Financial Mathematics

Row and column operations and linear algebra

Question:

Is there an onto $\{1, 2, 3\} \rightarrow \{1, 2, 3, 4\}$?

Answer: No.

Question: Is there an onto $\mathbb{R}^3 \to \mathbb{R}^4$?

Answer: Yes. Can even be made to be "space-filling curve" $\times \mathbb{R}^2$ continuous.

Question: Is there a linear onto $\mathbb{R}^3 \to \mathbb{R}^4$?

Answer: No.

Proof:

 $L: \mathbb{R}^3 \to \mathbb{R}^4$ linear, onto.

Want: Contradiction.

Proof:

 $L: \mathbb{R}^3 \to \mathbb{R}^4$ linear, onto.

Want: Contradiction.

Choose $M \in \mathbb{R}^{4 \times 3}$ such that $L = L_M$.

Proof:

 $L: \mathbb{R}^3 \to \mathbb{R}^4$ linear, onto.

Want: Contradiction.

Proof: $L: \mathbb{R}^3 \to \mathbb{R}^4$ linear, onto. Want: Contradiction. Choose $M \in \mathbb{R}^{4 \times 3}$ such that $L = L_M$. Choose $E \in \mathbb{R}^{4 \times 4}$, $C \in \mathbb{R}^{4 \times 3}$, $E' \in \mathbb{R}^{3 \times 3}$

such that M = ECE'such that C is fully canonical, such that E is a product of elementary 4×4 matrices, and such that E' is a product of elementary 3×3 matrices.

$$L_M: \mathbb{R}^3 o \mathbb{R}^4$$
 onto, so $L_C: \mathbb{R}^3 o \mathbb{R}^4$ onto. $C \in \mathbb{R}^{4 imes 3}$, so $L_C(\mathbb{R}^3) \subseteq \mathbb{R}^3 imes \{0\} \subsetneq \mathbb{R}^4$, so $L_C: \mathbb{R}^3 o \mathbb{R}^4$ is not onto. QED

Question: Is there a linear onto $\mathbb{R}^3 \to \mathbb{R}^4$?

Answer: No.

Theorem:

If there is an onto linear $\mathbb{R}^n \to \mathbb{R}^k$, then n > k.

covers implies larger in dimension

Question:

Is there a one-to-one $\{1,2,3,4\} \rightarrow \{1,2,3\}$? Answer: No.

Question: Is there a one-to-one $\mathbb{R}^4 \to \mathbb{R}^3$?

Answer: Yes, but it can't be made to be "invariance of domain" continuous.

Question: Is there a linear 1-1 $\mathbb{R}^4 \to \mathbb{R}^3$? Answer: No.

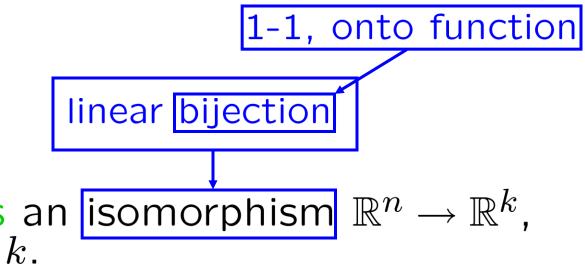
Proof: Similar: If there were one, then there'd be one coming from a fully canonical 3×4 matrix.

Discussion: Study all fully canonical 3×4 matrices, and show that none of them yields a 1-1 linear function.

If there is a one-to-one linear $\mathbb{R}^n o \mathbb{R}^k$, then n < k. fits inside implies smaller in dimension

Theorem:

If there is an onto linear $\mathbb{R}^n o \mathbb{R}^k$, then n > k. covers implies larger in dimension



Theorem:

If there is an isomorphism $\mathbb{R}^n \to \mathbb{R}^k$, then n=k.

If there is an isomorphism $\mathbb{R}^n \to \mathbb{R}^k$, then n = k.

Corollary:

Let V be a subspace of some Euclidean space.

Theorem:

If there is an isomorphism $\mathbb{R}^n \to \mathbb{R}^k$, then n = k.

If there is an isomorphism $\mathbb{R}^n \to \mathbb{R}^k$, then n=k.

