Financial Mathematics

Polynomial approximation

Jets

The *n*-jet of f(x) at a is the ordered (n+1)-tuple $(J^n f)(a) := (f(a), f'(a), f''(a), \dots, f^{(n)}(a)).$

e.g.:
$$f(x) = \sin x$$
 $f(\pi/6) = 1/2$
 $f'(x) = \cos x$ $f'(\pi/6) = \sqrt{3}/2$
 $f''(x) = -\sin x$ $f''(\pi/6) = -1/2$
 $f'''(x) = -\cos x$ $f'''(\pi/6) = -\sqrt{3}/2$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(\pi/6) = 1/2$
SKILL compute jets $f^{(4)}(\pi/6) = (1/2, \sqrt{3}/2, -1/2, -\sqrt{3}/2, 1/2)$

Jets

The *n*-jet of f(x) at a is

the ordered (n+1)-tuple

$$(J^n f)(a) := (f(a), f'(a), f''(a), \dots, f^{(n)}(a)).$$

Note: If
$$\tilde{f}(x) = f(-x)$$
, then

$$= f(-x)$$
, then

$$\widetilde{f}''(x) = -f'(-x)
\widetilde{f}'''(x) = f''(-x)
\widetilde{f}''''(x) = -f'''(-x)$$

etc..

$$(J^n f)(0) = (a_0, a_1, a_2, a_3, \dots, a_n)$$

$$(J^n \tilde{f})(0) \stackrel{\psi}{=} (a_0, -a_1, a_2, -a_3, \dots, (-1)^n a_n).$$

Jets

"f and g agree to order n at 0"
$$(J^n f)(0) = (J^n g)(0)$$

$$\tilde{f}(x) = f(-x)$$
 and $\tilde{g}(x) = g(-x)$

$$(J^n \tilde{f})(0) = (J_n \tilde{g})(0)$$

" \tilde{f} and \tilde{g} agree to order n at 0"

$$(J^n g)(0) = (b_0, b_1, b_2, b_3, \dots, b_n)$$

$$(J^n \tilde{g})(0) \stackrel{\forall}{=} (b_0, -b_1, b_2, -b_3, \dots, (-1)^n b_n).$$

$$(J^n f)(0) = (a_0, a_1, a_2, a_3, \dots, a_n)$$

$$(J^n \tilde{f})(0) \stackrel{\checkmark}{=} (a_0, -a_1, a_2, -a_3, \dots, (-1)^n a_n).$$

The second order Maclaurin approx. of f(x) is the second degree polynomial

$$p(x) = a + bx + cx^2 \qquad \text{(degree } \le 2\text{)}$$

such that

$$f(0) = p(0), f'(0) = p'(0) \text{ and } f''(0) = p''(0)$$

i.e., such that

$$(J^2f)(0) = (J^2p)(0),$$

i.e., such that

f and p agree to order 2 at zero.

The second order Maclaurin approx. of f(x) is the second degree polynomial

$$p(x) = a + bx + cx^2 \qquad \text{(degree } \le 2\text{)}$$

such that

$$f(0) = p(0), f'(0) = p'(0) \text{ and } f''(0) = p''(0).$$

$$p'(x) \neq 2cx + b$$
 $p''(x) = 2c$
 $p(0) = a$ $p'(0) = b$ $p''(0) = 2c$

$$f(0) = a$$
 $f'(0) = b$ $f''(0) = 2$

$$f(0) = a$$
 $f'(0) = b$ $f''(0) = 2$
 $p(x) = a + bx + cx^2$

$$= [f(0)] + [f'(0)]x + \left[\frac{f''(0)}{2}\right]x^2$$
Next: Third order...

The **third order Maclaurin approx**. of f(x) is the third degree polynomial

$$p(x) = a + bx + cx^2 + dx^3$$
 (degree \leq 3)

such that

$$f(0) = p(0), f'(0) = p'(0), f''(0) = p''(0)$$

and $f'''(0) = p'''(0)$

i.e., such that

$$(J^3f)(0) = (J^3p)(0),$$

i.e., such that

f and p agree to order 3 at zero.

