Financial Mathematics
Conditional convergence of series
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Goal:
Lower bound on 31st partial sum
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T he harmonic series
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T he harmonic series
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T he harmonic series
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T he harmonic series
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The partial sums are unbounded.
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The alternating harmonic series
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The alternating harmonic series
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Find sum of negative terms. Find sum of positive terms.
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Find sum of positive terms.
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Find sum of positive terms.
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" There is a rearrangement that sums to 1000. Proof:
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T he positive terms in
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sum to +oo, while the negative terms
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1 1 1
o ir3Ts+t-Toy-1 <1000
1 1 1 1
T3+ sT-Toy1tIyer > 1000
1 1 1 1 1
YA st st Aoy tomgr 5 <1000
L 13T 1 i 1
3 5 2M—1 2M+41 2
1 1 1 1% 22
I2M+3 2M—|—5="'=2N—|—1_Z'




1,1 1,1 1,1 1,1 1,1 1 —
l-5+3—2T5-gT78Tg 1igtit 1ot = In2
1 1 1 1 1 1 _
2 4 6 8 10 12 — — O
1 1 1 1 1
- S W A - DL 5 S skt v

T he positive terms in
1,1 1,1 1,1 1,1 1,1 1, .
1 2""3 4"‘5 6+7 8+9 10 "11 121
sum to 4+oo, while the negative terms
sum to —oo.

" There is a rearrangement that sums to 1000. Proof:

141 | 1 | 1 1
l+3+s5+ T og—1 2M+1 "~ 2
1 1 | | 1 1
2M+3 T 2M+5 1 "2N+1 4
1 1 l 1 l 1 1
l+3+s5+ T og—1 2M+1 "~ 2
l 1 1 I l 1 _l 23
"2M+3 'V 2M+5 T "2N+1 " 4




|_l

|
NI N
_|_
W~

|
Bl= D=
_|_
=

|
A~ O
_|_
~N|—

|
0| QO|—
_|_
(o)l

|

|_l

(@)

|_L

|_L

|
o= e
_|_

|

=1

N

1 1 1 1 1
‘ 1 ‘l'g ‘|‘§ ‘|‘7 ‘I'g +17 4+ .-
T he positive terms in
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sum to 4+oo, while the negative terms
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T here is a rearrangement that sums to
any desired real number. 24
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" The positive terms in
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sum to 4+oo, while the negative terms
sum to —oo.

I'here is a rearrangement that sums to 1000.

T here is a rearrangement that sums to
any desired real number.

" There is a rearrangement that sums to +oc.

" There is a rearrangement that sums to

any desired real number.
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1 +5 +& +7 +5 A+ +--

" The positive terms in

141 141 141 1,41 141 14
1 2+3 4+5 6+7 8+9 10 "'11 12

sum to 4+oo, while the negative terms
sum to —oo.

I'here is a rearrangement that sums to 1000.

T here is a rearrangement that sums to
any desired real number.

" There is a rearrangement that sums to +oc.
T here is a rearrangement that sums to —oc.
__There IS a rearrangement that has no sum.

This happens for any series
whose positive terms sum to oo,

and whose negative terms sum to —oo.
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Def'n: A series > a;=aj;+ax+az+ -
j=1

IS nonnegative if: Vintegers 3 > 1, a; > 0.

" The positive terms in
1,1 1,1 1,1 1,1 1,1 1, .
1 2""3 4"‘5 6+7 8+9 10 T11 1271
sum to 4+oo, while the negative terms
sum to —oo.

I'here is a rearrangement that sums to 1000.

T here is a rearrangement that sums to
any desired real number.

" There is a rearrangement that sums to +oc.
T here is a rearrangement that sums to —oc.
__There IS a rearrangement that has no sum.

This happens for any series
whose positive terms sum to oo,

and whose negative terms sum to —oo.
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Def'n: A series > a;=aj;+ax+az+ -
j=1

IS nonnegative if: Vintegers j > 1, a; > 0.

Def'n: A generalized partial sum of a series
IS a sum of finitely many terms of the series.

e.qg.. One generalized partial sum of the series
1+34+54+74+94+11+4+13+154+17+ 19

s 3+ 9+ 19 = 33.

~ There is a rearrangement that sums to 4.
T here is a rearrangement that sums to —oc.
__There IS a rearrangement that has no sum.

This happens for any series

whose positive terms sum to oo, 28

and whose negative terms sum to —oo.




Def'n: A'S

IS nonnheg

O

eries Z a; =a1+ap»+a3z+:--
j=1

ative if: Vintegers 5 > 1, a; > 0.

Def'ntA g
IS @ sum

eneralized partial sum of a series
of finitely many terms of the series.

e.qg.. One generalized partial sum of the series

14+3+5
IS 5

(+9+11+13+15+17+19
+ 9419 = 33.

When aq

-ao> + --- IS @ nonnegative series,

a1 + ao -
the supre

pf
omitted pa

(This set is unaffected by rearrangement.)

- ... has a sum, and this sum is

mum of the set of all generalized
rtial sums of a1 +a>+ a3+ ---.
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Def'n: A series > a;=aj;+ax+az+ -
J=1
IS nonnegative if: Vintegers 3 > 1, a

When a1 +a> + -+ 18 @ nRonnegative series,

a1 + a> + --- has a sum, and this sum is
the supremum of the set otf\all generalized
oty Partial sums of a3 + axd-az + - --.
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Def'n: A series > a;=aj;+ax+az+ -
j=1

IS nonnegative if: Vintegers j > 1, a; > 0.

Fact: Every nonnegative series has a sum,
possibly +oo.

Fact: Rearrangement of a nonnegative series
does not change the sum.

\ |z, x>0 L ] 0, ifx>0

O, ifx<O0 —x, Ifx<O0

Reproducing equation: =4 —x_—

Absolute value equation: |z|=x4 + z_
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Assume that aq,ap,a3,... = 0

Fact: If both Y (aj)4 = oo and Y (aj)— = oo,
then every extended real number is the
sum of some rearrangement of >~ a;.

Fact: If either Y (a;)4 7 oo or ¥ (a;)— 7 oo,
then every rearrangement of > a;

\ has sum equal to [ (a;)4] < [ (aj)-].
Ho, ife<of™ T 7 e, ifz <O

Reproducing equation: =4 — x—

Absolute value equation: |z|=x4 + z_
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Summary

There is an approach to summing countable
collections of real numbers
(even allowing for repeats),

BUT sometimes we don’'t get a sum,
AND even when we do,

to get best results (rearrangment-invariant),
It's important either that
the positive terms have finite sum,
or that
the negative terms have finite sum.

(No ambiguity occurs if all terms are > 0.)
(No ambiguity occurs if all terms are < 0.)

Similar issues crop up in integration theory. ..
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1_7%__%_% r = g(t)
| i@

_|_%——%——%—%—|—-' o dr = ¢'(t) dt
5 =FUN?

THERE'S A PROBLEM:| o—1/2 _—1/6 \
No good change 2t, ift >0
of variables formula! g(t)= T
‘ . 7= ¢, 1Tt<0
im —
m _Kf(m)d:c =1In2 =
MAYBE?




1 1 1 * N xr = g(t)
1 2 "3 4 o0 g
1 1 1 1 1 S g f (33) dx
TETeT7T 8T T dr=g/(t) i

EF'N?

: B R Rt Rt
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THERE'S A PROBLEM:| —1/2 —1/6

No good change ot ift>0
of variables formulal g(t)= —
‘ ¢, 1Tt<0

0 /
[ U@l = n2 e
—00 DEF'N? |




r = g(t)
f(z)dx

dr = ¢'(t) dt

—F'N7?

THERE'S A PROBLEM:|

No good change
of variables formulal

i K MAYBE?
K—00 [f(g(t))][g (¢)] dt

K DEF'N?

2t, iTt>0
¢, 1Tt<0
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No good change
of variables formulal

W MAYBE?

lHMm

K—o0

, !
[f \ Y d :% |n 2 37
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What's important about f7?

o f=1

Can smooth out f. 1 :;f12f =1/3

. JBf=1/5
1/5 .
1/7 1/3 I ’_Q
\k::::::::::::::5:::::::::::::::m f o
-4 -3 -2 -1 g
D S S R T 2 '3 4
o : .............. 3 : _1/4

()= 2t, iTt>0
7 ¢, 1Tt<0
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Can smooth out f.

1/5
]_/7 1/3 i I _
\:::::::::::::::::: ................. \ f .
-4 -3 -2 -1 :
S I 2 3 4
\ S S
1

()= 2t, ittt >0
J ¢, 1Tt<0
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? A
Can smooth out f. 4

Can smooth out f. 1 ' 1

]2t itt>0
¢, 1Tt<0
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Can smooth out f.

1/5

1

|2

Can smooth out g.

g(t)={

2t,
t,

ft>0
ft<0
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Can smooth out f.

1/5

— \
2t, It >0

t)= -
9(t) {t, Tt<O0
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Can smooth out f.

Problem persists even
for integration on a
bounded interval,

like (—=1,1)

1/5

Problem persists:

I f oz d
Am | f(z) dx
.

K

im [ [7@(@)] [ ()] dt

K—ooJ—
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Problem persists even
for integration on a
bounded interval,

like (—=1,1) ...
That is: dsmooth F':(-1,1) - R
Jsmooth increasing ¢¢: (—-1,1/2) — (—1,1)
K K
s.t. lim F d lim F(G)G ()] dt
lim [ FGyde s lim [ [P(GE)IC 0]
How to do this:
Make O <ag <ap <az<-:--, with a, — 1.

Makefa’l =1, faQF—l/?) fa3F—1/5,

[ F=—1/2) 0 F=-1/4,[ 2 F=-1/6,. ..
Make G(x) = x, for x € (=1, —¢),

G(x) =2z, for x € (¢,1/2). ”

etc., etc., etc.




