Financial Mathematics
Functions and expressions
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domain  target

Let A and B be sets.

A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f

IS denoted

f(a)

e.qg.:

Define f:4{1,2,3} —{4,5,6,7} by

f(1) =5,
f(2) =5,
f(3) =6.

When f is clear, we sometimes use:

l— 5,
25,

3 — 0.
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domain  target

Let A and B be sets.
A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f
is denoted [f(a).

. all must be
e.g.. used exactly once

Define f:4{1,2,3} —{4,5,6,7} by
l— 5,
2— b,
3 +— 6.

l— 5,
2— b,

3
31— 6. 0004A
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domain  target

Let A and B be sets.
A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f
is denoted [f(a).

i all must be can remove them. ..
e.g.. used exactly once unused, and that's OK

Define f: {{,2,3} — ,6,7 by

used twice,
1 — 5/ 304 that's OK
2— b,

3 — 0.
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domain  target

Let A and B be sets.
A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f
is denoted [f(a).

e.d.. function unchanged
Define f:{1,2,3} — {5,6} by
l— 5,
2— 5,
3 +— 0.
\ e.dg.. ( c0,0) unused can remove. ..

Define f R — Rt by

vz eR, f(z)=z2. 0004A
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domain  target

Let A and B be sets.
A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f
is denoted [f(a).

e.g.:

Define f:{1,2,3} — {5,6} by
1l +— 5,
2— b5,
3 +— 0.
e.d.. function unchanged

Define f: R — [0, 00) by

f(a’;) — aj ] 0804A
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domain  target

Let A and B be sets.

A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f

IS denoted

f(a)

Notational Convention
Suppose G :R3 — R is some function.

To plug (2,3,4) € R3 into G,

we do not usually write G((2,3,4)),

but rather G(2,3,4).

T e.g.:
Define f: R — [0,00) by

f(x) = x2.
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domain  target

Let A and B be sets.
A function f: A — B is a rule that assigns,
to each element of A, an element of B.

Va € A, the element of B assigned to a by f
is denoted [f(a).

Notational Convention

Suppose G : R3 — R is some function.
To plug (2,3,4) € R3 into G,
we do not usually write G((2,3,4)),
but rather G(2,3,4).

Either Is correct, strongly,
but G(2,3,4) is preferred.\
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The image of a function f: A— B is

f(A):={f(a)|a € A}.

function

fn f: A— Bisonto C if f(A) =C.

“f1A— B is onto’ or
“f . A— B is surjective”
means: “f: A — B is onto B"

A function f: A — B is one-to-one
(a.k.a. 1-1,injective) if, Va,a’ € A,

w a7a = f(a)# f(a')
Define g : {1,2,3} — {1,2} by

two numbersfy 5 2
map to
one number 22— 2, means ‘“onto {1,2}"

33— 1.

Then ¢g:{1,2,3} — {1,2} is onto, :
put not 1-1. Ofggxlé?




The image of a function f: A— B is

f(A):={f(a)|a € A}.

function

fn f: A— Bisonto C if f(A) =C.

CMfiASBisonto” or T
“f . A— B is surjective”
means: “f: A — B is onto B"

A function f: A — B is one-to-one
(a.k.a. 1-1,injective) if, Va,a’ € A,

aza = f(a)# f(a’)

unused

Define g : {1,2} — {{1l, 2,3} by

means_ “onto {1,2,3}"

Then g:{1,2} — {1,2,3} is , 10
but ‘not lonto. |Y01E




The image of a function f: A— B is

[FCA):= {f(a)|a € A}.

functlon
. A— Bisonto C if f(A) =

“f1A— B is onto’ or
“f . A— B is surjective”
\ means: “f: A — B is onto B"
A function f: A — B is one-to-one
(a.k.a. 1-1,injective) if, Va,a’ € A,
aFa = f(a)# f(a’)

unused

Define g : {1,2,3} — {7,8,9} by

two numbers
map to 1 — 3, means_ “onto {7,8,9}"
one number [2 — 8|,
33— 7. <1§\

Then ¢g:4{1,2,3} — {7,8,9} is neither\l-1,
nor Ionto. OfQQX‘gE




Define g : {1,2,3} — {4,5,6} by
1l — b,

—/ 0,

3%/ 4.
Then g:41,2,3} 4,5 6} is bijective.
Define h: {4,5,6} 1,2,3} by

5 :

out of order< —

4|—>3i

We say f : A — B is bijective

T f: A— Bis both 1-1 and onto. |dfosc
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Define g : {1,2,3} — {4,5,6} by
1l +— 5,
2 +— 0,
3— 4.