The third order Maclaurin approx. of f(x) is the third degree polynomial $p(x) = a + bx + cx^2 + dx^3$ (degree ≤ 3)

$$f(0) = p(0), f'(0) = p'(0), f''(0) = p''(0)$$

and $f'''(0) = p'''(0).$

$$p(x) = a + bx + cx^2 + dx^3$$

$$= [f(0)] + [f'(0)]x + \left[\frac{f''(0)}{2}\right]x^2 + \left[\frac{f'''(0)}{6}\right]x^3$$

$$= \left[\frac{f(0)}{0!}\right] x^{0} + \left[\frac{f'(0)}{1!}\right] x^{1} + \left[\frac{f''(0)}{2!}\right] x^{2} + \left[\frac{f'''(0)}{3!}\right] x^{3}$$

Next *n*th order...

The nth order Maclaurin approx. of f(x) is the polynomial of degree $\leq n$ p(x)

such that

$$f(0) = p(0), f'(0) = p'(0), \dots, f^{(n)}(0) = p^{(n)}(0)$$

i.e., such that

$$(J^n f)(0) = (J^n p)(0),$$

i.e., such that

f and p agree to order n at zero.

The nth order Maclaurin approx. of f(x) is the polynomial of degree $\leq n$ p(x)

such that

$$f(0) = p(0), f'(0) = p'(0), \dots, f^{(n)}(0) = p^{(n)}(0).$$

$$p(x) =$$

$$= \left[\frac{f(0)}{0!}\right] x^{0} + \left[\frac{f'(0)}{1!}\right] x^{1} + \dots + \left[\frac{f^{(n)}(0)}{n!}\right] x^{n}$$

$$= [f(0)] + [f'(0)]x + \left[\frac{f''(0)}{2!}\right]x^2 + \dots + \left[\frac{f^{(n)}(0)}{n!}\right]x^n$$

compute Macl. approximations

The Maclaurin expansion of f(x) is

$$[f(0)] + [f'(0)]x + \left\lfloor \frac{f''(0)}{2!} \right\rfloor x^2 + \left\lfloor \frac{f'''(0)}{3!} \right\rfloor x^3 + \cdots$$

3rd partial sum = 2nd order Maclaurin approximation

The Maclaurin expansion of f(x) is the power series whose (n+1)st partial sum is the nth order Maclaurin approx. of f(x), for all integers n > 0.

$$[f(0)] + [f'(0)]x + \left[\frac{f''(0)}{2!}\right]x^2 + \left[\frac{f'''(0)}{3!}\right]x^3 + \cdots$$

4th partial sum = 3rd order Maclaurin approximation etc.

The Maclaurin expansion of f(x) is the power series whose (n+1)st partial sum is the nth order Maclaurin approx. of f(x), for all integers $n \ge 0$.

$$[f(0)] + [f'(0)]x + \left[\frac{f''(0)}{2!}\right]x^2 + \left[\frac{f'''(0)}{3!}\right]x^3 + \cdots$$

 $\perp \frac{x^3}{}$

$$\cos x$$
: $1 - \frac{x^{2}}{2!} + \frac{x^{3}}{4!} - \frac{x^{3}}{6!} + \cdots$

sin
$$x$$
: $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

In(1+x):
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

compute Macl. expansions

The Maclaurin expansion of f(x) is the power series whose (n+1)st partial sum is the nth order Maclaurin approx. of f(x), for all integers $n \ge 0$.

$$[f(0)] + [f'(0)]x + \left\lfloor \frac{f''(0)}{2!} \right\rfloor x^2 + \left\lfloor \frac{f'''(0)}{3!} \right\rfloor x^3 + \cdots$$

$$e^{x} \stackrel{??}{=} 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

equality here

question soon.

$$\sin x \stackrel{??}{=} x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

f is **decreasing on** I if: $\forall u,v \in I, \quad u < v \Rightarrow f(v) < f(u)$ DECREASING TEST:

If f'(x) < 0, for all x in an interval I, works for any kind of interval then f is decreasing on I. f is **nonincreasing on** f if: $\forall u,v \in I, \quad u \leq v \Rightarrow f(v) \leq f(u)$ NONINCREASING TEST:

works for any kind of interval the first state of the following state of the first sta

If $f'(x) \leq 0$, for all x in an interval I, (open, closed, half-open) then f is nonincreasing on I. (bdd, unbdd)

ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if $g'(x) \leq h'(x)$, for all $x \in I$,

[g(x)] - [h(x)] = f(x) < f(a) = 0, for all $x \in I$

 $\tanh g(x) \leq h(x), \text{ for all } x \in I.$ Proof: f := g - h $f'(x) = [g'(x)] - [h'(x)] \leq 0, \text{ for all } x \in I$ f is nonincreasing on I.

f is decreasing on I if: $\forall u, v \in I$, $u < v \Rightarrow f(v) < f(u)$ works for any DECREASING TEST kind of interval If f'(x) < 0, for all x in an interval I, (open, closed, half-open) then f is decreasing on I. (bdd, unbdd) f is nonincreasing on I if: $\forall u, v \in I$, $u \leq v \Rightarrow f(v) \leq f(u)$ works for any NONINCREASING TEST kind of interval If $f'(x) \leq 0$, for all x in an interval I, (open, closed, half-open) then f is nonincreasing on I. (bdd, unbdd) ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if g'(x) < h'(x), for all $x \in I$, then g(x) < h(x), for all $x \in I$. Proof: f := g - h $f'(x) = [g'(x)] - [h'(x)] \le 0$, for all $x \in I$ f is nonlincreasing on I. $[g(x)] - [h(x)] = f(x) \le f(a) = 0$, for all $x \in I$ $g(x) \leq h(x)$, for all $x \in I$ 16

Fact: Suppose $f'(t) \leq 10$, for all $t \geq 0$. Suppose also f(0) = 0.

Then f(t) < 10t, for all t > 0.

Fact: Suppose $f'(t) \leq 8t$, for all $t \geq 0$. Suppose also f(0) = 0.

Then $f(t) < 4t^2$, for all t > 0.

ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if g'(x) < h'(x), for all $x \in I$,

then $g(x) \leq h(x)$, for all $x \in I$.

Proof: f := g - h

 $f'(x) = [g'(x)] - [h'(x)] \le 0$, for all $x \in I$ f is nonincreasing on I. $[g(x)] - [h(x)] = f(x) \le f(a) = 0$, for all $x \in I$

 $g(x) \le h(x)$, for all $x \in I$

Then f(t) < 10t, for all t > 0. Fact: Suppose $f'(t) \leq 8t$, for all $t \geq 0$. Suppose also f(0) = 0. Then $f(t) < 4t^2$, for all t > 0. Fact: Suppose $f''(t) < 8t^3$, for all t > 0. ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if $g'(x) \le h'(x)$, for all $x \in I$, then q(x) < h(x), for all $x \in I$. ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if $g'(x) \le h'(x)$, for all $x \in I$, 18 then $g(x) \leq h(x)$, for all $x \in I$.

Fact: Suppose $f'(t) \leq 10$, for all $t \geq 0$.

Suppose also f(0) = 0.

Fact: Suppose $f'(t) \leq 10$, for all $t \geq 0$. Suppose also f(0) = 0. Then f(t) < 10t, for all t > 0. Fact: Suppose $f'(t) \leq 8t$, for all $t \geq 0$.

Suppose also f(0) = 0.

Then $f(t) < 4t^2$, for all t > 0.

Fact: Suppose $f''(t) < 8t^3$, for all t > 0.

Suppose also f'(0) = 0. Suppose also f(0) = 0. Then $f'(t) < 2t^4$, for all $t \ge 0$, and $f(t) < 2t^{5}/5$, for all $t \ge 0$.

ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if $g'(x) \le h'(x)$, for all $x \in I$,

then $g(x) \leq h(x)$, for all $x \in I$.

Question: A car drives along a road, starting at mile marker 0, with velocity < 10 mph. Max distance traveled in 1 hr? Answer: Let f(t) be position at time t. f(0) = 0.f'(t) < 10, for all t > 0.

Answer: Let
$$f(t)$$
 be position at time $f(0) = 0$.
 $f'(t) \le 10$, for all $t \ge 0$.
 $f(t) \le 10t$, for all $t \ge 0$.
 $f(1) \le 10$.

Question: A car drives along a road, starting at mile marker 0. starting at velocity Q, with acceleration < 5 mphph. Max distance traveled in 1 hr? Answer: Let f(t) be position at time t. f(0) = 0 and f'(0) = 0

Answer: Let
$$f(t)$$
 be position at tine $f(0) = 0$ and $f'(0) = 0$: $f''(t) \le 5$, for all $t \ge 0$. $f'(t) \le 5t$, for all $t \ge 0$. $f(t) \le 5t^2/2$, for all $t \ge 0$. $f(1) < 5/2$.

ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ If g(a) = h(a) and if g'(x) < h'(x), for all $x \in I$, then $g(x) \leq h(x)$, for all $x \in I$.

f(0) = 0 and $f'(0) \neq 0$ and f''(0) = 0. $f'''(t) \leq 7$, for all t > 0. $f''(t) \leq 7t$, for all $t \geq 0$. $f'(t) \le 7t^2/2$, for all $t \ge 0$. $f(t) \le 7t^3/6$, for all $t \ge 0$. f(10) < 7000/6. ANTIDIFF. OF INEQUALITIES: I an interval, $a = \min I$ then $g(x) \le h(x)$, for all $x \in I$.

with jerk
$$\leq$$
 7 fpspsps.

Max distance traveled in 10 secs?

Answer: Let $f(t)$ be position at time t .

 $f(0) = 0$ and $f'(0) \neq 0$ and $f''(0)$
 $f'''(t) \leq 7$, for all $t \geq 0$.

 $f''(t) \leq 7t^2/2$, for all $t \geq 0$.

 $f(t) \leq 7t^3/6$, for all $t \geq 0$.

 $f(10) \leq 7000/6$.

Question: A train travels along tracks,

starting at foot marker 0,

starting at acceleration Q

starting at velocity Q

If g(a) = h(a) and if g'(x) < h'(x), for all $x \in I$,

Fact: p:= the 3rd order Maclaurin approximation of g. Assume, for all $x \in [0,5]$, that $|g^{(4)}(x)| \leq 8$. Then $|[g(5)] - [p(5)]| \leq 8 \cdot 5^4/(4!)$.

Proof:
$$f := g - p$$
 $p^{(4)} = 0$ $f^{(4)} = q^{(4)} - p^{(4)}$

Assume, for all $x \in [0,5]$, that $|g^{(4)}(x)| \le 8$. Then $|[g(5)] - [p(5)]| \le 8 \cdot 5^4/(4!)$. Proof: f := g - p $p^{(4)} = 0$ $f^{(4)} = g^{(4)} - p^{(4)}f(0) = f'(0) = f''(0) = f'''(0) = 0$

Fact: p := the 3rd order Maclaurin approximation of g.

Proof:
$$f := g - p$$

 $f(4) = g(4) - p(4)f(0) = f'(0) = f''(0) = f'''(0) = 0$
 $g(0) = p(0), g'(0) = p'(0), g''(0) = p''(0), g'''(0) = p'''(0)$
 $f(0) = 0, f'(0) = 0, f''(0) = 0, f'''(0) = 0$

Fact: p := the 3 rd order Maclaurin approximation of g. Assume, for all $x \in [0,5]$, that $|g^{(4)}(x)| \leq 8$. Then $|[g(5)] - [p(5)]| \le 8 \cdot 5^4/(4!)$. Proof: f := g + p $f^{(4)} = g^{(4)}$ f(0) = f'(0) = f''(0) = f'''(0) = 0 $-8 < q^{(4)}(x) < 8$ $\forall x \in [0,5]$, $-8 < f^{(4)}(x) < 8$ $-8x \le f'''(x) \le 8x$ $-8x^2/2 \le f''(x) \le 8x^2/2$ $-8x^3/(3!) \le f'(x) \le 8x^3/(3!)$ $-8x^4/(4!) \le f(x) \le 8x^4/(4!)$ $-8 \cdot 5^{4}/(4!) \le f(5) \le 8 \cdot 5^{4}/(4!) \xrightarrow{-r \le a \le r} |g(5)| - [p(5)]| = |f(5)| \le 8 \cdot 5^{4}/(4!) \text{ QED}$

Fact: p:= the 3rd order Maclaurin approximation of g. Assume, for all $x \in [0,5]$, that $|g^{\textcircled{4}}(x)| \leq 8$. Then $|[g(5)] - [p(5)]| \leq 8 \cdot 5^{\textcircled{4}}/(\textcircled{4}!)$.

Fact: Let $a \geq 0$, $M \geq 0$ and let $n \geq 1$ be an integer. p := the (n-1)st order Maclaurin approx. of g Assume, for all $x \in [0,a]$, that $|g^{(n)}(x)| \leq M$. Then $|[g(a)] - [p(a)]| \leq M[a^n/(n!)]$.

