Financial Mathematics

Regular review session C, Final

```
n-jet at a of f
nth order Maclaurin approximation of f
Maclaurin expansion of f
the renormalized nth power of f
e^{it} = ?????
```

Discussion: for one-variable functionals: Maclaurin approximation Maclaurin expansion k-jet increasing, decreasing on Iincreasing vs. positive derivative for multi-variable functionals: Maclaurin approximation Maclaurin expansion k-jet gradient Hessian Laplacian = trace of the Hessian f'(a) $(\nabla f)(a)$ f''(a) $(\Delta f)(a)$ $f''(a) = (Hf)(a) = (Hess f)(a) = (\nabla \nabla f)(a)$ 3 $= (\nabla^2 f)(a)$

for multi-variable functions $\mathbb{R}^n \to \mathbb{R}^m$: gradient Hessian f'(a)

for one-variable functions
$$\mathbb{R} \xrightarrow{f} \mathbb{R} \xrightarrow{g} \mathbb{R}$$
: chain rule: $(g \circ f)'(p) = [g'(f(p))][f'(p)]$

for multi-variable functions $\mathbb{R}^l \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^n$, chain rule: $(g \circ f)'(p) = [g'(f(p))][f'(p)]$

 $n \times l$

 $n imes m \qquad m imes l$

Discussion: vector field flowline = integral curve "footed at" existence? uniqueness? compute: flowline footed at p of L_M inhomogeneous linear? integration of a vector field through a point integration of a vector field

contraction $X \to X$ (w.r.t. dist) contraction factor

Fact: Contractions have fixpts, provided dist is complete.

derivative of e^x w.r.t. x derivative of $e^x + 1$ w.r.t. x

gradient of $x^2 + y^2 + z^3$ w.r.t. (x,y,z) gradient of $x^2 + y^2 + z^3 + 1$ w.r.t. (x,y,z) reverse gradient reverse gradient flow

integrate V(x,y) = (x,y) through (2,3)

Cauchy-Riemann equations U+iV is complex analytic iff $\partial_x U=\partial_y V$ and $\partial_y U=-\partial_x V$

Cauchy-Schwarz inequality $|v\cdot w| \leq |v|\cdot |w|$ $|B(v,w)| \leq \sqrt{[Q(v)][Q(w)]}$

critical point of $f: \mathbb{R}^n \to \mathbb{R}$

second derivative test for $f:\mathbb{R}^n \to \mathbb{R}$ at a critical point

positive definite test

$$f,g:\mathbb{R}^n o \mathbb{R}$$
 critical point of f on $g^{-1}(k)$

e.g.,
$$f(x,y) = 3x^3 + 2xy$$
,
 $g(x,y) = 2(\sin x) + (\cos(xy))$, $k = 1$
Set up, don't solve.

$$\int_{L} \omega := \cdots, \quad \omega = p(x, y) \, dx + q(x, y) \, dy$$

$$\int_{L} \omega := \cdots, \quad d\omega = p(z) \, dz$$

$$\int_{C} \omega := \cdots, \quad \omega = p(x, y) \, dx + q(x, y) \, dy$$

$$\int_C \omega := \cdots, \quad d\omega = p(z) \, dz$$

$$\int_{R}^{\infty} \omega := \cdots, \quad \omega = p(x, y) \, dx \wedge dy$$

$$\partial R = \cdots, \quad dF = \cdots$$

$$d\omega = \cdots$$
, $\omega = P dx + Q dy$

Green's Theorem, Cauchy's Theorem

Discussion: Two variables: x and y

$$R$$
 a 2-rectangle, ω a 2-form

 ω, η both 1-forms

R a 2-rectangle

C a 1-chain, ω a 1-form

$$\int \int_{R} f(x,y) \, dx \, dy :=$$

$$\int_{D} \omega :=$$

 $\omega \wedge \eta$

 $d\omega$

 $d\omega$

$$\omega$$
 a 0-form $d\omega$ ω a 1-form $d\omega$
$$d[(f(x) dx) + (f(y) dy)] =$$

Counterclockwise boundary of
$$R$$
Stokes' Theorem

Discussion: **PCRV** distribution partition of a PCRV finer vs. coarser E linear? expected value Var linear? variance standard deviation SD linear? standard PCRV covariance correlation uncorrelated independence $\Pr[E|F]$ Odds[E|F]Bayes, odds-Bayes 2nd odds-Bayes

10

Fourier transform of distribution of XFourier transform of distribution of X+Yassuming X and Y are independent.

