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There are Fourier expansions on finite abelian groups essentially identical in form to Fourier expansions of
periodic functions on the real line.

1. Fourier analysis on finite abelian groups

The main consequence for Fourer expansions can be stated without mentioning many of the key ideas of the
proofs.

Let G be a finite abelian group, and L2(G) the complex vectorspace of complex-valued functions [1] on G,

with inner product [2]

〈f, ϕ〉 =
∑
x∈G

f(x)ϕ(x)

A character χ on a group is a group homomorphism [3]

χ : G −→ C×

Let Ĝ be the collection of characters χ : G → C×. For f a complex-valued function on G, the Fourier
transform f̂ of f is the function on Ĝ defined by

f̂(χ) = 〈f, χ〉 (for χ ∈ Ĝ)

The Fourier expansion or Fourier series of f is

f ∼ 1

|G|
∑
χ∈Ĝ

f̂(χ)χ

[1] In general, for a space X with some sort of integral on it, the notation L2(X) means functions f so that∫
X |f |2 <∞. On finite sets integrals become sums, possibly weighted, and this finiteness condition becomes vacuous.

Nevertheless, it is good to use this notation as a reminder of the larger context.

[2] The notation L2(G) is meant to suggest the presence of the inner product on this space of functions. On a general

space X with an integral, the iner product is 〈f1, f2〉 =
∫
X f1f2.

[3] The term character has different meanings in different contexts. The simplest sense is a group homomorphism

to C×. However, an equally important use is for the trace of a group homomorphism ρ : G → GLn(k) from G to

invertible n-by-n matrices with entries in a field k. In the latter sense,

(character of ρ)(g) = trace
(
ρ(g)

)
For infinite-dimensional representations, further complications appear. Except from context, there is no way to know

which sense is intended.
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[1.0.1] Theorem: On a finite abelian group, the Fourier expansion of a complex-valued function f represents
f , in the sense that, for every g ∈ G,

f(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g)

The elements of Ĝ form an orthogonal basis for L2(G). In particular, the Fourier coefficients are unique.

[1.0.2] Remark: What are we not doing? The theorem asserts nothing directly about the collection Ĝ
of characters of G. Its proof uses no information about these characters. Its proof uses nothing about the
structure theorem for finite abelian groups. All that is used is a spectral theorem.

The proof is in the following paragraphs.

[1.1] Translation action on functions The distinguishing feature of functions on a group is that the
group acts on itself by right or left multiplication (or whatever the group operation is called), thereby moving
around the functions on it.

The group operation in G will be written multiplicatively, not additively, to fit better with other notational
conventions.

The group G acts on the vector space L2(G) of functions on itself by translation: for g ∈ G, the translate

Tgf of a function f by g is the function on G defined by [4]

(Tgf)(x) = f(xg) (for function f , and x, g ∈ G)

The maps-on-function Tg are vectorspace endomorphisms of the vectorspace of functions on G:Tg(f1 + f2)(x) = (f1 + f2)(xg) = f1(xg) + f2(xg) = Tgf1(x) + Tgf2(x) (additivity)

Tg(c · f)(x) = (c · f)(gx) = c
(
f(gx)

)
=
(
c · (Tgf)

)
(x) (scalar c)

To reduce clutter, the action of g ∈ G on functions f may be written simply gf or g · f . The associativity
property

(gh)f = g(hf) (for g, h ∈ G, function f)

comes from the associativity of the group operation itself:(
(gh)f

)
(x) = f(x(gh)) = f((xg)h) = (hf)(xg) =

(
g(hf)

)
(x)

[4] For non-abelian groups G, there are two translation actions, namely, left and right
T right
g f(x) = f(xg)

T left
g f(x) = f(g−1x)

The inverse in the left translation is for associativity

T left
gh f = Tg

(
Thf

)
For abelian groups, the two translation actions become the same thing. Also, for abelian groups, the inverse in the

definition of the left translation action loses some of its significance, since for abelian groups g → g−1 is a group

automorphism.
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The associativity property is equivalent to the assertion that the map g → Tg is a group homomorphism
from G to C-linear automorphisms of L2(G) (and that the identity element of g acts trivially).