Fact: p := the 3rd order Maclaurin approximation of g.

Assume, for all $x \in [0,5]$, that $|g^{(4)}(x)| \leq 8$.

Then $|[g(5)] - [p(5)]| \leq 8 \cdot 5^4/(4!)$.

Fact: Let $a \geq 0$, $M \geq 0$ and let $n \geq 1$ be an integer. p := the (n-1)st order Maclaurin approx. of g Assume, for all $x \in [0,a]$, that $|g^{(n)}(x)| \leq M$. Then $|[g(a)] - [p(a)]| \leq M[a^n/(n!)]$. $M : \to M_n$

Fact: Assume that g is infinitely diff. at $x, \forall x \in [0, a]$. q := the Maclaurin expansion of g For all integers $n \geq 0$, let $M_n := \max_{[0,a]} |g^{(n)}|$. Assume that $M_n[a^n/(n!)] \to 0$, as $n \to \infty$. Then g(a) = q(a).

Fact: p :=the 3rd order Maclaurin approximation of g. Assume, for all $x \in [0, 5]$, that $|g^{(4)}(x)| \le 8$. Then $|[g(5)] - [p(5)]| \le 8 \cdot 5^4/(4!)$. Fact: Let $a \ge 0$, $M \ge 0$ and let $n \ge 1$ be an integer. p :=the (n-1)st order Maclaurin approx. of qAssume, for all $x \in [0, a]$, that $|g^{(n)}(x)| \leq M$. Then $|[g(a)] - [p(a)]| \le M[a^n/(n!)]$. $M : \to M_n, p : \to p_n$ Fact: Assume that g is infinitely diff. at $x, \forall x \in [0, a]$. q :=the Maclaurin expansion of gFor all integers $n \ge 0$, let $M_n := \max_{[0,a]} |g^{(n)}|$. Assume that $M_n[a^n/(n!)] \rightarrow 0$, as $n \rightarrow \infty$. Then g(a) = q(a). $\sim n \to \infty$ Pf: $p_n := \text{the } (n-1)\text{st order Macl. approx. of } g.$ $|[g(a)] \neq [p_n(a)]| \leq M_n[a^n/(n!)] \rightarrow 0$ $q(a) = \lim_{n \to \infty} p_n(a) = g(a)$ 28

e.g.: $g(x) = e^x$, a = 9, q := the Macl. expansion of q $g^{(n)}(x) \not\models e^x$ e^x is incr. in x $M_n := \max_{\text{for al}} |g^{(n)}| = \max_{0 \le x \le 9} |e^x|$ $= \max_{0 \le x \le 9} e^x = e^9$ $M_n[a^n/(n!)] = e^{9[9n/(n!)]} \to 0$ $\frac{9^{10000}}{10000!} = \frac{9}{1} \cdot \frac{9}{2} \cdots \frac{9}{10000} \approx 0$ $e^9 = q(9) = q(9)$ Fact: Assume that q is infinitely diff. at $x, \forall x \in [0, a]$. q := the Maclaurin expansion of gFor all integers $n \geq 0$, let $M_n := \max_{[0,a]} |g^{(n)}|$. Assume that $M_n[a^n/(n!)] \to 0$, as $n \to \infty$. Then $g(a) \stackrel{!}{=} q(a)$. Pf: $p_n := \text{the } (n-1)\text{st order MacI. approx. of } g$. $|[g(a)] - [p_n(a)]| \le M_n[a^n/(n!)] \to 0$ $q(a) = \lim_{n \to \infty} p_n(a) = g(a)$ 29

e.g.: $g(x) = e^x$, a = 9, q := the Macl. expansion of g $q^{(n)}(x) = e^x$ $M_n := \max_{[0,9]} |g^{(n)}| = \max_{0 \le x \le 9} |e^x| = \max_{0 \le x \le 9} e^x = e^9$

$$[0,9]$$
 $0 \le x \le 9$ $0 \le x \le 9$ $0 \le x \le 9$ $M_n[a^n/(n!)] = e^9[9^n/(n!)] \to 0$

$$a_n[a^n/(n!)] = e^3[9^n/(n!)] \to 0$$

 $e^9 = g(9) = q(9) = 1 + 9 + [9^2/(2!)] + [9^3/(3!)] + \cdots$

9:
$$a$$
 $q(x) = 1 + x + [x^2/(2!)] + [x^3/(3!)] + \cdots$
Fact: For all $a \ge 0$,

$$e^{a} = 1 + a + [a^{2}/(2!)] + [a^{3}/(3!)] + \cdots$$

$$e.g.: g(x) = e^{-x}, a = 9$$

$$e^{-9} = 1 - 9 + [9^2/(2!)] - [9^3/(3!)] + \cdots$$

= $1 + (-9) + [(-9)^2/(2!)] + [(-9)^3/(3!)] + \cdots$

Fact: For all
$$a \ge 0$$
,

 $e^{-a} = 1 + (-a) + [(-a)^2/(2!)] + [(-a)^3/(3!)] + \cdots$ 30 Fact: For all a > 0, $e^{-a} = 1 + (-a) + [(-a)^2/(2!)] + [(-a)^3/(3!)] + \cdots$ Fact: For all $x \in \mathbb{R}$,

 $e^a = 1 + a + [a^2/(2!)] + [a^3/(3!)] + \cdots$

Fact: For all a > 0,

$$e^x = 1 + x + \left[\frac{x^2}{(2!)}\right] + \left[\frac{x^3}{(3!)}\right] + \cdots$$

Fact: For all
$$a \ge 0$$
,
$$e^a = 1 + a + [a^2/(2!)] + [a^3/(3!)] + \cdots$$

Fact: For all
$$a \ge 0$$
, $e^{-a} = 1 + (-a) + [(-a)^2/(2!)] + [(-a)^3/(3!)] + \cdots$

Fact: For all $a \geq 0$, $e^a = 1 + a + [a^2/(2!)] + [a^3/(3!)] + \cdots$ Fact: For all a > 0, $e^{-a} = 1 + (-a) + [(-a)^2/(2!)] + [(-a)^3/(3!)] + \cdots$

Fact: For all
$$x \in \mathbb{R}$$
,
$$e^x = 1 + x + [x^2/(2!)] + [x^3/(3!)] + \cdots$$
$$\sin x = x - [x^3/(3!)] + [x^5/(5!)] - [x^7/(7!)] + \cdots$$
$$\cos x = 1 - [x^2/(2!)] + [x^4/(4!)] - [x^6/(6!)] + \cdots$$
$$e.g.: g(x) = \ln(1+x), a = 0.5$$

 $\ln 1.5 = (0.5) - [(0.5)^2/2] + [(0.5)^3/3] - [(0.5)^4/4] + \cdots$ e.g.: $g(x) = \ln(1-x)$, a = 0.5

 $\ln 0.5 = -(0.5) - [(0.5)^2/2] - [(0.5)^3/3] - [(0.5)^4/4] - \cdots$

Fact: For all $x \in (-1,1]$, $ln(1+x) = x - [x^2/2] + [x^3/3] - [x^4/4] + \cdots$ 32 Th'm:Suppose that g'' is continuous at 0. p:= the 2nd order Maclaurin approx. of g. Then $\exists \varepsilon(x) \to 0$, as $x \to 0$

Then
$$\exists \varepsilon(x) \to 0$$
, as $x \neq 0$ such that $g(x) \neq [p(x)] + [\varepsilon(x)]x^2$.

Pf:

$$g(0) = p(0)$$
 $\varepsilon(x) := \frac{(g(x)) - (p(x))}{x^2}$ $\frac{(g'(x)) - (p'(x))}{x^2}$ $\frac{(g'(x)) - (p'(x))}{2x}$ $\frac{(g''(x)) - (p''(x))}{2x}$ $\frac{(g''(x)) - (p''(x))}{2}$ $\frac{(g''(x)) - (p''(x))}{2}$ $\frac{(g''(x)) - (p''(x))}{2} = 0$

Th'm: Suppose that $g^{I\!I}$ is continuous at 0. p := the 2nd order Maclaurin approx. of g Then $\exists \varepsilon(x) \to 0$, as $x \to 0$ such that $g(x) = [p(x)] + [\varepsilon(x)]x^2$.

 $2:\rightarrow n$

Key idea: error \rightarrow 0 faster than x^n . $g(x) = [p(x)] + [o(x^n)]$ a function that tends to 0 faster than x^n , i.e., x^n times some function that tends to 0.

STOP