Fourier transform of distribution of X/8

Discussion: Partition of a PCRV coarse vs. fine measurability of a PRCV w.r.t. a partition Conditional expectation of a PCRV, given an event Conditional expectation of a PCRV, given a partition Conditional expectation of a PCRV, given another PCRV Taking out what you know (a.k.a. linearity) The Tower Law The "Power" Tower Law

12

Example of two different PCRVs with the same distribution.

What implies what?

 $\mathsf{E}[X|Y]$ is deterministic X is independent of Y Y is independent of X $\mathsf{Cov}[X,Y]=0$ $\mathsf{Corr}[X,Y]=0$

 $\mathsf{E}[X|Y] = \mathsf{E}[X]$

$$\mathsf{E}[X|X] = \cdots$$

 $Corr[X, X] = \cdots$

$$Corr[X, 2X] = \cdots$$

Condition that ensures:

$$\mathsf{E}[\ \mathsf{E}[X|\mathcal{S}]\ |\ \mathcal{R}]\ =\ \mathsf{E}[\ X\ |\ \mathcal{R}\]$$

$$E[X] = a(E[X])$$

 $Var[aX] =$
 $SD[aX] =$

$$E[X + Y] = (E[X]) + (E[Y])$$

 $Var[X + Y] =$
 $SD[X + Y] =$

 $\forall \mathsf{PCRVs}\ X, Y, \qquad X * Y := \mathsf{Cov}[X, Y]$ v,w both $n \times 1$ column vectors of PCRVs $\mathsf{Cov}[v,\overline{w}] := v * w^t \in \mathbb{R}^{n \times n}$

A, B constant $n \times n$ matrices

 $Cov[Av, Bw] = (Av) * (Bw)^t$ $= (Av) * (w^t B^t)$

> $= A(v * w^t)B^t$ $= A(\mathsf{Cov}[v, w])B^t$

Say PCRVs in v are variance 1, uncorrelated $Cov[Av, Av] = A(Cov[v, v])A^t$ $= AA^t$

Cholesky decomposition conditions: symmetric, pos semidef

15

asymptotics of n!

asymptotics of
$$n$$
:
asymptotics of n :
asymptotics of n :
$$\lim_{n\to\infty} \mathsf{E}[f(Z_n)] =$$

$$ightharpoonup \infty$$
 . The distribution

$$X_n \to aZ + b$$
 in distribution

$$X_n
ightarrow aZ + b$$
 in distr. against contin.,exp-bdd

$$X_n \to 2Z + 3 \Rightarrow \mathsf{E}[X_n^6] \to ?$$

$$(C_1 + \cdots + C_n)/? \rightarrow ??$$

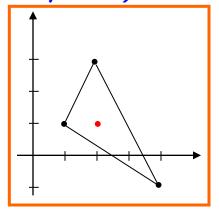
$$\triangle$$
CLT: $X_n \in \Sigma^n \mathcal{B}^{p_n}_{q_n}$, ... $\Rightarrow X_n \to \sigma Z + \mu$

$$\mathsf{E}[e^{\sigma Z + \mu}] = e^{??}$$

Homework#(03/05)-1

(03/05)-1-1c. Compute
$$\int_{1+i}^{4-i} e^x dx$$
.

(03/05)-1-1d. Show that the complex limit



$$\lim_{h\to 0}\frac{e^{2+i+h}-e^{2+i}}{h} \text{ exists,}$$
 and is equal to e^{2+i} .

Homework#(03/05)-1 (03/05)-1-2c. Compute
$$\int_{i}^{3i+2} \overline{x} \, dx$$
.

(03/05)-1-1d. Show that the complex limit

$$\lim_{h o 0}rac{\overline{1+2i+h}-\overline{1+2i}}{h}$$

does not exist.

$$\int_{0}^{4+6i} e^{x/2} dx$$
.

1. Compute
$$\int_{2+2i}^{4+6i} e^{x/2} dx$$
.

$$J_{2+2i}$$

a.
$$e^{(2+3i)-(1+i)}$$
 c. $2(e^{2+3i}-e^{1+i})$

a.
$$e^{(2+3i)-(1+i)}$$

b. $e^{2+3i}-e^{1+i}$

d.
$$(1/2)(e^{2+3i}-e^{1+i})$$

$$e^{x/2}$$

Antiderivative for
$$e^{x/2}$$
: $\frac{e^{x/2}}{1/2} = 2(e^{x/2})$

ve for
$$e^{x/2}$$
: $\frac{e^x}{1}$

for
$$e^{x/}$$

$$= [2(e^{x/2})]_{x=2+2i}^{x=4+6i}$$

$$\int_{2+2i}^{4+6i} e^{x/2} dx = [2(e^{x/2})]_{x=2+2i}^{x=4+6i}$$
$$= [2(e^{2+3i} - e^{1+i})]$$

