Financial Mathematics

Basics of vector spaces

LINEAR ALGEBRA

The Dot Product

If $v := (a_1, \ldots, a_n)$ and $w := (b_1, \ldots, b_n)$ are ntuples then the dot product of v and w, written $v \cdot w$, is defined by: $v \cdot w := a_1b_1 + \cdots + a_nb_n$.

E.g.:
$$(2,3,4) \cdot (5,6,7) = 2 \cdot 5 + 3 \cdot 6 + 4 \cdot 7$$

= $10 + 18 + 28 = 56$

Note: ntuples are often called vectors.

SKILL: Vector dot product

$$(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) := a_1b_1 + \dots + a_nb_n.$$

Game: I pick and tell you an integer n > 0.

I pick a secret vector $u \in \mathbb{R}^n$.

Your goal is to find u.

You pick and tell me finite sequence $v_1, \ldots, v_p \in \mathbb{R}^n$

and I tell you $u \cdot v_1, \ldots, u \cdot v_p$.

How can you figure out u?

I'm thinking of a secret vector
$$u = (a, b, c, d) \in \mathbb{R}^4$$
.

Then
$$u \cdot (w, x, y, z)$$
 is equal to $aw + bx + cy + dz$

Then $u \cdot (1,0,0,0) = a$, so you can find the first entry of u. The other three entries can be found by asking for $u \cdot (0,1,0,0)$, $u \cdot (0,0,1,0)$, $u \cdot (0,0,0,1)$.

The linear operations are vector addition and scalar multiplication.

SKILLS:

Vector addition is done entry-by-entry:

$$(1,2,3) + (4,5,6) = (1+4,2+5,3+6)$$

= $(5,7,9)$

Scalar multiplication is done as follows:

$$2 \cdot (6, 8, 7) = (2 \cdot 6, 2 \cdot 8, 2 \cdot 7)$$

= $(12, 16, 14)$

A vector v is a

linear combination of vectors w_1, \ldots, w_k if it can be obtained from them by linear operations,

i.e., if there are scalars c_1, \cdots, c_k such that

$$v = c_1 w_1 + \cdots + c_k w_k$$

$$coefficients$$

"v is a linear combination of w_1, \ldots, w_k with coefficients c_1, \ldots, c_k ."

SKILL: Linear combinations

Def'n: A non \emptyset subset $S \subseteq \mathbb{R}^n$ is a subspace (a.k.a. vector subspace, linear subspace) if it's closed under the linear operations, *i.e.*, if both of the following hold: • for all $v, w \in S$, we have: $v + w \in S$, • for all $c \in \mathbb{R}$, for all $v \in S$, we have: $cv \in S$, *i.e.*, if any linear combination of elements of Sis again an element of S, *i.e.*, if, for all integers k > 0, for all scalars c_1, \ldots, c_k , for all $v_1, \ldots, v_k \in S$, we have: $c_1v_1 + \cdots + c_kv_k \in S$.

e.g.: Any line through the origin in \mathbb{R}^2 Any line through the origin in \mathbb{R}^3 Any plane through the origin in \mathbb{R}^3

Question:

Subspaces (except {0}) are infinite, so how can I discuss one with you? I can't list all the elements.

So how do I communicate to you a particular subspace of interest to me?

Definition: Let $A \subseteq \mathbb{R}^n$.

The span (a.k.a. linear span) of A denoted $\langle A \rangle$, is the set of all

linear combinations of elements of A i.e., $\langle A \rangle := \{c_1v_1 + \cdots + c_kv_k \, | \, c_1, \ldots, c_k \in \mathbb{R}, \ v_1, \ldots, v_k \in A\},$

i.e., $\langle A \rangle$ is what one obtains after

"'closing A under linear operations",

Definition: Let $A \subseteq \mathbb{R}^n$.

The span (a.k.a. linear span) of A denoted $\langle A \rangle$, is the set of all

linear combinations of elements of A i.e., $\langle A \rangle := \{c_1v_1 + \cdots + c_kv_k \mid c_1, \ldots, c_k \in \mathbb{R}, \}$

Definition: Let $A \subseteq \mathbb{R}^n$. $v_1, \ldots, v_k \in A\}$, iThe span (a.k.a. linear span) of A "clodenoted $\langle A \rangle$," linear operations", i.e., $\langle A \rangle$ the smallest of all the subspaces of \mathbb{R}^n containing A. A i.e., $\langle A \rangle := \{c_1v_1 + \cdots + c_kv_k \mid c_1, \ldots, c_k \in \mathbb{R}, \ldots, c_k \in \mathbb{R}, \ldots \}$

i.e., $\langle A \rangle$ the smallest of all the smallest of all the smallest of \mathbb{R}^n containing A. i.e., $\langle A \rangle := \{c_1v_1 + \cdots + c_kv_k \, | \, c_1, \ldots, c_k \in \mathbb{R}, v_1, \ldots, v_k \in A\},$ i.e., $\langle A \rangle$ is what one obtains after "closing A under linear operations", $v_1, \ldots, v_k \in A$ "

Definition: Let $A \subseteq \mathbb{R}^n$.

The span (a.k.a. linear span) of Adenoted $\langle A \rangle$, is the set of all

linear combinations of elements of Ai.e., $|\langle A \rangle| := \{c_1v_1 + \cdots + c_kv_k \mid c_1, \dots, c_k \in \mathbb{R},$ $v_1,\ldots,v_k\in A$.

i.e., $|\langle A \rangle|$ is what one obtains after "closing A under linear operations", i.e., $\langle A \rangle$ the smallest of all the

Notation: Say A is finite: $A = \{v_1, \dots, v_k\}$.

subspaces of \mathbb{R}^n containing A.

Then $\langle A \rangle = \langle \{v_1, \dots, v_k\} \rangle$ is usually written $\langle v_1,\ldots,v_k \rangle$, dropping the braces.

Example (of a subspace):

The subspace of \mathbb{R}^4 spanned by (1,3,4,2), (2,1,2,-1), (4,7,10,3)

Question:

Subspaces (except {0}) are infinite, so how can I discuss one with you? I can't list all the elements.

So how do I communicate to you a particular subspace of interest to me?

Answer:

I can give you a (finite) spanning set.

Notation: Say A is finite: $A = \{v_1, \dots, v_k\}$.

Then $\langle A \rangle = \langle \{v_1, \dots, v_k\} \rangle$ is usually written $\langle v_1, \dots, v_k \rangle$, dropping the braces. 12

Example (of a subspace):

The subspace of \mathbb{R}^4 spanned by (1,3,4,2), (2,1,2,-1), (4,7,10,3) *i.e.*: $\langle (1,3,4,2), (2,1,2,-1), (4,7,10,3) \rangle$

e.g.:

$$2 \cdot (1,3,4,2) + (2,1,2,-1) = (4,7,10,3),$$

so (4,7,10,3) is a l.c. of (1,3,4,2) and (2,1,2,-1). $e.g:(1,3,4,2), \quad (2,1,2,-1), \quad (4,7,10,3) \\ 2 \cdot (1,3,4,2) + (2,1_{||}2,-1) = (4,7,10,3),$

(1,3,4,2) + (2,1||2,-1) - (4,7,10,3),so (4.7.10.3) is a l.c. of (1,3,4,2), (2,1,2,-1), (2,1,2,-1),

Note:

Suppose v_k is a l.c. of v_1, \ldots, v_{k-1} .

linear combination

Then $\langle v_1, \dots, v_k \rangle = \langle v_1, \dots, v_{k-1} \rangle$, so v_k was redundant.

Definition:

(I.d.) We say v_1, \ldots, v_k are linearly dependent if $\exists j \text{ s.t. } v_j \in \langle v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_k \rangle$.

$$\langle (1,3,4,2), (2,1,2,-1), (4,7,10,3) \rangle$$
 $||$
 $\langle (1,3,4,2), (2,1,2,-1) \rangle$

Note:

linear combination

Suppose v_k is a l.c. of v_1, \ldots, v_{k-1} .