Since g → Tg is a group homomorphism, the abelian-ness of G implies that the linear maps Tg, Th commute:
since gh = hg,

Tg ◦ Th = Tgh = Thg = Th ◦ Tg (for all g, h ∈ G)

Since G is finite, there is a positive integer N such that, for all g ∈ G, gN = e ∈ G. Thus,

χ(g)N = χ(gN ) = χ(e) = 1

That is, the values of χ lie on the unit circle in C×, so |χ(g)| = 1. In particular, χ is unitary in the sense
that

χ(g)−1 = χ(g)

We claim that the linear operators Tg are also unitary, in the sense that

〈Tgf, TgF 〉 = 〈f, F 〉 (for g ∈ G, functions f, F )

To prove this, compute directly:

〈Tgf, TgF 〉 =
∑
h∈G

(Tgf)(h) (TgF )(h) =
∑
h∈G

f(hg)F (hg)

Change variables in the sum, by replacing h by hg−1. Here the fact that G is a group is used: g−1 exists,
and is closed under the group law:∑

h∈G

f(hg)F (hg) =
∑
h∈G

f(h)F (h) = 〈f, F 〉

proving the unitarity.

For a single linear operator T on a complex vector space V , and for a complex number λ, the λ-eigenspace
Vλ of T on V is

Vλ = {v ∈ V : Tv = λ · v}

The Spectral Theorem for a single unitary operator T on a finite-dimensional complex vector space with
inner product 〈, 〉 asserts that V decomposes as an orthogonal direct sum of eigenspaces of T :

V =
⊕
λ

Vλ (orthogonal direct sum)

We claim that another unitary operator S commuting with T stabilizes the T -eigenspaces Vλ. To see this,
take v ∈ Vλ:

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv

since the linearity of S implies that S commutes with scalar multiplication.

This sets up an induction, as follows. We want to prove that a group H of commuting unitary operators on
a finite-dimensional complex vectorspace V with hermitian inner product 〈, 〉 has an orthogonal direct sum
decomposition into simultaneous eigenspaces Vλ.

In this situation, the notion of eigenvalue must be a little more complicated than individual numbers: for
each T ∈ H, there must be a number λT ∈ C. That is, an eigenvalue is really a map T → λT from H to C.
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In this context, for two eigenvalues λ, µ to be distinct means that λT 6= µT for some T ∈ H (not necessarily
for all T ∈ H).

Now we do the induction. Suppose we have the conclusion for vector spaces of dimension < n. Let V be
of dimension n. First, a silly case: if all operators T ∈ H are scalar, then every vector is a simultaneous
eigenvector for all the operators in H, and we are done. So now consider the (serious) case that not all
operators in H are scalar. Let T ∈ H be a non-scalar operator. By the spectral theorem for unitary
operators, V has an orthogonal decomposition into eigenspaces for T , implicitly with different eigenvalues.
Since T is non-scalar, every one of these eigenspaces has dimension < n. By induction, and by the fact that
the operators all commute, each such eigenspace decomposes as an orthogonal direct sum of simultaneous
eigenspaces for H. Thus, the whole space V is an orthogonal direct sum of simultaneous eigenspaces. This
completes the induction.

Thus, in the case that H is the group of automorphisms Tg with g ∈ G and V = L2(G),

L2(G) =
⊕
λ

L2(G)λ (with simultaneous eigenvalues λ : G→ C×)

In fact, for H an abelian group of unitary automorphisms, we claim that the eigenvalues T → λT for T ∈ H
are group homomorphisms H → C×: for S, T ∈ H, and for v in the λ-eigenspace,

λST · v = (ST )(v) = S(T (v)) = S(λT · v) = λT · S(v) = λT · λS · v

Thus,
λST = λT · λS (for all S, T ∈ H, simultaneous eigenvalue λ : H → C×)

That is, for groups of automorphisms, eigenvalues are characters. We’ll write Vχ instead of Vλ to emphasize
this information, and for L2(G) write

L2(G) =
⊕
χ∈Ĝ

L2(G)χ

On one hand, every χ ∈ Ĝ is a complex-valued function on G, so is in L2(G). In fact, we claim that χ ∈ Vχ:

(Tgχ)(h) = χ(hg) = χ(h)χ(g) = χ(g)χ(h) (since C× is abelian)

On the other hand, we claim that Vχ is exactly scalar multiples C · χ of χ. To see this, let f ∈ Vχ. Then

f(g) = f(e · g) = (Tgf)(e) = χ(g) · f(e) = f(e) · χ(g)

That is,
f = f(e) · χ (for f ∈ Vχ)

By the orthogonality of Vχ and Vτ for distinct χ, τ , the characters are an orthogonal basis for L2(G). Their
lengths are readily determined, using the earlier-noted unitariness χ = χ−1:

〈χ, χ〉 =
∑
g∈G

χ(g) · χ(g) =
∑
g∈G

χ(g) · χ(g)−1 =
∑
g∈G

1 = |G|

Any f ∈ L2(G) can be written as a linear combination of orthogogonal basis elements ei

f =
∑
i

〈f, ei〉 · ei
〈ei, ei〉
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Using the orthogonal basis χ ∈ Ĝ,

f =
∑
χ∈Ĝ

〈f, χ〉 · χ
〈χ, χ〉

=
1

|G|
∑
χ∈Ĝ

〈f, χ〉 · χ

This is an equality of functions on the finite set G, and f̂(χ) is defined to be 〈f, χ〉, so

f(g) =
1

|G|
∑
χ∈Ĝ

〈f, χ〉 · χ(g) =
1

|G|
∑
χ∈Ĝ

f̂(χ) · χ(g) (for all g ∈ G)

This proves the representability of functions on finite abelian groups by their Fourier series. ///

2. Appendix: spectral theorem for unitary operators

Let V be a finite-dimensional complex vector space with a hermitian inner product 〈, 〉. A linear map
T : V → V is unitary if it preserves the inner product, in the sense that

〈Tv, Tw〉 = 〈v, w〉 (for all v, w ∈ V )

Thus, the adjoint T ∗ of a unitary operator T has the property

〈v, w〉 = 〈Tv, Tw〉 = 〈v, T ∗Tw〉

Subtracting, 〈v, T ∗Tw − w〉 6= 0 for all v, so T ∗Tw = w for all w ∈ V . That is, unitary T is invertible, and
T ∗ = T−1. This also shows that T ∗T = TT ∗.

The inverse of a unitary operator is unitary, since

〈T−1v, T−1w〉 = 〈T ∗v, T−1w〉 = 〈v, TT−1w〉 = 〈v, w〉

Eigenvalues λ of a unitary operator T are of absolute value 1, since for a λ-eigenvector v

λλ〈v, v〉 = 〈λv, λv〉 = 〈Tv, Tv〉 = 〈v, v〉

In particular, eigenvalues λ are non-zero, and λ−1 = λ.

Given λ ∈ C, let
λ-eigenspace of T = Vλ = {v ∈ V : Tv = λ · v}

[2.0.1] Theorem: The vectorspace is an orthogonal direct sum

V =
⊕
λ

Vλ (eigenspaces of unitary T )

Proof: We grant ourselves the more elementary fact that, because V is finite-dimensional and C is
algebraically closed, there is at least one one eigenvalue λ and non-zero eigenvector v for T . Thus, the
λ-eigenspace Vλ is not {0}.

Now the unitariness is used, to set up an induction on dimension. We claim that T stabilizes the orthogonal
complement

V ⊥λ = {w ∈ V : 〈w, v〉 = 0 for all v ∈ Vλ}
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Indeed, for w in that orthogonal complement and v ∈ Vλ,

〈Tw, v〉 = 〈w, T ∗v〉 = 〈w, T−1v〉 = 〈w, λ−1v〉 = λ〈w, v〉 = 0 (for all v ∈ Vλ)

The restriction of a unitary operator T to a T -stable subspace is obviously still unitary. By induction on the
dimension of the vectorspace, V ⊥λ is an orthogonal direct sum of T -eigenspaces: V ⊥λ =

⊕
µ V
′
µ. Then

V = Vλ ⊕
⊕
µ

V ′µ

is the orthogonal direct sum decomposition of the whole space. ///

3. Appendix: cancellation lemma

The orthogonality of distinct characters can be proven directly.

Let G be a finite group, not necessarily abelian. First, we have the cancellation lemma:

[3.0.1] Lemma: For a non-trivial group homomorphism σ : G→ C×,∑
g∈G

σ(g) = 0

Proof: Let go ∈ G be such that σ(go) 6= 1. Then∑
g∈G

σ(g) =
∑
g∈G

σ(gog) =
∑
g∈G

σ(go)σ(g) = σ(go)
∑
g∈G

σ(g)

by replacing g by gog in the sum, using the fact that left multiplication by go is a bijection of G to itself.
Subtracting,

(1− σ(go) ·
∑
g∈G

σ(g) = 0

Since σ(go) 6= 1, necessarily the sum is 0. ///

[3.0.2] Corollary: Let σ 6= τ be group homomorphisms G→ C×. Then∑
g∈G

σ(g) τ(g) = 0

Proof: Since G is finite, there is N such that gN = e for every g ∈ G. Thus,

τ(g)N = τ(gN ) = τ(e) = 1

Thus, τ(g) is a root of unity, and |τ(g)| = 1. In particular, τ(g) = τ(g)−1. Then στ = στ−1 is a character
of G, and is not the trivial character. The previous lemma gives the vanishing. ///
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