20

$$\int_{2+2i} e^{x/2}$$

$$[g(x/\sqrt{N})]^N = [e^{3x^2/(2N)}]^N = e^{3x^2/2} = g(x)$$
g is a fixpoint

$$[g(x/\sqrt{N})]^{100} = g(x) | [g(7/\sqrt{100})]^{100} = g(7)$$
2. Let $f(x) = \sec^3 x$.
Let $g(x) = \lim_{n \to \infty} [f(x/\sqrt{n})]^n$.

Compute $[g(7/\sqrt{100})]^{100} - [g(7)]$.

a. 0 $c. e^{7.3^2/2}$

a. 0 c.
$$e^{7\cdot 3^2/2}$$

b. -1 d. $e^{-3\cdot 7^2/2}$
e. None of the above

21

Let W, X and Y all have the same partition.

Then $\mathsf{E}[W|Y] = W$ and $\mathsf{E}[X|Y] = X$, but it's not necessarily true that W = X.

2. True or False: If W, X, Y are PCRVs, and W and X have the same partition, then $\mathsf{E}[W|Y] = \mathsf{E}[X|Y]$.

t. True

f. False

Homework#(03/05)-1(03/05)-1-3.

Assume f(0) = 3, f'(0) = 4 and f''(0) = 5.

Assume $f'''(t) \leq 1$, for all $t \in [0, 4]$.

What is the maximum possible value of f(4)?

(03/05)-1-4.

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^x[\cos(x)]$.

Let p be the second order Macl. approx. of f.

- a. Compute p(x).
- b. Compute p(0.1).
- c. Compute f(0.1).

Homework#(02/27)-1 (02/27)-1-4. Let X be a binary PCRV s.t. $\Pr[X=a]=p$ ond $\Pr[X=b]=q$. (p+q=1)

Let f(t) be the Fourier transform of the distribution of X.

Assume E[X] = 0.

Compute
$$\lim_{N\to\infty} [f(x/\sqrt{N})]^N$$
.

(Answers should be expressions of a, b, p, q.)

1-1. Find the first order Macl. expansion of $\tan x$.

a.
$$1 + x$$
 c. $1 + (x/6)$

 $\frac{1}{x^2} / 3$ $\mathbf{b}. x$ e. None of the above

$$f(x) = \tan x \qquad f(0) = 0$$

$$f'(x) = \sec^2 x$$
 $f'(0) = 1$

$$p(x) = x$$

$$p(0) = 0$$

$$p'(x) = 1$$

$$p'(0) = 1$$

28

$$f(t) = \mathsf{E}[e^{-itX}]$$

a. E[X]

b. Var[X]

 $f'(t) = \mathsf{E}[e^{-itX}(-iX)]$

 $f''(t) = \mathbb{E}[e^{-itX}(-iX)^2]$

Find a formula for f''(0).

 $f''(0) = E[(-iX)^2] = E[-X^2] = -E[X^2]$

1-2. Let X be a PCRV. Let $f(t) = E[e^{-itX}]$.

c. $-E[X^2]$

 $\mathsf{d}. - \mathsf{Var}[X]$

e. None of the above

2-1. T or F: If two PCRVs have the same distribution, then they are equal.

F. False

Counterexample: C_1 and C_2 .

T. True

T or F: If two PCRVs have the same distribution, then they have equal expectation and variance?

Counterexample: C_1 and C_2 .

2-2. T or F: If two PCRVs are independent then they are equal.

T. True

F. False

1. Suppose Pr[B|A] = 6%,

Pr[B] = 4% and Pr[A] = 2%.

Find Pr[A|B].

a. 6%

b. 12%

c. 1%d. 3%

e. None of the above

$$\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]}$$

$$= (6\%) \cdot \frac{2\%}{4\%} = 3\%$$

Let W, X and Y all have the same partition.

Then
$$\mathsf{E}[W|Y] = W$$
 and $\mathsf{E}[X|Y] = X$, but it's not necessarily true that $W = X$.

