Financial Mathematics Completing the square

Collecting like terms

We do not typically write $4x^2 + 3 + 6x + 5 + 2x + x^2 - 10 + 8 - x$

Instead:

$$(4+1)x^2 + (6+2-1)x + (3+5-10+8)$$

= $5x^2 + 7x + 6$ (decreasing degree)

or: $6 + 7x + 5x^2$ (increasing degree)

SKILL: Collecting like terms

Problem: Collect like terms on $ax + 4x^2 - 2x + 15x^3 + bx - c + 7 + rx^2 + k$

 $15x^3 + (4+r)x^2 + (a-2+b)x - 2x + (-c+7+k)$

General problem:

Graph some equation in x and y.

Given a number a.

Replace x by x-a in the equation.

Graph the new equation.

ample:
$$x^2 + y^2 = 9$$
 Graph $x^2 = 9 - y^2$. $\sqrt{(x-0)^2 + (y-0)^2} = 3$ Replace x by $x-2$.

Crapb (
$$2$$
)

Graph
$$(x-2)^2 = 9 - y^2$$
 dist $((x,y),(0,0)) = 3$

In
$$\mathbb{R}$$
: dist $(a, s) = |s - a| = \sqrt{(s - a)^2}$

In
$$\mathbb{R}^2$$
: dist $((a,b),(s,t)) = \sqrt{(s-a)^2 + (t-b)^2}$

In
$$\mathbb{R}^3$$
: dist $((a,b,c),(s,t,u))$

$$= \sqrt{(s-a)^2 + (t-b)^2 + (u-c)^2}$$

Example: $\operatorname{dist}((x,y),(0,0)) = 3$ Graph $x^2 = 9 - y^2$. Replace x by x - 2. Graph $(x - 2)^2 = 9 - y^2$.

Example: Graph $x^2 = 9 + 4y^2$. Replace x by x - 2. Graph $(x - 2)^2 = 9 - y^2$. dist((x, y), (0, 0)) = 3

Translation Example: $x : \to 0, y : \to 0$ dist((x, y), (0, 0)) = 3Graph $x^2 = 9 \to y^2$. Replace x by x - 2. Graph $(x-2)^2 = 9 - y^2$. $x : \rightarrow 2, y : \rightarrow 3$

Shift old graph 2 units to right to get new graph.

Translation

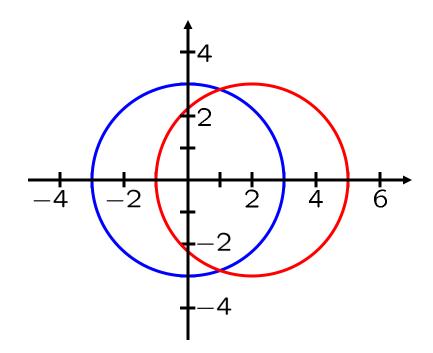
General problem:

Graph some equation in x and y.

Given a number a.

Replace \underline{x} by $\underline{x-a}$ in the equation.

Graph the new equation.



Shift old graph a units to right to get new graph.

Translation

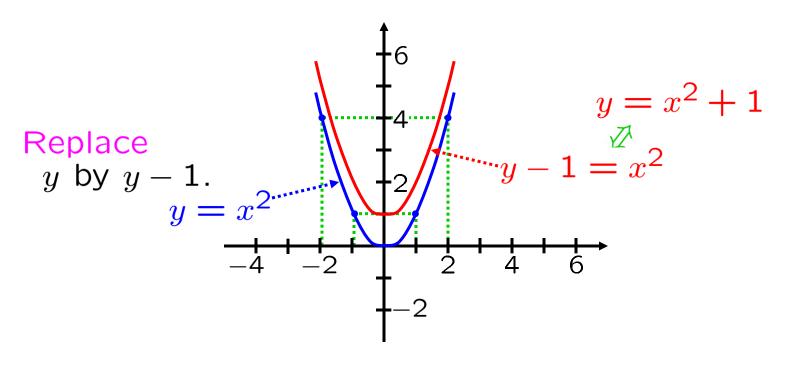
General problem:

Graph some equation in x and y.

Given a number a.

Replace y by y-a in the equation.

Graph the new equation.



Shift old graph a units upward to get new graph.

