# Financial Mathematics Some important indeterminate forms

$$rac{n(n-1)}{n^2} 
ightarrow 1$$
, as  $n 
ightarrow \infty$ 

$$rac{n(n-1)(n-2)}{n^3} 
ightarrow 1$$
, as  $n 
ightarrow \infty$ 

Problem: Invest \$1 in bank for one year. How many dollars at end?

Assume: Annual nominal interest rate is r, convertible n times per year.

Solution: Start with 1.

Multiply by 1 + (r/n) n times.

Answer: 
$$[1 + (r/n)]^n$$

Question: Continuous compounding?

$$\lim_{n\to\infty} \left[1 + (r/n)\right]^n = ??$$

$$\begin{bmatrix} a+b \end{bmatrix}^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!} + b^n \\
 = 1^n + n1^{n-1}b + \frac{n(n-1)}{2!} + 1^{n-2}b^2 + \cdots \\
 \begin{pmatrix} n \\ 1 \end{pmatrix} = n + n1^{n-1}b + \frac{n(n-1)}{2!} + \frac{n(n-1)}{2!}$$

$$\lim_{n \to \infty} [1 + (r/n)]^n = ??$$

$$[a+b]^{n} = a^{n} + n a^{n-1}b + \frac{n(n-1)}{2!} a^{n-2}b^{2} + \cdots$$

$$[1+b]^{n} = \underline{1}^{n} + n\underline{1}^{n-1}\underline{b} + \frac{n(n-1)}{2!}\underline{1}^{n-2}\underline{b}^{2} + \cdots$$

$$[1+b]^{n} = 1 + n + \frac{n(n-1)}{2!} + \frac{b^{2}}{2!} + \cdots$$

$$[1+(r/n)]^{n} = 1 + \varkappa + \frac{n(n-1)}{2!} \left[\frac{r}{n}\right]^{2} + \cdots$$

$$[1+b]^{n} = 1 + n + \frac{n(n-1)}{2!} \quad b^{2} + \cdots$$

$$\lim_{n\to\infty} [1+(r/n)]^n = ??$$

$$[1+(r/n)]^n = 1 + r + \frac{n(n-1)}{n^2} \left[\frac{r^2}{2!}\right] + \cdots$$

$$[1+(r/n)]^n = 1 + r + \frac{n(n-1)}{2!} \left[\frac{r^2}{n^2}\right]$$

$$[1+(r/n)]^n = 1 + r + \frac{r}{n} + \frac{n(n-1)}{2!} \left[\frac{r}{n}\right]^2 + \cdots$$

$$[\frac{r^2}{n^2}]$$

$$[\frac{r^2}{n^2}]$$

 $[1+(r/n)]^n = ??$ 

$$[1+(r/n)]^n \to e^r, \text{ as } n \to \infty$$

$$[1+(r/n)]^n = 1 + r + \frac{n(n-1)}{r^2} \left[\frac{r^2}{2!}\right] + \cdots$$

$$1+r+\frac{r^2}{2!}+\cdots=e^r = \exp(r)$$

$$r=$$
 the nominal interest rate  $e^r=$  the "risk-free factor" under continuous compounding

$$\lim_{n \to \infty} [1 + (r/n)]^n = ??$$

$$[1+(r/n)]^n \to e^r$$
, as  $n \to \infty$ 

$$r:\to 7$$

$$\left[1+\frac{7}{n}\right]^n \to e^7$$

Exercise: 
$$1 + \frac{7}{n} + \frac{1/n}{n} \stackrel{n}{\longrightarrow} e^7$$

Exercise: 
$$\left[1 + \frac{7}{n} + \frac{(5+n)/(n+1)^3}{n}\right]^n \to e^7$$

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

$$\frac{(\ln(1+h)) - (\ln(1))}{h} \to \ln'(1) = \frac{1}{1} = 1$$

$$\frac{\ln(1+h)}{h} \to 1 \qquad h : \to \frac{7}{n} + \frac{\delta_n}{n}$$

$$\frac{\ln(1+\frac{7}{n} + \frac{\delta_n}{n})}{\frac{7}{n} + \frac{\delta_n}{n}} \to 1$$

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

$$n \to \infty$$

Pf: 
$$n \to \infty$$
: 
$$\frac{\ln(1 + \frac{7}{n} + \frac{\delta_n}{n})}{\frac{7}{n} + \frac{\delta_n}{n}} \to 1$$

$$n \left[ \frac{7}{n} + \frac{\delta_n}{n} \right]$$

$$\frac{\ln(1+\frac{7}{n}+\frac{\delta_n}{n})}{\frac{7}{n}+\frac{\delta_n}{n}} \to 1$$