- 2. True or False: If W, X, Y are PCRVs, and W and X have the same partition, then $\mathsf{E}[W|Y] = \mathsf{E}[X|Y]$.
 - t. True

f. False

1. True or False:

There exists a 2×2 real matrix A s.t.

$$AA^t = \begin{bmatrix} 3 & 5 \\ 5 & 7 \end{bmatrix}$$

t. True

f. False

$$\forall A, v, \quad AA^tv \cdot v = A^tv \cdot A^tv \geq 0$$

Then $\forall A, \quad AA^t$ is pos. semidef.
so $\det(AA^t) \geq 0$.

$$\det\begin{bmatrix} 3 & 5 \\ 5 & 7 \end{bmatrix} = 21 - 25 < 0$$

Let W := 2X + 3Y.

$$Corr[2X + 3Y, 4X + 6Y] = Corr[W, 2W]$$
$$= Corr[W, W]$$
$$= 1$$

- 2. Say X, Y independent, std PCRVs. Compute Corr[2X + 3Y, 4X + 6Y].

 a. -1c. 1
 - b. 0 d. 0.6
 - e. None of the above

QUIZ FM 5002

e. None of the above

 $= 7 \cdot 5 \cdot 3 \cdot 1 \int_{-\infty}^{\infty} e^{-x^2/2} dx = 7 \cdot 5 \cdot 3 \cdot \cancel{1} \cdot \sqrt{2\pi}$ Now divide by $\sqrt{2\pi}$.

b. $(3)(5)(7)\sqrt{2\pi}$ d. (3)(5)(7)

 $\int_{-\infty}^{\infty} x^8 e^{-x^2/2} dx = 7 \int_{-\infty}^{\infty} x^6 e^{-x^2/2} dx$ $= 7 \cdot 5 \int_{-\infty}^{\infty} x^4 e^{-x^2/2} dx = 7 \cdot 5 \cdot 3 \int_{-\infty}^{\infty} x^2 e^{-x^2/2} dx$

a. 8!

1. Compute $\left| \frac{1}{\sqrt{2\pi}} \right| \int_{-\infty}^{\infty} x^8 e^{-x^2/2} dx$.

Eigenvalues: 3, 2 and 0

Symmetric? Yes.

[3 0 0] 0 2 0 is positive semi-definite. 0 0 0

37

F. False

Homework#(05/07)-1 ungraded

(05/07)-1-5. Maximize 2x - 5y subject to the constraint $x^4 + y^4 = 1$.

(05/07)-1-6. Minimize 7x - y subject to the constraint $x^6 + y^6 = 1$.

(05/07)-1-7a. For every integer $n \ge 1$, maximize x+y subject to the constraint $x^{2n}+y^{2n}=1$.

(05/07)-1-7b. Let (a_n, b_n) denote the answer to (05/07)-1-7a. Compute $\lim_{n\to\infty} (a_n, b_n)$.

Homework#(04/30)-1(04/30)-1-3. Compute $d(ze^{xy})$, the exterior derivative of ze^{xy} , with respect to x, y, z.

(04/30)-1-4. Compute $d(xy dx + ye^z dy - \sin(xz) dz)$, the exterior derivative of $xy dx + ye^z dy - \sin(xz) dz$, with respect to x, y, z.

Homework#(04/30)-1

(04/30)-1-5. Compute
$$\int_{(1,2,3)}^{(4,5,6)} x \, dx + y \, dy + xe^z \, dz,$$

i.e., compute
$$\int_L x dx + y dy + xe^z dz$$
,

where L is the directed line segment from (1,2,3) to (4,5,6).

$$(04/30)$$
-1-6. Let $R := (1,2) \times (3,4)$.

Compute
$$\int_{R} [e^{x+y}] dy \wedge dx$$
.

Homework#(02/20)-1

$$(02/20)-1-2.$$

a. Compute
$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} xe^{-x^2/2} dx$$
.

b. Compute
$$\frac{1}{\sqrt{2\pi}} \int_{-5}^{7} x e^{-x^2/2} dx$$
.

c. Compute
$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^4e^{-x^2/2}\,dx$$
.

d. Compute
$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^5e^{-x^2/2}dx$$
.

Homework#(02/20)-1

(02/20)-1-3. a. Compute
$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{3x+4}e^{-x^2/2}\,dx$$
.

b. Compute
$$\frac{1}{\sqrt{2\pi}} \int_{-5}^{7} e^{3x+4} e^{-x^2/2} dx$$
.

c. Compute
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{3x+4} - 5)e^{-x^2/2} dx$$
.

d. Compute
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{3x+4} - 5)_{+} e^{-x^2/2} dx$$
.

e. Compute
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{3ix+4} - 5)e^{-x^2/2} dx$$
.

IRREGULARITIES: