Financial Mathematics
Some important indeterminate forms
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Problem: Invest $1 in bank for one year.
How many dollars at end?

Assume: Annual nominal interest rate is r,
convertible [n times per year|

Solution: Start with 1.

Multiply by 1 + (r/n)
n times.

Answer: [1 4 (r/n)]™

Question: Continuous compounding?
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the “risk-free factor”
under continuous compounding
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Fact: Suppose that 7' is continuous at O.
Let f(x) have 2nd order Macl. approx. 1 — 7z2.

Then lim [f(3/v/n)]" = e 737,
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Fact: Suppose that 7' is continuous at O.

Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/v/n)]" = e~ 737,

To prove this, start by remembering two results. ..
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T he Maclaurin error estimate

Th'm:Suppose that g(”) iIs continuous at O.

p .= the nth order Maclaurin approx. of g
Then de(x) — 0, as ¢ — 0

such that g(z) = [p(z)] + [e(z)]z™.
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/v/n)]" = e~ 737,
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T he Maclaurin error estimate

Th'm:Suppose that f” is continuous at O.
p .= the 2nd order Maclaurin approx. of f

Then Jde(x) — 0, as x — O
such that f(z) = [p(x)] + [e(z)]z°.
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/v/n)]" = e~ 3%

PR p@)i=1-7227
f(z) = [(p(@)] + [e(2)]a? e(x) >~ 0,asz—0

Th'm:Suppose that " ig“continuous at O.
p .= the 2nd order Maclaurin approx. of f

Then Jde(x) 20, as x — 0O
such that f(z) = [p(z)] + [e(z)]z°.
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/vm)]" = e 73",

Pf: p(z) =1 — 7z?

f(z) = [(p(2)] + [e(z)]=? e(x) —0,asz— 0
= [1 — 722] + [e(x)]z?

Th'm:Suppose that f” is continuous at O.
p .= the 2nd order Maclaurin approx. of f

Then Jde(x) — 0, as x — O
such that f(z) = [p(z)] + [e(z)]z?.
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/v/n)]" = e~ 737,
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Th'm:Suppose that f” is continuous at O.
p .= the 2nd order Maclaurin approx. of f

Then Jde(x) — 0, as x — O
such that f(z) = [p(x)] + [e(z)]z°.
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/vm)]" = e 73",
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f(z) =[1 - 722 + [e(x)]z?
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/vVR)f = e 7%,
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/v)]" = e %",
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f(3/vm)]" = e 73",

Notationally compact proof:
f(z) =1—=722+ o(z?), as = — O
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Fact: Suppose that 7' is continuous at O.
Let f(z) have 2nd order Macl. approx. 1 —7z2.

Then lim [f3/V)"=e T3, 31—

Notationally compact proof:
f(z) =/1 — 722 + o(2?), as z

f@/Vp)=1=(7-3%/n) +0(3%/n), as n — oo
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[F(3/v/m)]" = [1 = (7-32/n) + o(1/n)]" — e~ 73",
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Fact: Suppose that 7' is continuous at O.
Let f(x) have 2nd order Macl. approx. 1 — 7z2.

Then lim [f(3/v/n)]" =e 73, 3 — x

n—aoo

Fact: Suppose that 7' is continuous at O.

Let f(x) have 2nd order Macl. approx. 1 — 7z2.
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Then lim [f(z/vn)]"=e" . 7 :— q
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Let f(z) have 2nd order Macl. approx. 1 —az?.

2 T he renormalized
Then Iim [f(:c/\/_)]nze T power limit
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