Then $\langle v_1,\ldots,v_k\rangle=\langle v_1,\ldots,v_{k-1}\rangle$, so v_k was redundant.

Definition:

We say v_1, \dots, v_k are linearly dependent

if $\exists j \text{ s.t. } v_j \in \langle v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_k \rangle$.

Definition:

We say v_1, \ldots, v_k are linearly independent

if they are *not* I.d.

linearly dependent

Fact: Let F be a finite subset of \mathbb{R}^n . Suppose F is I.i. Say $v \in \mathbb{R}^n \backslash \langle F \rangle$, i.e., $v \in \mathbb{R}^n$ and $v \notin \langle F \rangle$. Then $F \cup \{v\}$ is I.i. Proof:

Let f_1, \ldots, f_k be the distinct elements of F. $v \notin \langle F \rangle$, so v is not a l.c. of f_1, \ldots, f_k . Say some vector in $F \cup \{v\}$ is a l.c. of the rest. MULTIP Want: Contradiction.

Say, e.g., f_1 is a l.c. of f_2, \ldots, f_k, v . Say, e.g., $f_1 = a_1v + a_2f_2 + \cdots + a_kf_k$. f_1, \ldots, f_k are I.i., so $a_1 \neq 0$. $(1/a_1)f_1 = v + (a_2/a_1)f_2 + \cdots + (a_k/a_1)f_k$ $(1/a_1)f_1 - (a_2/a_1)f_2 - \cdots - (a_k/a_1)f_k = v$

 $v \in \langle F \rangle$. Contradiction. QED

Fact: The vectors v_1, \ldots, v_k are I.i. iff the only l.c. of v_1, \ldots, v_k that is = 0is the one with all coefficients = 0. the "trivial" I.c.

Proof of "only if"
$$(\Rightarrow)$$
:
Say v_1, \dots, v_k are I.i. and $c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$.

Say, e.g., $c_1 \neq 0$. Want: Contradiction.

Divide the following by c_1 : $c_1 v_1 = - c_2 v_2 - \cdots - c_k v_k$ $v_1 = -(c_2/c_1)v_2 - \cdots -(c_k/c_1)v_k$ Then v_1 is a l.c. of v_2, \ldots, v_k .

18

Fact: The vectors v_1, \ldots, v_k are I.i. iff the only I.c. of v_1, \ldots, v_k that is = 0 is the one with all coefficients = 0. the "trivial" I.c.

Proof of "if" (\Leftarrow):

Say the only l.c. of v_1, \ldots, v_k that is = 0 is the one with all coefficients = 0.

Want: v_1, \ldots, v_k are I.i.

Say, e.g., v_1 is a l.c. of v_2, \ldots, v_k .

Want: Contradiction.

$$v_1 = c_2 v_2 + \cdots + c_k v_k$$

 $v_1 - c_2 v_2 - \cdots - c_k v_k = 0$

Contradiction. QED

Let S be a subspace of \mathbb{R}^n .

A spanning set for S is a subset $A \subseteq S$ such that $\langle A \rangle = S$.

A basis of S is a I.i. spanning set for S.

linearly independent

$$S := \langle (1,3,4,2), (2,1,2,-1), (4,7,10,3) \rangle$$

$$\langle (1,3,4,2), (2,1,2,-1) \rangle$$

Is $\{(1,3,4,2), (2,1,2,-1)\}$ a basis of S?

Let S be a subspace of \mathbb{R}^n .

A spanning set for S is a subset $A \subseteq S$ such that $\langle A \rangle = S$.

A basis of S is a Li. spanning set for S.

linearly independent

e.g.: The **standard basis of** \mathbb{R}^n is

$$(1,0,\ldots,0), \quad (0,1,0,\ldots,0), \quad \ldots, \\ (0,\ldots,0,1,0), \quad (0,\ldots,0,1).$$

Questions: Why a spanning set? Why linearly independent?

