Financial Mathematics
One variable differential calculus review
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ALLOWABLE NOTATION:
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start with a function differentiate the function
make it an expression of x make it an expression of x
differentiate w.r.t. x
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Product Rule
( “Differentiation by parts'’)

1st 2nd
g . Part part
@@ =
xr
} Voo
d d
[\f () [—(g(w))] | [ (f(z)) g(x)]
dx dx ]
the < the =] the = the
1st (BD derivative  derivative (BD 2nd
part Y of the of the Y part

2nd part 1st part




(fg)" = fd +fyg

Product Rule
( “Differentiation by parts'’)
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Product Rule
( “Differentiation by parts”)
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Product Rule
( “Differentiation by parts”)

Many equivalent alternatives, e.q.,. ..
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Quotient Rule

derivative

derivative

_ow dee high @ high dee low,
high——[f1" _ lof] = |fd
lOW——| g | 92

Exercise: Write out t
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Quotient Rule
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tan’ = sec
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Chain Rule
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IThe derivative of ‘ )

an expression
plugged into a function

Take the derivative of the function.
Plug in the expression.
Multiply by the derivative of the expression.
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Chain Rule

| |

[f(g( N] =[F(g@))] [(9(

an expression

IThe derivative of ‘
plugged into a function

Take the derivative of the function.

Plug in the expression.

Multiply by the derivative of the expression.

j .
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S %  Chain Rule

S 3
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— cot(x)
Take the derivative of the function.

Plug in the expression.
Multiply by the derivative of the expression.
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This expression is itself
an expression inside a function.
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Take the derivative of the function.
Plug in the expression.
Multiply by the derivative of the expression.
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Practice Problem
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Practice Problem
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Practice Problem /L
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Logarithmic Derivative
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Principle of Logarithmic Differentiation:
To compute the derivative of an expression,

Mmultiply the expression
by its_logarifthmic derivative.
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Principle of Logarithmic Differentiation
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Principle of Logarithmic Differentiation:
To compute the derivative of an expression,

Mmultiply the expression
by its logarithmic derivative.
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Common sol'n:
d

dx