Dilation

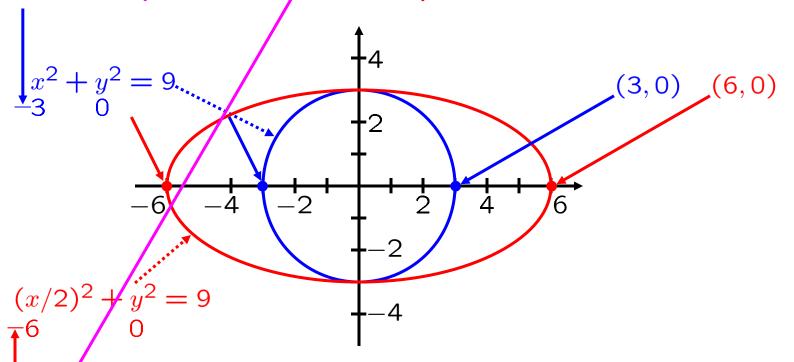
General problem:

Graph some equation in x and y.

Given a number a > 0.

Replace \underline{x} by x/a in the equation.

Graph the new equation.



Dilation

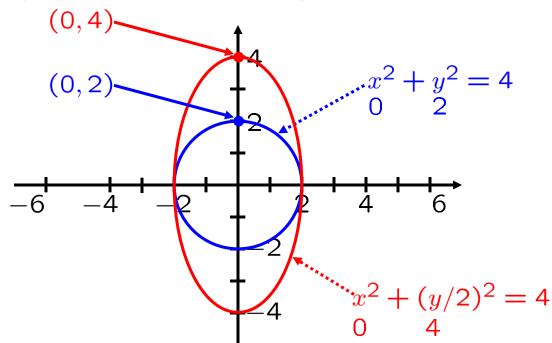
General problem:

Graph some equation in x and y.

Given a number a > 0.

Replace \underline{y} by $\underline{y/a}$ in the equation.

Graph the new equation.



Stretch old graph by a factor of a in y-direction to get new graph. 9

Goal: Eliminate the linear term.

Problem: Graph
$$y = x^2 + 4x + 5$$
.

the "linear" term

Replace x by x + 5.

expand and collect terms

$$y = (x + 5)^{2} + 4(x + 5) + 5$$

$$= (x^{2} + 10x + 25) + (4x + 20) + 5$$

$$= x^{2} + 14x + 50$$

Question: Any easier to graph

$$y = x^2 + 14x + 50?$$
the "linear" term

Question: Does this help in the original problem of graphing $y = x^2 + 4x + 5$?

Goal: Eliminate the linear term.

Problem: Graph $y = x^2 + 4x + 5$.

Replace
$$x$$
 by $x + ?$. $? = -2$ expand and collect terms

$$y = (x + ?)^{2} + 4(x + ?) + 5$$

$$= (x^{2} + 2?x + ?^{2}) + (4x + 4?) + 5$$

$$= x^{2} + (2? + 4)x + (?^{2} + 4? + 5)$$
make zero

Replace x by x-2.

$$y = x^2 + (4 - 8 + 5)$$

$$= x^2 + 1$$
 NO "linear" term

Question: Does this help in the original problem of graphing $y = x^2 + 4x + 5$?

Problem: Graph
$$y = x^2 + 4x + 5$$
.

Replace x by x-2.

$$y = (x-2)^2 + 4(x-2) + 5$$

= $x^2 + 1$ NO "linear" term

Question: Does this help in the Replace x original problem of $y = (graphing \ y = x^2 + 4x + 5?)$

Note: =
$$(0, 5)$$
 is on the graph ofn
Question: Does $y = x^2 + 4x + 5$.
original problem of
graphing $y = x^2 + 4x + 5$?

Replace x by x-2.

$$y = (x-2)^2 + 4(x-2) + 5$$

= $x^2 + 1$ NO "linear" term

Question: Does this help in the original problem of graphing $y = x^2 + 4x + 5$?

