Financial Mathematics

Basics of linear transformations

Linear Relationships

Suppose we are measuring six quantities u, v, w, x, y, z.

We say that

y and z depend linearly on u, v, w and x if there are constants

a, b, c, d, e, f, g, h

such that, whenever we do a measurement, we find that

$$y = au + bv + cw + dx$$
$$z = eu + fv + gw + hx.$$

$$y = (a, b, c, d) \cdot (u, v, w, x)$$
$$z = (e, f, g, h) \cdot (u, v, w, x)$$

An exact linear relationship:

$$y = au + bv + cw + dx$$
$$z = eu + fv + gw + hx.$$

$$y = au + bv + cw + dx$$
$$z = eu + fv + gw + hx.$$

An exact linear relationship:

$$y = au + bv + cw + dx$$
$$z = eu + fv + gw + hx.$$

There are sometimes

exact linear relationships, and sometimes, we recognize relationships that are "almost linear", with

$$y \approx au + bv + cw + dx$$

 $z \approx eu + fv + gw + hx$

and the goal is to find a, b, c, d, e, f, g, h

that make the approximation as close as possible.

In this lecture, we'll study exact linear relationships.

y = 2u + 5v + 3w - 9x z = 7u - 6v + 4w - 5x

E.g.,

$$L_0: \mathbb{R}^4 o \mathbb{R}^2$$
is defined by $L_0(u,v,w,x) = (2u+5v+3w-9x, 7u-6v+4w-5x)$

E.g.,
$$y = 2u + 5v + 3w - 9x$$

 $z = 7u - 6v + 4w - 5x$

$$L_0: \mathbb{R}^4 o \mathbb{R}^2$$
is defined by
$$L_0(u,v,w,x) = (2u+5v+3w-9x, 7u-6v+4w-5x)$$

Definition: A matrix is a two-dimensional rectangular array of numbers.

$$L_0: \mathbb{R}^4 o \mathbb{R}^2$$
is defined by
$$L_0(u,v,w,x) = (2u+5v+3w-9x, 7u-6v+4w-5x)$$

E.g.,
$$y = 2u + 5v + 3w - 9x$$

 $z = 7u - 6v + 4w - 5x$

$$L_0: \mathbb{R}^4 \to \mathbb{R}^2$$
 is defined by
$$L_0(u,v,w,x) = (2u+5v+3w-9x, 7u-6v+4w-5x)$$

Definition: A matrix is a two-dimensional rectangular array of numbers.

E.g.,
$$M_0 := \begin{bmatrix} 2 & 5 & 3 & -9 \\ 7 & -6 & 4 & -5 \end{bmatrix}$$
 Dimensions of M_0 : 2×4

Key point: To any $k \times n$ matrix M, there is a function $L_M:\mathbb{R}^n \to \mathbb{R}^k$.

$$L_{\mathsf{O}}$$

y = 2u + 5v + 3w - 9xE.g., z = 7u - 6v + 4w - 5x $L_0: \mathbb{R}^4 \to \mathbb{R}^2$ is defined by

$$L_{0}(u, v, w, x) = (2u + 5v + 3w - 9x, 7u - 6v + 4w - 5x)$$

$$= ((2, 5, 3, -9) \cdot (u, v, w, x), (7, -6, 4, -5) \cdot (u, v, w, x))$$

$$\begin{bmatrix} 2 & 5 & 3 & -9 \end{bmatrix} \quad \text{Dimensions of } M_{0};$$

 $E.g., M_0 := \begin{bmatrix} 2 & 5 & 3 & -9 \\ 7 & -6 & 4 & -5 \end{bmatrix}$ of M_0 : 2×4 Key point: To any $k \times n$ matrix M,

there is a function $L_M: \mathbb{R}^n \to \mathbb{R}^k$. $E.g., L_{M_0} =$

$$M_0 := \begin{bmatrix} 2 & 5 & 3 & -9 \\ 7 & -6 & 4 & -5 \end{bmatrix}$$

$$L_{M_0}(u,v,w,x) = ((2,5,3,-9) \cdot (u,v,w,x),$$

$$L_{M_0}(u,v,w,x) = ((2,5,3,-9) \cdot (u,v,w,x))$$

$$= ((2,5,3,-9) \cdot (u,v,w,x),$$

$$\text{To get the } i\text{th entry in } L_{M_0}(u,v,w,x),$$

$$\text{dot the } i\text{th row of } M_0 \quad \text{with} \quad (u,v,w,x),$$

$$M_0 := \begin{vmatrix} 2 & 5 & 3 & -9 \\ 7 & -6 & 4 & -5 \end{vmatrix}$$

$$M_0 := \begin{bmatrix} 2 & 5 & 3 & -9 \\ 7 & -6 & 4 & -5 \end{bmatrix}$$

$$L_{M_0}(u, v, w, x) = ((2, 5, 3, -9) \cdot (u, v, w, x),$$

(7, -6, 4, -5) \cdot (u, v, w, x))

To get the ith entry in $L_{M_0}(u,v,w,x)$, dot the ith row of M_0 with (u,v,w,x)

$$M \in \mathbb{R}^{k \times n}$$
, $p \in \mathbb{R}^n$

To get the ith entry in $L_M(p)$, dot the ith row of M with p

SKILL: Compute $L_M(p)$.

Definition: Let V be a subspace of \mathbb{R}^n . Let W be a subspace of \mathbb{R}^k .

A function $F: V \rightarrow W$ is linear if it respects the linear operations, *i.e.*, both of the following hold:

- for all $v, v' \in V$, F(v + v') = F(v) + F(v'),
- for all scalars c, for all $v \in V$, F(cv) = c[F(v)],

 $c_1[F(v_1)] + \cdots + c_k[F(v_k)].$

i.e., F respects linear combinations, i.e., for all integers k > 0, for all scalars c_1, \ldots, c_k , for all vectors $v_1, \ldots, v_k \in V$, $F(c_1v_1 + \cdots + c_kv_k) =$

E.g.: I'm thinking of a secret 3×4 matrix

$$M = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix}$$

Definition: L_M is called the linear function corresponding to M.

Game: I pick and tell you integers k, n > 0.

I pick a secret matrix $M \in \mathbb{R}^{k \times n}$.

Your goal is to find M.

You pick and tell me finite sequence $v_1,\dots,v_p\in\mathbb{R}^n$

and I tell you $L_M(v_1), \ldots, L_M(v_p)$.

How can you figure out M?

E.g.: I'm thinking of a secret 3×4 matrix

$$M = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix}$$

Then
$$L_M(w,x,y,z)$$
 is equal to
$$(aw+bx+cy+dz,\\ ew+fx+gy+hz, \qquad \text{suggestions??}$$
 $iw+ix+ky+lz)$

Then $L_M(1,0,0,0)=(a,e,i)$, so you can find the first column of M. The other three columns can be found by asking for $L_M(0,1,0,0)$, $L_M(0,0,1,0)$, $L_M(0,0,0,1,0)$.

Key point to remember:

The entries in the jth column of M are the same as the entries in $L_M(0,\ldots,0,\frac{1}{4},0,\ldots,0)$.

jth entry

Notation:

The matrix of a linear transformation

$$A: \mathbb{R}^n \to \mathbb{R}^k$$

is denoted [A].

Note:
$$L_{[A]} = A$$
 and $[L_M] = M$

Fact: A function $F: \mathbb{R}^n \to \mathbb{R}^k$ is linear iff there exists $M \in \mathbb{R}^{k \times n}$ such that $F = L_M$.

Fact: $L_M = L_{M'}$ implies M = M'.

Definition:

Let V, W be subspaces of \mathbb{R}^n , \mathbb{R}^k , resp.

A function $F: V \to W$ is an isomorphism (or a vector space isomorphism) if it's a linear bijection.

Key idea:

For any fact you've verified about V, there's a corresponding fact about W, and vice versa.

e.g.: If you know that every basis of V has three vectors, then the same must be true of W.

The kernel and image of a linear function

Let V, W be subspaces of \mathbb{R}^n , \mathbb{R}^k , resp. Let $L:V\to W$ be a linear function.

The kernel of L is

$$\ker(L) := \{ v \in V \mid L(v) = 0 \}.$$

Fact:

$$L: V \to W$$
 is one-to-one iff $ker(L) = \{0\}$.

The image of L is

$$L(V) := \{L(v) \in W \mid v \in V\}.$$

Observation:

$$L:V\to W$$
 is onto iff $L(V)=W$.

Fact: Kernels and images are subspaces. 16

The **kernel of** L is

$$\ker(L) := \{ v \in V \mid L(v) = 0 \}.$$

Fact:

The kernel of L is one-to-one iff $\ker(L)=\{0\}.$ Pt: $\ker(L):=\{v\in V\,|\,L(v)=0\}.$

Fact:

 $L:V\to W$ is one-to-one iff $\ker(L)=\{0\}.$

The kernel of L is

$$\ker(L) := \{ v \in V \mid L(v) = 0 \}.$$

Fact:

$$L: V \to W$$
 is one-to-one iff $\ker(L) = \{0\}.$

Pf: (\Rightarrow) Say L is 1-1. Want: $\ker(L) = \{0\}$.