Then ¢g:{1,2,3} — {4,5,6} is bijective.

Define h:{4,5,6} — {1,2,3} by
4 +— 3,
5—1,
06— 2.

Then, Vo € {1,2,3}, h(g(x)) =«
and, Vy € {4,5,6}, g(h(y)) = .
We say f: A — B is bijective
T f: A— B is both 1-1 and onto.
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Define g : {1,2,3} — {4,5,6} by
1l +— 5,
2 +— 0,
3— 4.

Then ¢g:{1,2,3} — {4,5,6} is bijective.

Define h:{4,5,6} — {1,2,3} by
4 +— 3,
5—1,
6 — 2.

Then, Vx € {1,2,3}, h(g(z)) ==
and, vy € {4,5,6}, g(h(y)) =v.
We say that g and h are inverses.

A function f: A — B is bijective

Iff f has an inverse B — A.
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[fop.A— B and ¢ . B— C,

Yo then "

then ko o|: A — C is defined by

“The composite
of vy and ¢"

(o )(a) =p(P(a)).

Then, Vx € {1,2,3},
and, Yy € {4,5,6},

We say that g and h are inverses.

h(g(z))

g(h(y))

— X
=

A function f: A — B is bijective

Iff f has an inverse B — A.
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[fop.A— B and ¢ . B— C,
“¢ then "
then ko o|: A — C is defined by

Coromme e (o d)(a) = v(d(a)).

Def'n: For any set A,

“the identity on A"
idyl: A — A is defined by: idj(x) = =x.

Then, Vo € {1,2,3}, (hog)(z) =z "°9 = 9123
and, vy S {47576}1 (g O h)(y) — y'goh: id{4,5,6}

We say that g and h are inverses. \

A function f: A — B is bijective s
Iff f has an inverse B — A.| %946




[fop.A— B and ¢ . B— C,
Yo then "

then

Yoo

' A — C is defined by

“The composite

of ¢ and ¢" (Y o) a) =Y (¢p(a)).

Fact:If ¢: A— B, if¢: B — C,

and if x:C — D,

then (xow)o¢p =xo (o)

composition Is associative 04D

fnexpr




a:{1,2,3} - {1,2,3}

l1+—2
20— 3
3—1

6:41,2,3} —{1,2,3}

l1+—2
29— 1

1 |

Exercise: Check that (a0 8)(1) # (Boa)(1).
composition is not commutative

composition Is associative 854D
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M) = 2 f(6) =12 f=0)
[mﬁivi—>3 ; 9 [tz]t:—>3 =9 f(3) =9

[22]2=3=16 — 9t ]i=3 =16 — 9 fI2 =16 — 9

r.—37
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Def'n:Let be R, S CR. )greatest lower bound

We say b is the finf (or [gIb)) of S,

infimum) and write |b = inf .S
Vliower bound a for S, we have a < b.
If, in addition, b€ S, minimum

then we say that b is the Imin| of S,
and write [b.=_min S|

Def'n:Let be R, S CR. least upper bound|

We say b is the [sup] (or lub]) of S,
supremum and write b = sup S|

Yupper bound a for S, we have a > b.
If, in addition, b€ S, maximum
then we say that b is the Imax| of S,

20
and write b= max.S| 0004




Def'n:

Say f is real-valued and defined on A.

sgpf = sup f(A)

[ {f(a)|a € A}

rEA

sup f(a:)‘zr sup f(s)

sEA

etc.

lLe., ACdomf
and im f C R.

Def'n:Let be R, S CR.

We say b is the

then we say that b is the

supremum

sup] (or [lub

and write

least upper bound|

of S,

b —=sup.s

Yupper bound a for S, we have a > b.
If, in addition, b€ S,

and write [b = max.\Sl

max| of S

maximum|
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Say f is real-valued and defined on A.