Note:
$$(0,5)$$
 is on the graph of $y = x^2 + 4x + 5$.

so (0+2,5) is on the graph of

$$y = (x-2)^2 + 4(x-2) + 5$$

If we take all the points on

$$y = x^2 + 4x + 54(x-2) + 5$$

= $x^2 + 1$ NO "linear" term

$$y = (x-2)^2 + 4(x-2) + 5$$

= $x^2 + 1$ NO "linear" term

Note: (0,5) is on the graph of shift two units to right $y=x^2+4x+5$. so (0+2,5) is on the graph of

$$y = (x-2)^2 + 4(x-2) + 5$$

If we take all the points on $y=x^2+4x+5$ and shift them two units to the right, we'll get the graph of $y=(x-2)^2+4(x-2)+5$ $=x^2+1$ NO "linear" term

Note:
$$(0,5)$$
 is on the graph of $y = x^2 + 4x + 5$.

so $(0+2,5)$ is on the graph of $y = (x-2)^2 + 4(x-2) + 5$

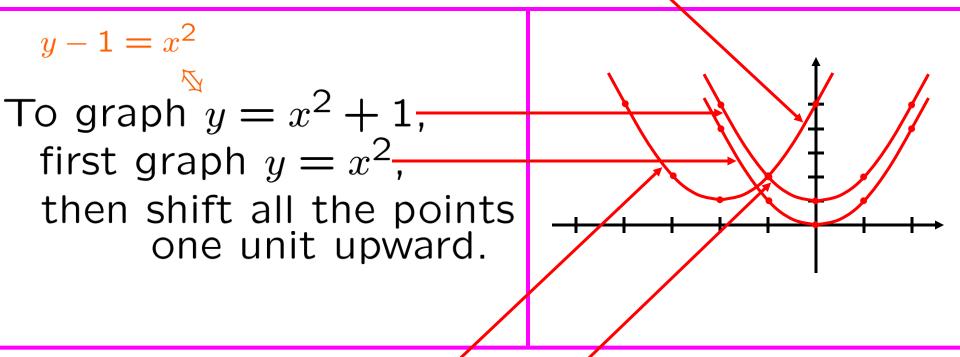
If we take all the points on $y=x^2+4x+5$ and shift them two units to the right, we'll get the graph of $y=(x-2)^2+4(x-2)+5$ $=x^2+1$ NO "linear" term

Replacing x by x-2 causes the graph to move two units to the *RIGHT*.

If we take all the points on $y=x^2+4x+5$ and shift them two units to the right, we'll get the graph of $y=(x-2)^2+4(x-2)+5$ $=x^2+1$ NO "linear" term

now work backward:

To graph $y=x^2+4x+5$, first graph $y=x^2+1$, NO "linear" term then shift all the points two units to the left.



To graph $y=x^2+4x+5$, first graph $y=x^2+1$, NO "linear" term then shift all the points two units to the left.

Problem: Find the translation that eliminates the linear term in

$$y = 4x^2 + 6x - 2,$$

i.e., choose? such that

$$y = 4(x + ?)^{2}_{2?x} + 6(x + ?) - 2$$

has no linear term.

Solution:

Linear term =
$$4(2?x) + 6x$$

 $0 = (8? + 6)x$
 $? = -6/8 = -3/4$

SKILL: Find the translation that eliminates the linear term.

Problem: Eliminate the linear term in eliminates the $y = 4x^2 + 6x - 2$ i.e., choose ? such that 6x - 2, i.e., $y = 4(x + ?)^2 + 6(x + ?) - 2$ has no linear term, 6(x + ?) - 2 and collect has no linear term, 9(x + ?) - 2.

$$? = -3/4$$

$$= -3/4$$

Problem: Eliminate the linear term in $y = 4x^2 + 6x - 2$,

i.e., choose ? such that

$$y = 4(x + ?)^2 + 6(x + ?) - 2$$

has no linear term, then expand and collect
terms in $y = 4(x + ?)^2 + 6(x + ?) - 2$.

Solution:
$$? = \sqrt{3/4}$$

 $y = 4(x - (3/4))^2 + 6(x - (3/4)) - 2$
 $= 4x^2 + 4(-3/4)^2 - 6(3/4) - 2$
 $= 4x^2 + (9/4) - (9/2) - 2$
 $= 4x^2 - (17/4)$ Skip linear terms

Problem: Find the translation that eliminates the linear term in $y = ax^2 + bx + c$, i.e., choose ? such that $y = a(x + ?)^2 + b(x + ?) + c$ has no linear term.