Volume
$$L$$
, $L(0) = 0$ Say $v \in \ker(L)$. Want: $v = 0$. $L(v) = 0 = L(0)$

(
$$\Leftarrow$$
) Say $\ker(L) = \{0\}$. Want: L is 1-1. Say $L(v) = L(v')$. Want: $v = v'$.

Vinear
$$L$$
, $\forall v, v'$, $\forall v, v' \in \ker(L) = \{0\}$

$$(L(v)) - (L(v'))$$

$$v - v' = 0$$

Definition:

Let V be a subspace of \mathbb{R}^m

An ordered basis of V is, for some integer $d \geq 1$,

an ordered d-tuple $(v_1, \ldots, v_d) \in V^d$ such that $\{v_1, \ldots, v_d\}$ is a basis of V.

Note: $(v_1, \dots, v_d) \in V^d \subseteq (\mathbb{R}^m)^d$

e.g.:

 $S := \langle (1,3,4,2), (2,1,2,-1), (4,7,10,3) \rangle$

 $\{(1,3,4,2), (2,1,2,-1)\}$ is a basis of S.

((1,3,4,2), (2,1,2,-1)) is an ordered basis of S.

((2,1,2,-1), (1,3,4,2)) is a different one.

m-dimensional

Euclidean space

Ordered bases ↔ isomorphisms w/ Eucl. space

Fact:

Let $(v_1, \ldots, v_d) \in V^d$ be an ordered basis of a subspace V of some Euclidean space.

Then the function $F:\mathbb{R}^d \to V$ defined by

$$F(a_1, \dots, a_d) = a_1 v_1 + \dots + a_d v_d$$

is a vector space isomorphism.

Proof: Linearity is an exercise.

Onto because $\{v_1, \ldots, v_d\}$ is a spanning set.

Want: F is one-to-one.

Want: $ker(F) = \{0\}.$

 $(v_1,\ldots,v_d)\in V^d$ is an ordered basis of V.

Let $(v_1, \ldots, v_d) \in V^d$ be an ordered basis of a subspace V of some Euclidean space.

Let
$$(v_1, \dots, u_d) = x_1 \cdot v_1 + \dots + x_d \cdot v_d$$
 of a subspace v of a subspace v

$$F: \mathbb{R}^d \to V$$
 defined by $F(a_1, \dots, a_d) = a_1 v_1 + \dots + a_d v_d$

Want: $\ker(F) = \{0\}.$

$$(v_1,\ldots,v_d)\in V^d$$
 is an ordered basis of V .

$$F: \mathbb{R}^d \to V$$
 is defined by
$$F(a_1, \dots, a_d) = a_1 v_1 + \dots + a_d v_d$$

Want: $ker(F) = \{0\}.$

Let
$$(a_1,\ldots,a_d)\in\mathbb{R}^d$$
. Say $F(a_1,\ldots,a_d)=0\in V$.

$$F: \mathbb{R}^d o V$$
 defined by $F(a_1, \dots, a_d) = a_1 v_1 + \dots + a_d v_d$

Want: $\ker(F) = \{0\}.$

 $(v_1,\ldots,v_d)\in V^d$ is an ordered basis of V.

$$F:\mathbb{R}^d o V$$
 is defined by

$$F(a_1, \dots, a_d) = a_1 v_1 + \dots + a_d v_d$$

Want:
$$\ker(F) = \{0\}.$$

Let
$$(a_1,\ldots,a_d)\in\mathbb{R}^d$$
. Say $F(a_1,\ldots,a_d)=$

Want:
$$(a_1, \dots, a_d) = 0 \in \mathbb{R}^d$$
. $a_1v_1 + \dots + a_dv_d =$

I.C. OF v_1, \ldots, v_d $\{v_1, \ldots, v_d\}$ Li

IS EQUAL TO 0.

$$v_1,\dots,v_d\}$$
 I.i

$$a_1 = \dots = a_d = 0$$

$$(a_1,\ldots,a_d)=0\in\mathbb{R}^d.$$

e.g.:

$$S := \langle (1,3,4,2), (2,1,2,-1), (4,7,10,3) \rangle$$

 $\{(1,3,4,2), (2,1,2,-1)\}$ is a basis of S .

Then S is isomorphic to \mathbb{R}^2 , so anything we know about \mathbb{R}^2 translates into knowledge about S.

More on this later . . .

