Financial Mathematics

Foundational material: logic and set theory

- ∀ stands for for all or, sometimes, for any
- ∃ stands for there exists or, sometimes, there exist
 - s.t. stands for such that
 - ⇒ stands for implies
- " $A \Rightarrow B$ " is equivalent to "if A then B".

iff and ⇔ both stand for if and only if

" $A \Leftrightarrow B$ " is equivalent to "both $A \Rightarrow B$ and $B \Rightarrow A$ ".

- ∀ stands for for all or, sometimes, for any
- ∃ stands for there exists or, sometimes, there exist
 - s.t. stands for such that
 - ⇒ stands for implies
- iff and \Leftrightarrow both stand for if and only if *e.g.*:
 - \forall iff and \Leftrightarrow both stand for if and only if if $0 < |x a| < \delta$, then $|[f(x)] L| < \varepsilon$.

∀ stands for for all or, sometimes, for any

∃ stands for there exists or, sometimes, there exist

s.t. stands for such that

⇒ stands for implies

iff and ⇔ both stand for if and only if

e.g.:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}$$

if
$$0 < |x - a| < \delta$$
, then $|[f(x)] - L| < \varepsilon$.

$$0 < |x - a| < \delta \implies |[f(x)] - L| < \varepsilon$$

- QED marks the end of a proof
 - marks the end of a problem
 - e.g. means for example
 - i.e. means that is

⇒ stands for implies

iff and \Leftrightarrow both stand for if and only if e.g.:

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}$

if
$$0 < |x - a| < \delta$$
, then $|[f(x)] - L| < \varepsilon$.

$$0 < |x - a| < \delta \implies |[f(x)] - L| < \epsilon$$

The size (a.k.a. cardinality) of a set S, denoted #S, is the number of elements in S.

e.g.: The size of $\{2,7,8\}$ is 3. $\#\{2,7,8\} = 3$

 $\emptyset = \{ \}$ is the set with no elements $| \#\emptyset = 0 |$ union: $\{4, 5, 6\} \cup \{5, 6, 7, 8\} = \{4, 5, 6, 7, 8\}$ intersection: $\{4, 5, 6\} \cap \{5, 6, 7, 8\} = \{5, 6\}$ is not an elt of

complement: $\{4, 5, 6\} \setminus \{5, 6, 7, 8\} = \{4\}$ \in stands for is an element of $7 \in \{7, 8, 9\}$ $6 \notin \{7, 8, 9\}$

 $\mathbb{Z} := \{ \text{integers} \} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$ $\mathbb{R} := \{ \text{real numbers} \}$ = {rationals} \cup {irrationals} \rightarrow $\frac{1}{2}$ $\mathbb{Q} := \{ rational numbers \}$

 \mathbb{C} := {complex numbers} "=

disjoint union: $\{4,5,6\} \coprod \{1,2,3\} = \{1,2,3,4,5,6\}$ meaning: both $\{4,5,6\}$ $\dot{\cup}\{1,2,3\} = \{1,2,3,4,5,6\}$ and $\{4,5,6\} \cap \{1,2,3\} = \emptyset$ disjoint := empty intersection union: $\{4, 5, 6\} \cup \{5, 6, 7, 8\} = \{4, 5, 6, 7, 8\}$ intersection: $\{4, 5, 6\} \cap \{5, 6, 7, 8\} = \{5, 6\}$ is not an elt of complement: $\{4, 5, 6\} \setminus \{5, 6, 7, 8\} = \{4\}$ \in stands for is an element of $7 \in \{7, 8, 9\}$ $6 \notin \{7, 8, 9\}$ $\mathbb{Z} := \{ \text{integers} \} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$ $\mathbb{R} := \{ \text{real numbers} \} = "$ = {rationals} ∪ {irrationals} $\mathbb{Q} := \{ rational numbers \}$ $\mathbb{C} := \{\text{complex numbers}\}$

 $A \subseteq B$ means: $\forall x \in A, x \in B$. read: A "is a subset of" B

 $B \supseteq A$ means: $\forall x \in A, x \in B$. read: B "is a superset of" A

$$A \subseteq B \Leftrightarrow B \supseteq A$$

$$e.g.: \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

$$\mathbb{C} \supseteq \mathbb{R} \supseteq \mathbb{Q} \supseteq \mathbb{Z}$$

 \in stands for is an element of $7 \in \{7, 8, 9\}$ $6 \notin \{7, 8, 9\}$

$$\mathbb{Z} := \{ \text{integers} \} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

$$\mathbb{R} := \{ \text{real numbers} \} \text{``=''} \leftarrow \rightarrow$$

$$= \{ \text{rationals} \} \cup \{ \text{irrationals} \}$$

 $\mathbb{Q} := \{ \text{rational numbers} \}$ $\mathbb{C} := \{ \text{complex numbers} \}$

Union of two sets

points in either set?

Union of two sets

X A "union" B

points in either set?

The "union" of $\cal A$ and $\cal B$

Intersection of two sets

 $\begin{array}{c} A \\ \text{common} \\ \text{points?} \end{array}$

Intersection of two sets

A "intersect" B $A \cap B$ "intersection"

common points?

The

of A and B

Intersection of two sets

 $A \subseteq B$

Intersection of two sets

intersection?

If $A \subseteq B$ then $A \cap B = A.$

Complement of a set

the complement of A (in X), or X minus A

Def'n:

$$X \backslash A := \{ x \in X \mid x \notin A \}$$

All sets under discussion are inside X; X is the "universe".

Set-theoretic difference

the complement of B in A, or B minus A

Def'n:

$$B \backslash A := \{x \in B \mid x \notin A\}$$

Fact: $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$

both
$$\bigcup_{P \in \mathcal{P}} P = S$$

pairwise disjoint and $\forall P,Q\in\mathcal{P}$, $(P\neq Q) \Rightarrow P\cap Q=\emptyset$.

e.g.:
$$\{1\}$$
, $\{2,3,5\}$, $\{4,6\}$ is a partition of $\{1,2,3,4,5,6\}$.

e.g.: $\{ \{1\} , \{2,3\} \}$ is a partition of $\{1,2,3\}$.

non-e.g.: {
$$\{1,2\}$$
 , $\{2,3\}$ } {1,2} ∩ {2,3}≠∅ is not a partition of $\{1,2,3\}$.

non-e.g.: { {1} , {3} } $2\notin\{1\}\cup\{3\}$ is not a partition of {1,2,3}.

both
$$\bigcup_{P\in\mathcal{P}}P=S$$
 and $\forall P,Q\in\mathcal{P}, \quad (P\neq Q \Rightarrow P\cap Q=\emptyset)$

$$P \in \mathcal{P}$$
e.g.: $\{1\} \coprod \{2,3,5\} \coprod \{4,6\} = \{1,2,3,4,5,6\}$

non-e.g.:
$$\{ 1,2 \}$$
, $\{ 2,3 \}$ is not a partition of $\{ 1,2,3 \}$.

non-e.g.: $\{1\}$, $\{3\}$ is not a partition of $\{1,2,3\}$.

both
$$\bigcup_{P\in\mathcal{P}}P=S$$
 and $\forall P,Q\in\mathcal{P}, \quad (P\neq Q)\Rightarrow P\cap Q=\emptyset)$

$$P \in \mathcal{P}$$
 $e.g.: \{1\} \coprod \{2,3,5\} \coprod \{4,6\} = \{1,2,3,4,5,6\}$

meaning:
$$\{1\} \cup \{2,3,5\} \cup \{4,6\} = \{1,2,3,4,5,6\}$$

and $\{1\} \cap \{2,3,5\} = \emptyset$

and
$$\{2,3,5\} \cap \{4,6\} = \emptyset$$

and
$$\{2,3,5\} \cap \{4,6\} = \emptyset$$
 and $\{1\}$ \cap $\{4,6\} = \emptyset$

both
$$\bigcup_{P \in \mathcal{P}} P = S$$

$$\forall P, Q \in \mathcal{P}, \quad (P \neq Q \Rightarrow P \cap Q = \emptyset)$$

$$\coprod_{P\in\mathcal{P}}P=S\qquad \qquad \forall \text{set }S,\ \coprod_{s\in S}\{s\}=S$$

$$e.g.: \{1\} [[\{2,3,5\}] [\{4,6\}] = \{1,2,3,4,5,6\}$$

$$e.g.: \cdots \parallel \{-2\} \parallel \{-1\} \parallel \{0\} \parallel \{1\} \parallel \{2\} \parallel \cdots = \mathbb{Z}$$

i.e.:
$$\coprod_{n\in\mathbb{Z}}\{n\}=\mathbb{Z}$$

$$e.g.: \coprod_{\mathbb{R}} \{a\} = \mathbb{R}$$

 $a \in \mathbb{R}$

$$A \times B := \{(a,b) \mid a \in A, b \in B\}$$

$$A^n := \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in A\}$$
e.g.: $\mathbb{R}^2 := \{(x,y) \mid x,y \in \mathbb{R}\} = \{(x,3) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$

$$(a,b)$$
 is an ordered pair,
i.e., $(a,b) \neq (b,a)$.

By contrast, $\{a,b\}$ is a set, and so is **unordered**, i.e., $\{a,b\} = \{b,a\}$.

$$A \times B := \{(a,b) \mid a \in A, b \in B\}$$

$$A^n := \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in A\}$$

$$e.g.: \mathbb{R}^2 := \{(x,y) \mid x,y \in \mathbb{R}\} \text{"="} \longleftrightarrow$$

$$\mathbb{R} \times \{3\} = \{(x,3) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$$

$$A \times B := \{(a,b) \mid a \in A, b \in B\}$$

$$A^n := \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in A\}$$

$$e.g.: \mathbb{R}^2 := \{(x,y) \mid x,y \in \mathbb{R}\} \text{"="} \longrightarrow$$

$$\mathbb{R} \times \{3\} = \{(x,3) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$$

Def'n: \forall integers $n \geq 1$,

Euclidean *n*-space := \mathbb{R}^n

