

not just the asymptotic limit ones. For other models, this

requires that the model solution, as well as the 3D solution,

be expanded in an asymptotic expansion. For example, in

his thesis Madureira used the asymptotic method to estimate

the errors in a hierarchical family of models for the Poisson

equation on a thin plate. The estimates were in the form

‖uε∗ − uεp‖H1(Ωε)

‖uε∗‖H1(Ωε)

≤ C

p−s
ε+O(ε2),

and so rigorously justify the value of higher order models.
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Comparison and questions

The variational approach is relatively easy to carry out

rigorously when it applies.

Q: But can it be used to get estimates in norms other than the

energy norm?

The asymptotic approach requires detailed understanding of

the the 3D solution, which can be hard to get and to make

rigorous. But it gives more information and insight. Thanks

to Dauge, Gruais, Rössle, . . . , the structure of the 3D solution

on plates is in hand.

Q: How far is our understanding of the asymptotics of the 3D

solution on shells (Dauge, Faou, Sanchez-P, . . . ) from what

is needed for good error estimates?
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Example: RM vs. KL

Consider a surface loaded plate where

g
∼
ε(x
∼
, ε) = −g

∼
ε(x
∼
,−ε), gε3(x

∼
, ε) = g

∼
ε
3(x
∼
,−ε)

(pure bending).

Suppose g̃
∼
ε = g

∼
, ḡε3 = εg3 with g

∼
, g3 H1 functions

independent of ε.

Let uεK be the Kirchhoff–Love solution and uεR the Reissner–

Mindlin solution.
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Example: RM vs. KL

Theorem. For any nonzero ḡ ∈ H1(ω) the Reissner–Mindlin

solution satisfies

‖u
∼
ε
∗ − u∼

ε
R‖L2(Ωε)

‖u
∼
ε
∗‖L2(Ωε)

≤ Cε,
‖uε∗3 − uεR3‖L2(Ω)

‖uε∗3‖L2(Ωε)

≤ Cε,

‖uε∗ − uεR‖E(Ωε)

‖uε∗‖E(Ωε)
≤ Cε1/2.

Theorem. If g3 + div g
∼
6= 0 then the same L2 estimates

hold for the Kirchhoff–Love solution and the energy estimate

holds for the corrected Kirchhoff–Love solution. If however

g3 + div g
∼

= 0, then the relative error in the Kirchhoff–Love

solution doesn’t go to zero no matter what norm is used.
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The proof consists of bounds on the error and lower bounds

on the solution. The former can be obtained by asymptotic

analysis or the two energies principle (the estimates for RM

when g3 + div g
∼

= 0 are new).

To estimate the constitutive residual and to get lower bounds

on the RM solution we use a sharp energy estimate (Arnold–

Falk–Winter 1997)
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Theorem. For the mixed Reissner–Mindlin system

−divC
∼∼∼∼
e
∼∼

(θ
∼
ε) + ζ

∼
ε = G

∼
, div ζ

∼
ε = F,

−θε +∇
∼
wε + ε2ζε = J

∼
,

‖θ
∼
ε‖H1 + ‖wε‖H1 + ‖ζε‖H−1(div)∩εL2

≈ ‖G
∼
‖H−1 + ‖F‖H−1 + ‖J

∼
‖H̊(rot)+ε−1L2,

uniformly in ε.
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Interpretation

When

‖εgε3 + div g
∼
ε‖ � max(‖εgε3‖, ‖g∼

ε‖),

the plate will undergo significant shear, and the Kirchhoff–

Love solution, which ignores the shear, will not be accurate.

While the convergence theorem applies, the asymptotic

assumption on the loads is misleading.
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This is one result addressing Philippe Ciarlet’s challenge:

While it is generally agreed in computational mechanics

circles that the Reissner–Mindlin theory is “better” than

the Kirchhoff–Love theory, especially for “moderately

thin plates,” this assertion is not yet fully substantiated.
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It is surely not the whole answer. Reissner–Mindlin theory is

also preferred because it better represents boundary conditions

(it can distinguish between hard and soft simple support), and

because it offers at least some approximation of the boundary

layer. This is even more true for higher order hierarchical

elements (Schwab–Wright, Madureira).

Similar things can be done with membrane loads for formally

“bending dominated” (uninhibited) shells.
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Questions, questions, questions . . .

Q: Can better asymptotics tame some of the monsters? Which

3D shells are really, physically, monsters?

Q: Can reasonable a priori estimates be proven without any a

priori assumptions on the load?

Q: Can the variational approach be used to get estimates in

norms other than the energy norm? Is there a duality

argument? What are the best ε-independent estimates on

the 3D problem?

Q: Asymptotic expansion of the 3D solution and error bounds?
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Questions, questions, questions . . .

Q: Does the engineering approach of approximating uε∗ directly

by uε∗h have merit for analysis, or is it always better to define a

dimensionally reduced model and use the triangle inequality?

Q: Are the goals of (1) consistent, stable approximation of the

membrane energy in a shell model and (2) avoidance of

locking when the membrane energy is constrained, really in

contradiction? Does the p version provide a counterexample?

Can a good h element be designed?
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Questions, questions, questions . . .

Q: If you think a defintion of locking is hard to agree on, try

“membrane-dominated”? 3D or 2D? Load dependent or not?

Local or global? What really matters for computation?

Q: Does the Arnold–Brezzi estimate locking-free error estimate

really require piecewise constant coefficients?

Q: How to interpret these locking-free estimates for membrane-

dominated shells? Something is converging in a relative norm

uniformly in ε: does it matter?
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See you next week

. . . and at Elastic Shell
Workshop 2010