Def'n: Sllzllpf = sup f(A)
I

:?lejﬁ f(a:)‘ —: felJE f(s)| etc.

e.g.. sup (e)3 =sup(—8,125) = 125
(:__:2755)

I sup :— inf
sup z3 = sup s etc.
xe(—2,5) s€(—2,5)
N\ N\
sup z3 sup s etc.
—2<x<b —2<s<b
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Say f is real-valued and defined on A.
Def’'n: igff = inf f(A)

!

xing(:c) :gggf(s) etc.

e.g.. inf (e)3 =inf(—8,125) = —8
(:__:2755)

I inf :— max
inf z3 = inf s3 etc.
xe(—2,5) s€(—2,5)
A\ N\
inf 3 inf s3 etc.
—2<x<b —2<s8<h
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Say f is real-valued and defined on A.

Def'n: nj?laxf ‘= max f(A)

!

:?;ix f(m)‘::srr;ix f(s)| etc.

e.g..max ()3 max(—8,125)
o (_27 5) R [_27 5]

max z3 , max s3> etc. |,
xe(—2,5) s€(—2,5)
max z3 |, max s3>, etc.
—2<x<b —2<s<b

. 24
do not exist |0oo4F
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Say f is real-valued and defined on A.

Def'n: nj?laxf ‘= max f(A)

!

:?;ix f(m)‘::srr;ix f(s)| etc.

e.g.. max (e)3 = max[—8,125] = 125
[__:2755]

max z3 = max s3 etc.
xc[—2,5] s€[—2,5]
N\ N\
max 3 max s3 etc.
_D<g<5 _<s<b
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Say f is real-valued and defined on A.

Def’'n: njinf ‘= min f(A)
I

:rcréig f(x) :gr;i}T f(s)| etc.

e.g.: min ()3 = min[-8,125] = —8

[__:2755]
[l
min z32 = min 3 etc.
re[—2,5] s€[—2,5]
N\ N\
min z3 min s3 etc.
_2<z<5 _0<s<5
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Say f is real-valued and defined on A.

Def’'n: njinf ‘= min f(A)
I

:rcréig f(x) :gr;i}rg f(s)| etc.

Th'm (Extreme Value Theorem):

If f is continuous on a compact interval I,
then both max f and min f exist.

1 1
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—

continue a gauche, limite a droite

i

1, ifx<?2
— 4
“ 1, if x> 2 x
y —1
v 1S caglad in x
o
-1, iTt<2
—) =
1, if¢t>2 t
. ! EI> l —1 ‘
v Is caglad in ¢
unusual
. notation 1] f
_ L2
f= 1, iT o> 2
y —1
f is caglad 0004G
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_continue a gauche, limite a droite . U
1, ifx<?2 T ?
y | L ife>2 2
—1
J(z) v is caglad in x
( . ];.?J o
-1, iTt<2
V= 4 | :2
// L 1, iIT¢>2 ; t
—1
/(1) v is caglad in ¢
1 f
()_{r—l,if:r:gQ T °
FEY=9 1 il > 2 2
\ —q ®
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DEFINITION: Let I be an interval.

A function f is called increasing on [ if
f(s) < f(t) whenever s,t € [ and s < t.

Lf(@)] — [f(s)]

e.dg.. slope = P > 0
s < 't
“secant lines run uphill” (slopes > 0) -~
0004H
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DEFINITION: Let I be an interval.

A function f is called increasing on [ if
f(s) < f(t) whenever s,t € I and s < t.

i : : .
6 .K 7 o
s<t

“there’'s a secant line that does not run uphill”
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DEFINITION: Let I be an interval.

A function f is called increasing on [ if
f(s) < f(t) whenever s,t € [ and s < t.

e.qg.:

y A

s

Typical to make the interval
as large as possible. ..
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DEFINITION: Let I be an interval.

A function f is called increasing on [ if
f(s) < f(t) whenever s,t € I and s < t.

e.q.:

N
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DEFINITION: Let I be an interval.

A function f is called increasing on [ if 4 _
f(s) < f(t) whenever s,t € I and s < t. %

“secant lines run uphill” (slopes > 0) A : i
i
A function f is called decreasing on [ if
f(s) > f(t) whenever s,t € I and s < t.
“secant lines run downhill” (slopes < 0) i - i

(semi-increasing)
A function f is called nondecreasing on [ if

f(s) < f(t)  whenever s,tel and s<t.
“secant lines don’'t run downhill” (slopes > 0) I

(semi-decreasing) ‘-
A function f is called nonincreasing on [ if %
f(s) > f(¢t)  whenever s,t €l and s<t. | _

“secant lines don't run uphill” (slopes < 0) +=* =




Rescaling functions and expressions
(a.k.a. scalar multiplication)

It f:A— R is a function,
and iIf c€ R is a number,
thenlcfl: A — R is the function

defined by (¢f)(xz) = c¢|[f(x)].
e.g.: Let F:= f(z) =23
4F = (4f)(z) = 423

35
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Rescaling functions and expressions

and if c€ R is a number
A — R is the function

e.g.: Let F:= f(z) =23
4F = (4f)(z) = 423

In these lectures, typically,
scalar := real number

A scalar is a number.

Context: real number, complex number,
] p-adic number, etc. 00041




Rescaling functions and expressions
(a.k.a. scalar multiplication)

It f:A— R is a function,

ld al Y tant”
and if ce R is alscalar, -~ @77 >y consan
thenlcfl: A — R is the function

defined by (¢f)(xz) = c¢|[f(x)].
e.g.: Let F:= f(z) =23
4F = (4f)(z) = 423

In these lectures, typically,
scalar := real number

A scalar is a number.

Context: real number, complex number,
] p-adic number, etc.
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Addition of functions

If f:A— R and g: B— R are functions,
then |f +g: A0 B — R is the function

defined by (f + g)(z) = [f(2)] + [g9(z)].
e.g.: Let F:= f(z) =23+ 2z
and G := g(z) = 223 — 6.
F+G=(f+g9)(z)=3z>—-4x
ed.: Let Q:=qlz) =Inx
and R:=r(x) =+v1 —x.
Q+R=(@+r)(z)=[nz]+V1—-=

q:(0,00) =R
r:(—oo,1] - R

— g+r:(0,1] = R 0004l




Linear operations and linear combinations

Def'n: The linear operations are
scalar multiplication and addition. \

~ Def'n: Vintegers j € [1,n],
let f; 1 A; — R be a function.
Let ¢q,...,cn € R.
The linear combination of f1,..., fn
with coefficients cq,...,c¢cn

ISci1f1+ -+ cnfn.

e.g.. The linear combination of sin and cos
with coefficients 2 and —v/2

is the function 2sin —v/2cos : R — R def'd by
(2sin —v/2cos)(z) = 2(sinz) — v/2(cosz).

39
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Linear operations and linear combinations
Def'n: The linear operations are
\ scalar multiplication and addition.
Def'n: Vintegers j € [1,n],
let f; 1 A; — R be a function.

Let ¢1,...,cn € R. r . — 1
The linear combination of fi(x),..., fn(x)
with coefficients cq1,...,cp

is ci[f1(x)] + -+ enlfn()].

e.g.: The linear combination of /1 —z and Inx
with coefficients —1 and 4

is H = —vV1—-—z+4Inz.

Domain of H: x € (—oc0,1] N (0,00) = (0, 1]+,
— 004l




Linear operations and linear combinations

Def'n: The linear operations are
scalar multiplication and addition. \

~ Def'n: Vintegers j € [1,n],
let f; 1 A; — R be a function.
Let ¢q,...,cn € R.
The linear combination of f1(¢),..., fn(t)
with coefficients cq1,...,cp

is c1[f1(D)] + -+ enlfn(?)].

e.g.: The linear combination of v/1 —t¢t and Int
with coefficients —1 and 4

\ is H:= —\/1—t+4Int.

Domain of H: t € (—o0,1] N (0,00) = (0, 1]
— e




Polynomials in one variable
Def'n: A polynomial In z is a finite
linear combination of 1,z,22 23 x2%,. ...
e.g.. 4+ rx + 8x2 degree — 2
2 — 6x + 322 -+ rrS — ex? degree = 4
8 degree = 0

11000000 ye5ree = 1000000
2 — 72£90090! PleX qegree — googol plex = 1010™

The degree of a polynomial in z is
the maximum of the exponents on z.

5804
xr .— t
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Polynomials in one variable
Def'n: A polynomial In ¢t is a finite
linear combination of 1,+t2,+3 t% .. ..
e.g.. 44+ 7t—+ 8t2 degree — 2
2 — 6t 4 3t2 4+ 7t3 —et*  degree — 4
S degree = 0
+1000000 degree = 1000000
2 _ 7thOQO| plex degree = googol plex = 1010

The degree of a polynomial in t is
the maximum of the exponents on t.

43
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Polynomials in one variable
Def'n: A polynomial In r is a finite
linear combination of 1,772 73 7% .. ..
e.g.: 44+ 7r + 8r2 degree — 2
2 — 67+ 3r2 + 73 — er?  degree — 4
S degree = 0

7“1000000 degree = 1000000
D _ 7790090l plex . ce — googol plex = 1010

The degree of a polynomial in r is
the maximum of the exponents on r.

44
expressions :— functions 0004
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Polynomials in one variable
Def'n: A polynomial is a finite
linear combination of 1,e,02,e3 e%,. ...
e.g.. 4+ 7e —|—802 degree = 2
2 —_60+302F7 03 —ce? degree — 4
S degree = 0
01000000 degree = 1000000
2 — 7.googo| plex degree = googol plex = 1010

The degree of a polynomial is
the maximum of the exponents.
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Polynomials in one variable

Let P(x) be a polynomial in .
degree of P(z) =
highest power of x appearing in P(x)

e.g.: 3x 4+ 4x> =2z 7 has degree-5

Constant means degree 0O
Constant polynomials: 2, 7, —8, m, etc.
Linear means degree 1
Linear polynomials: 2z + 5, ex — /2, etc.
Quadratic means degree 2
Quadratic polynomials: —7z2 — 4x + 8, etc.
Cubic means degree 3
Cubic polynomials: 223 — nmz2 4+ 6z + 1, etc.
Quartic means degree 4
Quartic polynomials: 8z% — 423 + 222 + 4x + 6, etc.

Quintic means degree 5
Quintic polynomials: 4z° — mz?% + 223 — ex?+

46
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Polynomials in one variable

A degree six (sextic) polynomial:
|9§{:6 — §$5 72— Q:US 522[= 4:17 + 3

Constant term
Linear term

Quadratic term

Cubic term
Quartic term

Quintic term
Degree six term
The coefficients are the numbers. ..

47
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Polynomials in one variable

A degree six (sextic) polynomial:
Qx(’ —“81335 Th? —“6Ja:3 B2 — 4|4 3

Constant coefficient
Linear coefficient
Quadratic coefficient

Cubic coefficient
Quartic coefficient

Quintic coefficient
Degree six coefficient
T he coefficients are the numbers. ..

Leading coefficient := the coefficient
on the highest degree term.

5004
§1.3

fnexpr




Polynomials in one variable

A degree six (sextic) polynomial:
@6—8$5+7$4—6$3—|—5$2—4$—|—3

Leading coefficient := the coefficient
on the highest degree term.

6%04J
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Polynomials in one variable

A degree six (sextic) polynomial:

00

—8335—|—7.’L‘4—6£U3—|—5£132—4£U—|—3

A

Leading term := the highest degree term

§1.3

50
0004J

fnexpr




Definition: A function f: R — R is

exponentially bounded, if

exp-bdd

4A, B > 0 s.t., Vo € R,

f(2)] < AeBlel
q.— AeBlz|
Hoaspe<a p| = dist(p,0)

\
f(2)| < AeBlel ifr —AeBlel < f(2) < AeBll

e.g.. —3edl7l < f(2) < 3@
implies f is exp-bdd.

o1
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N

-0.3 -0.2 -0.1 KO.Z 0.3 0.4

e.dg.. —365’$| < f(a;') < 365|x’
36517l < f(2) < 3Dl
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-0.4 -0.3 -0.2 -0.1 D 0.1 0.2 0.3 0.4

e.dg.. —365’x| < f(a;') < 365|x’

means that the graph
of f stays between the

red and blue graphs above. |2,

] fexpr




Definition: A function f: R —- R is
exponentially bounded, if
exp-bdd HA, B >0 S.t., YV - R,

f(x)| < AeBll

\ Some exp-bdd expressions of x:

ANY polynomial in x

327e4* + cosz + 1010M°°

(582x—l—7 . 8)_|_

e is not exp-bdd in z. .
]
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