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

Pf: 
$$n \to \infty$$
:

$$\frac{\ln(1+\frac{7}{n}+\frac{\delta_n}{n})}{\frac{7}{n}+\frac{\delta_n}{n}}\to 1$$

$$n\left[\frac{7}{n} + \frac{\delta_n}{n}\right] = 7 + \delta_n \rightarrow 7$$

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

$$\rightarrow \infty$$

$$n\left[\frac{7}{n} + \frac{\delta_n}{n}\right]$$

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

Pf: 
$$n \to \infty$$
:

$$\begin{array}{c|c}
\hline
 & & & & \\
\hline
 & & & \\$$

$$n\left[\ln(1+\frac{7}{n}+\frac{\delta_n}{n})\right]\to 7$$

 $\ln\left(\left[1+\frac{7}{n}+\frac{\delta_n}{n}\right]^n\right)$ 

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

Pf: 
$$n \to \infty$$
:  $\ln \left( \left[ 1 + \frac{7}{n} + \frac{\delta_n}{n} \right]^n \right) \to 7$  EXPONENTIATE

$$\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$$

$$\ln\left(\left[1+\frac{7}{n}+\frac{\delta_n}{n}\right]^n\right)$$

Fact: 
$$\forall \delta_n \to 0$$
,  $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7$ 

Pf: 
$$n \to \infty$$
:  $\ln \left( \left[ 1 + \frac{7}{n} + \frac{\delta_n}{n} \right]^n \right) \to 7$ 

 $\left[1 + \frac{7}{n} + \frac{\delta_n}{n}\right]^n \to e^7 \quad \text{QED}$ 

Fact:  $\forall \delta_n \to 0$ ,  $\left[1 + \frac{7}{2} + \frac{\delta_n}{2}\right]^n \to e^7$ 

Fact: 
$$\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$$
  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

 $7: \rightarrow x$ 

$$\left[f\left(\frac{x}{\sqrt{n}}\right)\right]^n = \left[1 - \left(\frac{x}{\sqrt{n}}\right)^2\right]^n = \left[1 + \frac{-x^2}{n}\right]^n \to e^{-x^2}$$

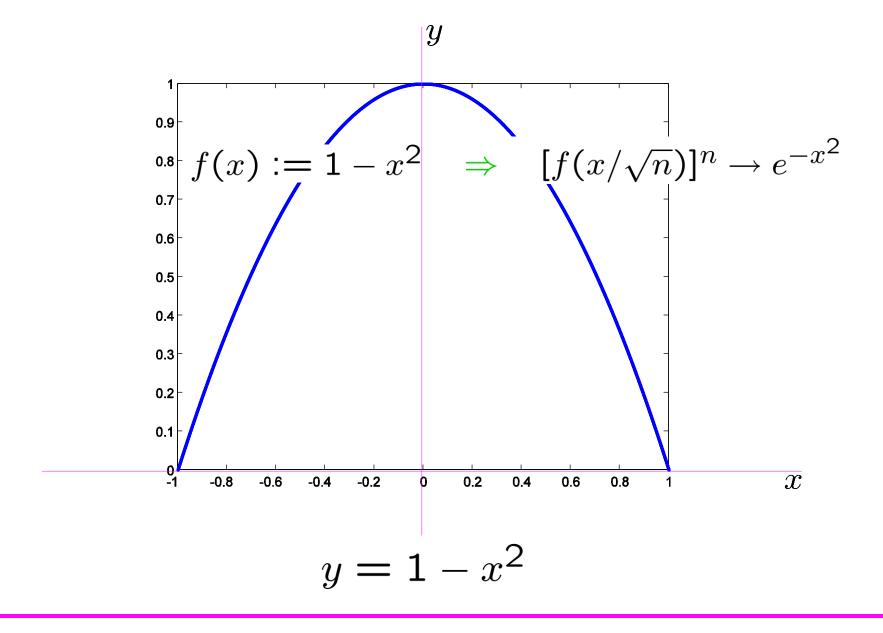
$$f(x) := 1 - x^2 \quad \Rightarrow \quad [f(x/\sqrt{n})]^n \to e^{-x^2}$$
a sequence that tends to 0 faster than  $1/n$ , i.e.,

Fact: 
$$\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$$
The exponential limit  $\left[1 + \frac{1}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

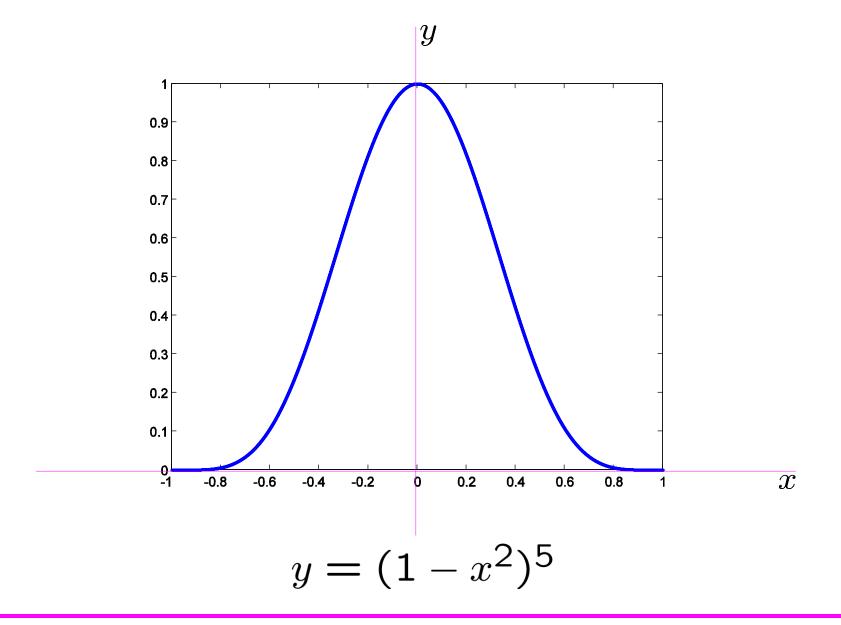
some sequence

that tends to 0

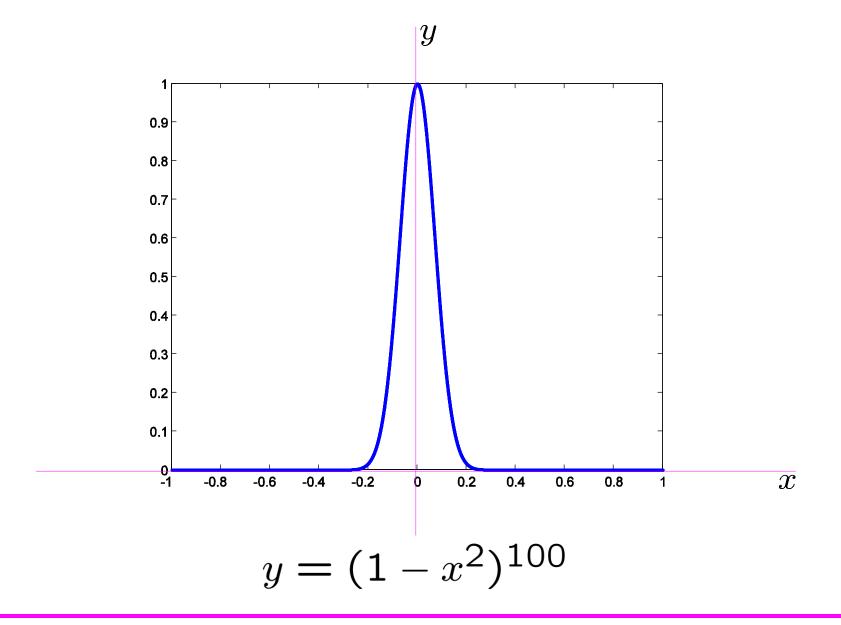
 $\left[1+\frac{x}{n}+o\left(\frac{1}{n}\right)\right]^n\to e^x$ 



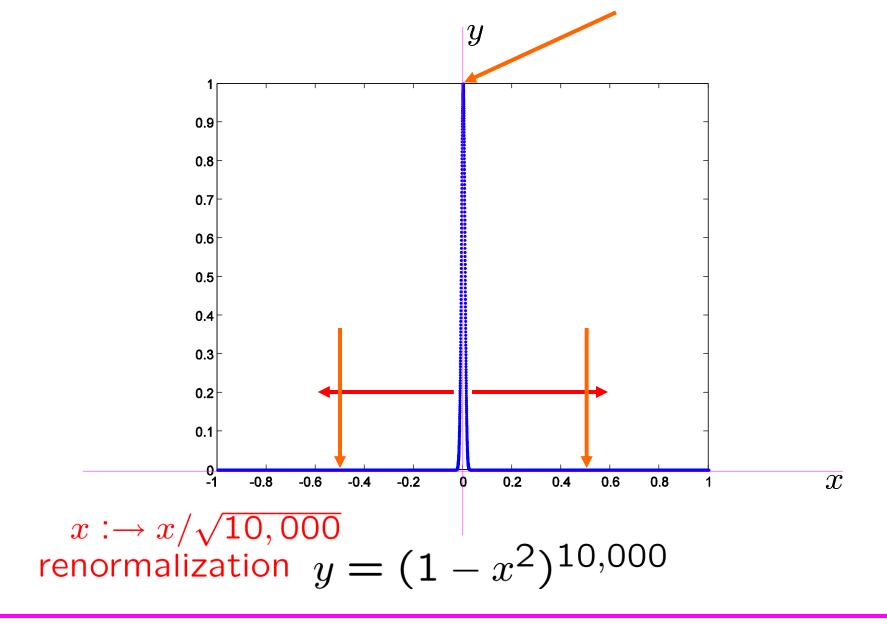
$$f(x) := 1 - x^2 \implies [f(x/\sqrt{n})]^n \to e^{-x^2}$$



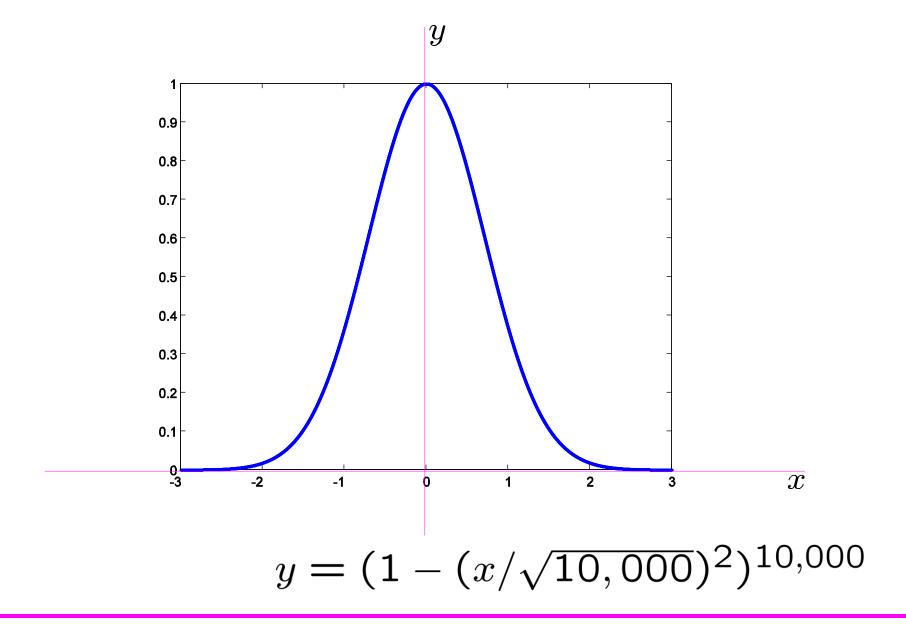
$$f(x) := 1 - x^2 \implies [f(x/\sqrt{n})]^n \to e^{-x^2}$$



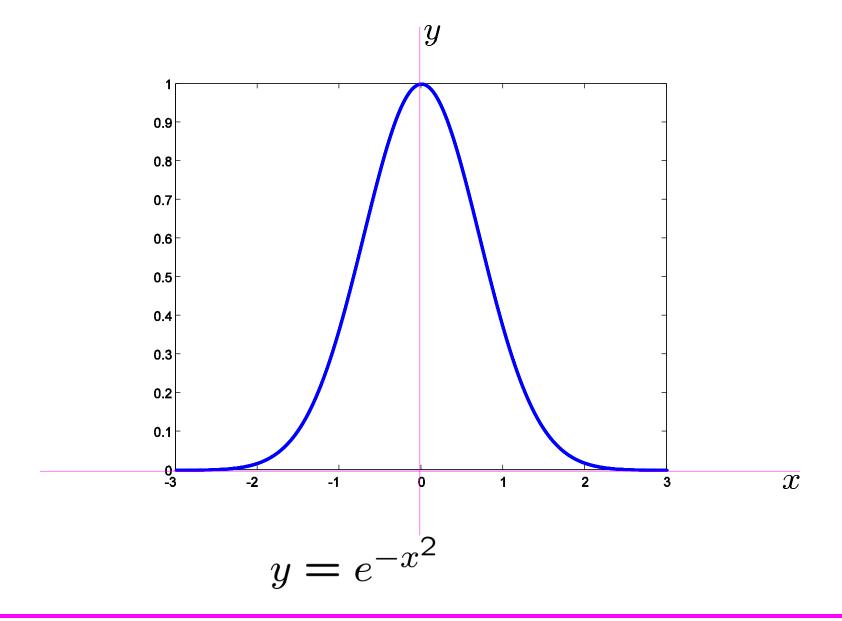
$$f(x) := 1 - x^2 \implies [f(x/\sqrt{n})]^n \to e^{-x^2}$$



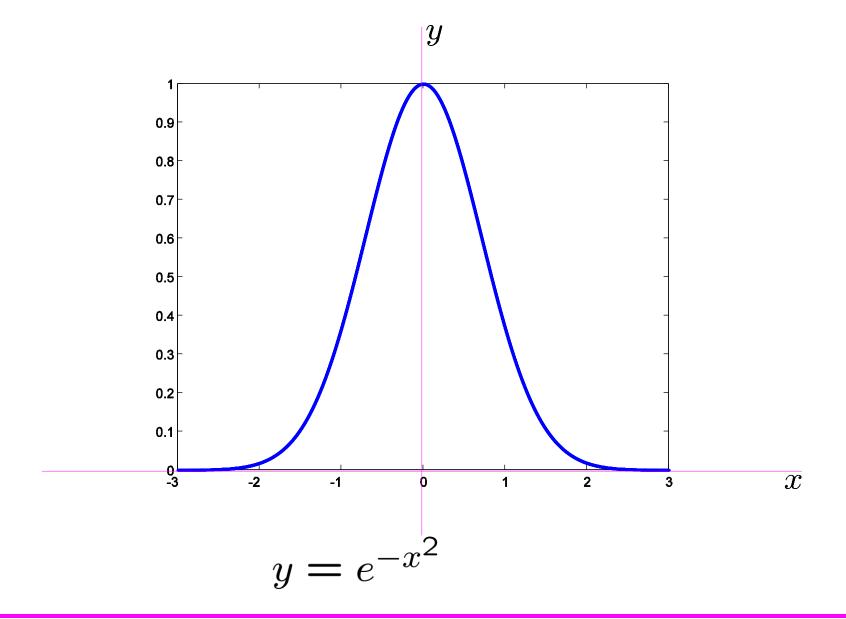
$$f(x) := 1 - x^2 \implies [f(x/\sqrt{n})]^n \to e^{-x^2}$$



$$f(x) := 1 - x^2 \implies [f(x/\sqrt{n})]^n \to e^{-x^2}$$



$$f(x) := 1 - x^2 \implies [f(\frac{3}{x}/\sqrt{n})]^n \to e^{-\frac{3}{x^2}}$$



$$f(x) := 1 - x^2 \Rightarrow [f(3/\sqrt{n})]^n \to e^{-3^2}$$

Let 
$$f(x)$$
 have 2nd order MacI. approx.  $1-7x^2$ . Then  $\lim_{n\to\infty} [f(3/\sqrt{n})]^n = e^{-7\cdot 3^2}$ .

Exercise: 
$$f(x) := 1 - 7x^2 + 8x^3 \Rightarrow [f(3/\sqrt{n})]^n \to e^{-7 \cdot 3^2}$$

Exercise: 
$$f(x) := 1 - 7x^2 \quad \Rightarrow \quad [f(3/\sqrt{n})]^n \rightarrow e^{-7\cdot 3^2}$$

$$f(x) := 1 - x^2 \Rightarrow [f(3/\sqrt{n})]^n \to e^{-3^2}$$

Let f(x) have 2nd order Macl. approx.  $1-7x^2$ . Then  $\lim_{n\to\infty} [f(3/\sqrt{n})]^n = e^{-7.3^2}$ .

To prove this, start by remembering two results...

$$n: \to 2, \ g: \to f$$
The Maclaurin error estimate

Th'm:Suppose that  $g^{(n)}$  is continuous at 0. p :=the nth order Maclaurin approx. of qThen  $\exists \varepsilon(x) \to 0$ , as  $x \to 0$ 

such that  $g(x) = [p(x)] + [\varepsilon(x)]x^n$ .

Fact: 
$$\forall x \in \mathbb{R}, \ \forall \delta_n \to 0,$$
  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

Fact: Suppose that f''' is continuous at 0. Let f(x) have 2nd order MacI. approx.  $1-7x^2$ .

Let 
$$f(x)$$
 have 2nd order MacI. approx.  $1-7x^2$   
Then  $\lim_{n\to\infty} [f(3/\sqrt{n})]^n = e^{-7\cdot 3^2}$ .

### The Maclaurin error estimate

Th'm:Suppose that f''' is continuous at 0. p :=the 2nd order Maclaurin approx. of fThen  $\exists \varepsilon(x) \to 0$ , as  $x \to 0$ 

Then 
$$\exists \varepsilon(x) \to 0$$
, as  $x \to 0$   
such that  $f(x) = [p(x)] + [\varepsilon(x)]x^2$ .

Fact: 
$$\forall x \in \mathbb{R}, \ \forall \delta_n \to 0,$$
  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

Fact: Suppose that f''' is continuous at 0. Let f(x) have 2nd order Macl. approx.  $1-7x^2$ .

Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7.3^2}$ .

Pf: 
$$p(x) := 1 - 7x^2$$
 
$$f(x) = [(p(x)] + [\varepsilon(x)]x^2$$
  $\varepsilon(x) \to 0$ , as  $x \to 0$ 

Th'm:Suppose that 
$$f'''$$
 is continuous at 0.  $p:=$  the 2nd order Maclaurin approx. of  $f$  Then  $\exists \varepsilon(x) \to 0$ , as  $x \to 0$ 

Fact: 
$$\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$$
  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$  27

such that  $f(x) = [p(x)] + [\varepsilon(x)]x^2$ .

Let f(x) have 2nd order MacI. approx.  $1-7x^2$ . Then  $\lim_{n\to\infty} [f(3/\sqrt{n})]^n = e^{-7\cdot 3^2}$ .

Pf: 
$$p(x) := 1 - 7x^2$$
  
 $f(x) = [(p(x)] + [\varepsilon(x)]x^2$   
 $= [1 - 7x^2] + [\varepsilon(x)]x^2$   
 $\varepsilon(x) \to 0$ , as  $x \to 0$ 

Th'm:Suppose that 
$$f'''$$
 is continuous at 0.  $p :=$ the 2nd order Maclaurin approx. of  $f$  Then  $\exists \varepsilon(x) \to 0$ , as  $x \to 0$ 

such that  $f(x) = [p(x)] + [\varepsilon(x)]x^2$ .

Fact: 
$$\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$$
  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

#### Fact: Suppose that f''' is continuous at 0. Let f(x) have 2nd order Macl. approx. $1-7x^2$ .

Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7.3^2}$ .

Pf: 
$$p(x) := 1 - 7x^2$$
  
 $f(x)$   $\varepsilon(x) \to 0$ , as  $x \to 0$   
 $= [1 - 7x_f^{21}] = [1 - 7x^2] + [\varepsilon(x)]x^2$ 

$$f\left(\frac{3}{\sqrt{n}}\right) = \left[1 - \frac{7 \cdot 3^2}{n}\right] + \left[\varepsilon\left(\frac{3}{\sqrt{n}}\right)\right] \left[\frac{3^2}{n}\right]$$
Th'm:Suppose that  $f'''$  is continuous at 0.

p :=the 2nd order Maclaurin approx. of fThen  $\exists \varepsilon(x) \to 0$ , as  $x \to 0$ 

such that 
$$f(x)=[p(x)]+[arepsilon(x)]x^2$$
.

Fact:  $\forall x\in\mathbb{R}, \ \forall \delta_n\to 0,$   $\left[1+\frac{x}{n}+\frac{\delta_n}{n}\right]^n\to e^x$  [29]

Let f(x) have 2nd order Macl. approx.  $1-7x^2$ . Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7.3^2}$ .

Pf: 
$$p(x):=1-7x^2$$
 
$$\varepsilon(x)\to 0, \text{ as } x\to 0$$
 
$$f(x)=[1-7x^2]+[\varepsilon(x)]x^2$$
 
$$\varepsilon(x)\to 0, \text{ as } x\to 0$$

$$f\left(\frac{3}{\sqrt{n}}\right) = \left[1 - \frac{7 \cdot 3^2}{n}\right] + \left[\varepsilon\left(\frac{3}{\sqrt{n}}\right)\right] \left[\frac{3^2}{n}\right]$$

$$= 1 - \frac{7 \cdot 3^2}{n} + \frac{\delta_n}{n}$$

$$\delta_n := \left[ \varepsilon \left( \frac{3}{\sqrt{n}} \right) \right] [3^2] \xrightarrow{} 0, \text{ as } n \to \infty$$
Fact:  $\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$ 
The exponential limit  $\left[ 1 + \frac{x}{n} + \frac{\delta_n}{n} \right]^n \to e^x$ 

Let f(x) have 2nd order Macl. approx.  $1-7x^2$ . Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7.3^2}$ .

Pf: 
$$p(x):=1-7x^2$$
 
$$\varepsilon(x)\to 0, \text{ as } x\to 0$$
 
$$f(x)=[1-7x^2]+[\varepsilon(x)]x^2$$

$$f\left(\frac{3}{\sqrt{n}}\right) \neq 1 - \frac{7 \cdot 3^2}{n} + \frac{\delta_n}{n}$$
$$\left[f\left(\frac{3}{\sqrt{n}}\right)\right]^n = \left[1 - \frac{7 \cdot 3^2}{n} + \frac{\delta_n}{n}\right]^n$$

$$\left[ \left( \sqrt{n} \right) \right] \left[ \left( \frac{1}{\sqrt{n}} \right) \right] \left[ 3^2 \right] \to 0, \text{ as } n \to \infty$$

Fact: 
$$\forall x \in \mathbb{R}, \ \forall \delta_n \to 0,$$
 The exponential limit  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

Let f(x) have 2nd order MacI. approx.  $1-7x^2$ . Then  $\lim_{n\to\infty} [f(3/\sqrt{n})]^n = e^{-7\cdot 3^2}$ .

Pf: 
$$p(x):=1-7x^2$$
 
$$\varepsilon(x)\to 0, \text{ as } x\to 0$$
 
$$f(x)=[1-7x^2]+[\varepsilon(x)]x^2$$
 
$$f\left(\frac{3}{\sqrt{n}}\right)=1-\frac{7\cdot 3^2}{n}+\frac{\delta_n}{n}$$

$$\left[f\left(\frac{3}{\sqrt{n}}\right)\right]^n = \left[1 - \frac{7 \cdot 3^2}{n} + \frac{\delta_n}{n}\right]^n \to e^{-7 \cdot 3^2} \quad \text{QED}$$

$$\delta := \left[c\left(\frac{3}{n}\right)\right] \left[3^2\right] \quad \text{QED}$$

$$\delta_n := \left[ \varepsilon \left( \frac{3}{\sqrt{n}} \right) \right] [3^2] o 0$$
, as  $n o \infty$ 

Fact: 
$$\forall x \in \mathbb{R}, \ \forall \delta_n \to 0,$$
  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$  32

Let f(x) have 2nd order Macl. approx.  $1-7x^2$ .

Fact: Suppose that f''' is continuous at 0.

Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7 \cdot 3^2}$ .

Notationally compact proof:

$$f(x) = 1 - 7x^2 + o(x^2)$$
, as  $x \to 0$  
$$f(3/\sqrt{n}) = 1 - (7 \cdot 3^2/n) + o(3^2/n)$$
, as  $n \to \infty$ 

o(1/n)

$$o(1/n)$$
 
$$[f(3/\sqrt{n})]^n = [1 - (7 \cdot 3^2/n) + o(1/n)]^n$$
 as  $n \to \infty$ 

Fact: 
$$\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$$
 The exponential limit  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

Fact: Suppose that f''' is continuous at 0. Let f(x) have 2nd order Macl. approx.  $1-7x^2$ .

Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7 \cdot 3^2}$ . 3:  $\longrightarrow x$ 

Notationally compact proof: 
$$f(x) = 1 - 7x^2 + o(x^2), \text{ as } x \to 0$$

$$f(3/\sqrt{n}) = 1 - (7 \cdot 3^2/n) + o(3^2/n)$$
, as  $n \to \infty$ 

$$o(1/n)$$
 
$$[f(3/\sqrt{n})]^n = [1 - (7 \cdot 3^2/n) + o(1/n)]^n \to e^{-7 \cdot 3^2},$$

$$[f(3/\sqrt{n})]^n = [1 - (7 \cdot 3^2/n) + o(1/n)]^n \to e^{-7.3}$$
 , as  $n \to \infty$ 

Fact: 
$$\forall x \in \mathbb{R}, \quad \forall \delta_n \to 0,$$
 The exponential limit  $\left[1 + \frac{x}{n} + \frac{\delta_n}{n}\right]^n \to e^x$ 

Fact: Suppose that f''' is continuous at 0. Let f(x) have 2nd order MacI. approx.  $1-7x^2$ .

Then  $\lim_{n \to \infty} [f(3/\sqrt{n})]^n = e^{-7.3^2}$ . 3:  $\longrightarrow x$ Fact: Suppose that f''' is continuous at 0.

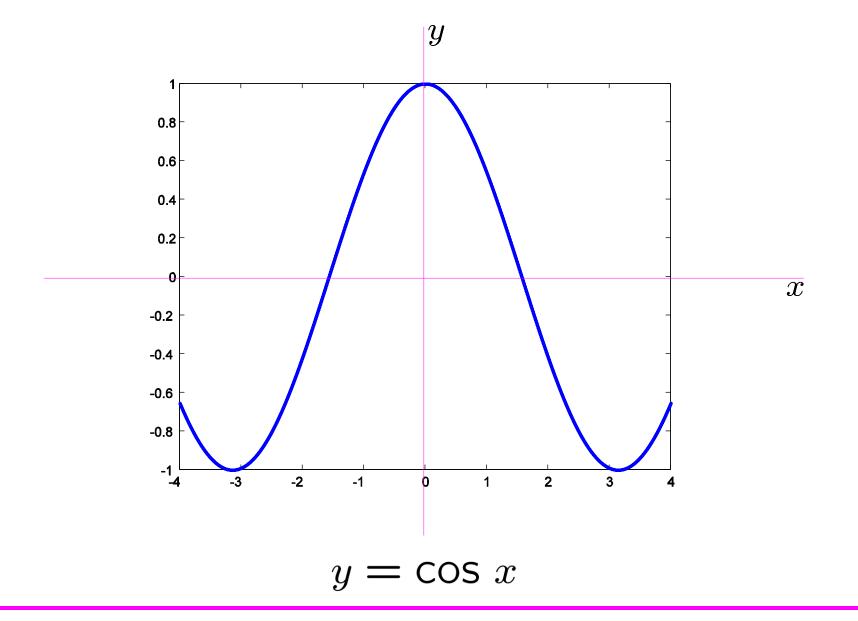
Let f(x) have 2nd order Macl. approx.  $1-7x^2$ .

Then  $\lim_{n\to\infty} [f(x/\sqrt{n})]^n = e^{-7x^2}$ . 7: $\longrightarrow a$ 

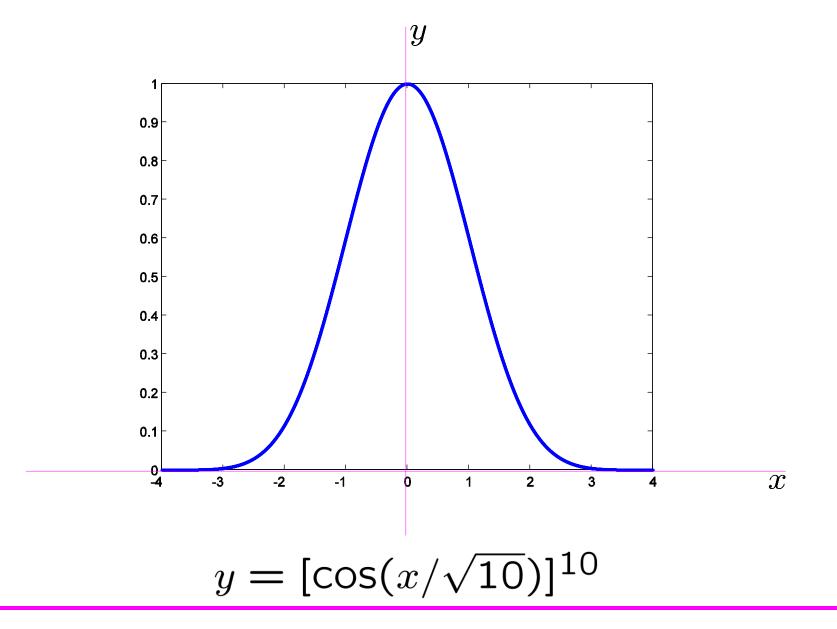
Fact: Suppose that f''' is continuous at 0. Let  $a \in \mathbb{R}$ . Let f(x) have 2nd order MacI. approx.  $1-ax^2$ . Then  $\lim_{n\to\infty} [f(x/\sqrt{n})]^n = e^{-ax^2}$ .

e.g.:  $f(x) = \cos x = 1 - \frac{x^2}{2!} + \cdots$   $a = \frac{1}{2!} = \frac{1}{2}$ 2nd order Macl. approx.

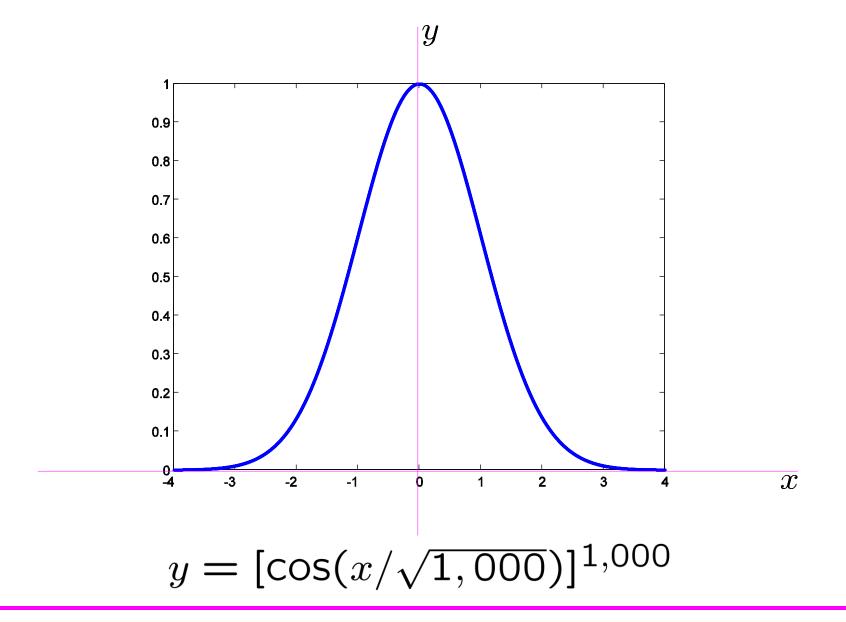
 $\lim_{n\to\infty} \left[\cos(x/\sqrt{n})\right]^n = e^{-x^2/2}$ 35



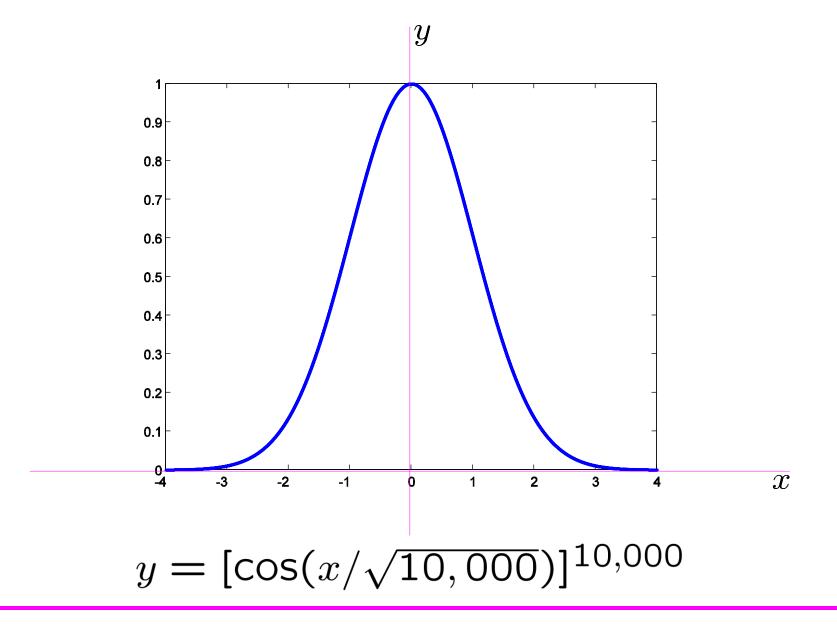
$$\lim_{n\to\infty} \left[\cos(x/\sqrt{n})\right]^n = e^{-x^2/2}$$



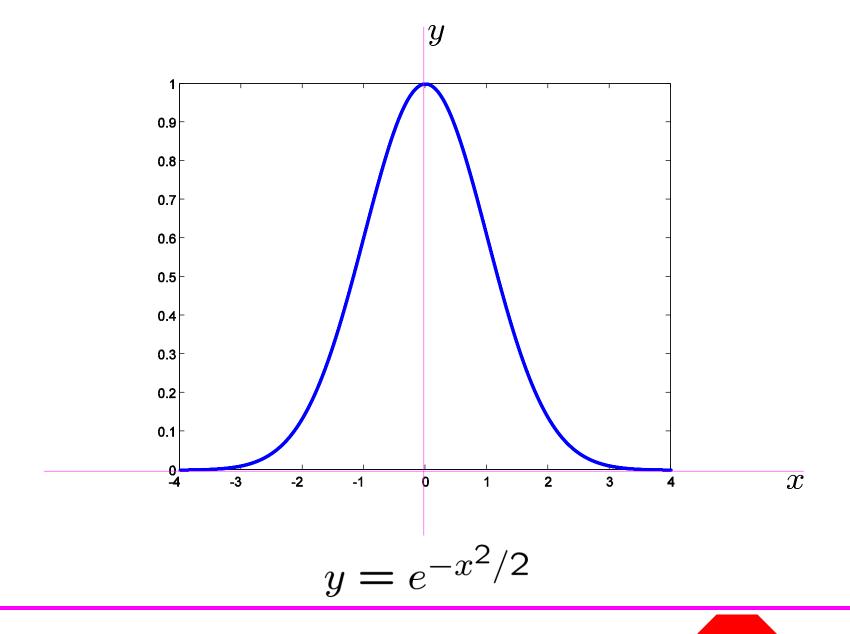
$$\lim_{n\to\infty} \left[\cos(x/\sqrt{n})\right]^n = e^{-x^2/2}$$



$$\lim_{n\to\infty} \left[\cos(x/\sqrt{n})\right]^n = e^{-x^2/2}$$



$$\lim_{n\to\infty} \left[\cos(x/\sqrt{n})\right]^n = e^{-x^2/2}$$



$$\lim_{n\to\infty} [\cos(x/\sqrt{n})]^n = e^{-x^2/2}$$



40

**STOP**