Solution:

Linear term =
$$a(2?x) + bx$$

$$0 = (2a? + b)x$$

$$? = -b/(2a)$$

Problem: Eliminate the linear term in $y = ax^2 + bx + c$, i.e., choose ? such that $y = a(x+?)^2 + b(x+?) + c$ has no linear term, then expand and collect terms in $y = a(x+?)^2 + b(x+?) + c$.

$$? = -b/(2a)$$

Problem: Eliminate the linear term in $y = ax^2 + bx + c$.

i.e., choose ? such that

$$y = a(x + ?)^2 + b(x + ?) + c$$

has no linear term, then expand and collect
terms in $y = a(x + ?)^2 + b(x + ?) + c$.

Solution:

$$y = a\left(x - \frac{b}{2a}\right)^2 + b\left(x - \frac{b}{2a}\right) + c$$

$$? = -b/(2a)$$

$$? = -b/(2a)$$

Problem: Eliminate the linear term in $y = ax^2 + bx + c$,

i.e., choose ? such that

$$y = a(x + ?)^2 + b(x + ?) + c$$

has no linear term, then expand and collect
terms in $y = a(x + ?)^2 + b(x + ?) + c$.

Solution: ? = -b/(2a)

$$y = a\left(x - \frac{b}{2a}\right)^2 + b\left(x - \frac{b}{2a}\right) + c = ax^2 + \frac{b^2}{4a} - \frac{b^2}{2a} + c$$

$$=ax^{2}-\frac{b^{2}-4ac}{4a}$$

$$=-b/(2a)$$

Problem: Find the translation that eliminates the linear term in

eliminates the linear term in
$$y = -(x^2/2) + 19x + 5$$
, i.e., choose ? such that $x : \rightarrow x + 19$ $y = -((x + ?)^2/2) + 19(x + ?) + 5$

has no linear term

Solution:
$$a = -1/2$$
, $b = 19$
 $? = -b/(2a) = +b/(+1) = b$
 $? = 19$

NOTE: When the quadratic term is $-x^2/2$, $x : \to x + \text{(the linear coefficient)}.$ 26

$$? = b$$

Problem: Find the translation that eliminates the linear term in

$$y = -(x^2/2) + 19x + 5,$$

i.e., choose? such that

$$y = -((x + ?)^2/2) + 19(x + ?) + 5$$

has no linear term.

Solution:
$$a = -1/2, b = 19$$

$$? = -b/(2a) = +b/(+1) = b$$

NOTE: When the quadratic term is $-x^2/2$, $x : \rightarrow x + \text{(the linear coefficient)}.$

$$? = b$$

Problem: Eliminate the linear term in $y = -(x^2/2) + 1.9x + 5$

i.e., choose? such that

$$y = -((x + ?)^2/2) + 19(x + ?) + 5$$

has no linear term, then expand and collect
terms in $y = -((x + ?)^2/2) + 19(x + ?) + 5$.

Solution:
$$? = 19$$

 $y = -((x+19)^2/2) + 19(x+19) + 5$
 $= -(x^2/2) - (19^2/2) + (19^2) + 5$
 $= -(x^2/2) + (371/2)$ skip linear

$$? = b$$

Problem: Eliminate the linear term in $y = -(x^2/2) + bx + c$,

i.e., choose ? such that

$$y = -(1/2)(x + ?)^2 + b(x + ?) + c$$

has no linear term, then expand and collect terms in $y = -(1/2)(x+?)^2 + b(x+?) + c$.

Solution: ? = b'

$$y = -\frac{1}{2}(x+b)^2 + b(x+b) + c = -\frac{x^2}{2} \left[-\frac{b^2}{2} + b^2 + c \right]$$

$$=-(x^2/2)+(b^2/2)+c$$

NOTE: When quad term is $-x^2/2$, replace

linear term by (1/2)(linear coeff)².

$$? = l$$

Problem: Eliminate the linear term in $y = -(x^2/2) + 8x - 3$

i.e., choose? such that

$$y = -((x + ?)^2/2) + 8(x + ?) - 3$$

has no linear term, then expand and collect
terms in $y = -((x + ?)^2/2) + 8(x + ?) - 3$.

Solution: ? = 8

$$x : \rightarrow x + 8$$

 $y = -(x^2/2) + (8^2/2) - 3$

$$=-(x^2/2)+29$$

NOTE: When quad. term is $-x^2/2$, replace

linear term by (1/2)(linear coeff)².

STOP