Corollary:

Let V be a subspace of some Euclidean space. Then any two bases of V have the same size.

Proof:

Let $(v_1, \ldots, v_n) \in V^n$ be an ordered basis of V. Let $(v'_1, \ldots, v'_k) \in V^k$ be another. Want: n = k

Define isoms $F: \mathbb{R}^n \to V$ and $F': \mathbb{R}^k \to V$ by

$$F(a_1, \dots, a_n) = a_1 v_1 + \dots + a_n v_n$$

$$F'(a_1, \dots, a_k) = a_1 v'_1 + \dots + a_k v'_k.$$

Then $(F')^{-1} \circ F : \mathbb{R}^n \to \mathbb{R}^k$ is an isomorph<u>ism.</u>

Then n = k. QED

S

If there is an isomorphism $\mathbb{R}^n \to \mathbb{R}^k$, then n = k.

Corollary:

Any set of k+1 vectors in \mathbb{R}^k is I.d.

Proof: Let
$$B:=\{v_0,\ldots,v_k\}\subset\mathbb{R}^k$$
 be a set of $k+1$ vectors in \mathbb{R}^k .

Say B is I.i. Want: Contradiction

Let $S := \langle B \rangle$ be the span of B.

Then B is a basis of S.

Define $F: \mathbb{R}^{k+1} \to S$ by

$$F(a_0, \dots, a_k) = a_0 v_0 + \dots + a_k v_k.$$

Then $F: \mathbb{R}^{k+1} \to S$ is an isomorphism, so $F: \mathbb{R}^{k+1} \to \mathbb{R}^k$ is 1-1.

Then $k+1 \leq k$. Contradiction. QED

Corollary:

Any set of k+1 vectors in \mathbb{R}^k is I.d.

Corollary:

Any subspace of \mathbb{R}^k has a basis \overline{s} l.d.

Corollary:

Any set of k+1 vectors in \mathbb{R}^k is I.d.

Corollary:

Any subspace of \mathbb{R}^k has a basis.

Proof: Let S be a subspace of \mathbb{R}^k . Li. spanning set

Want: S has a l.i. spanning set.

Every I.i. subset of S has size $\leq k$.

Let B be a l.i. subset of S of maximal size.

Want: B is a spanning set of S.

Want: $\langle B \rangle = S$ Know: $\langle B \rangle \subseteq S$

Suppose $v \in S$ and $v \notin \langle B \rangle$.

Want: Contradiction.

Fact: Let F be a finite subset of \mathbb{R}^n . Suppose F is I.i. Say $v \in \mathbb{R}^n \setminus \langle F \rangle$, i.e., $v \in \mathbb{R}^n$ and $v \notin \langle F \rangle$. Then $F \cup \{v\}$ is I.i. Corollary: Any subspace of \mathbb{R}^k has a basis.

Proof: Let S be a subspace of \mathbb{R}^k . Li. spanning set Want: S has a l.i. spanning set. Every I.i. subset of S has size < k.

Let B be a l.i. subset of Sof maximal size.

Want: B is a spanning set of S. Want: $\langle B \rangle = S$ Know: $\langle B \rangle \subseteq S$ Suppose $v \in S$ and $v \notin \langle B \rangle$. Want: Contradiction.

Then $B \cup \{v\}$ is a l.i. subset of S. 13 Contradiction.

Definition:

Let V be a subspace of some Euclidean space.

The dimension of V, denoted dim(V), is the size of any basis of V.

e.g.:

$$S := \langle (1,3,4,2), (2,1,2,-1), (4,7,10,3) \rangle$$

 $\{(1,3,4,2), (2,1,2,-1)\}$ is a basis of S .

Then dim(S) = 2.

SKILL: Determine if vect is in span of others.

Question:

$$(1,2,3,4) \in \langle (1,1,1,1), (2,3,4,5), (1,0,-1,2) \rangle$$
?

Solution:

Make vectors the rows of a matrix.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 1 & 0 & -1 & 2 \end{bmatrix}$$

Key point:

Elementary row ops don't change row span. Bring to row canonical form, then re-ask.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 1 & 0 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & -1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 1 & 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 1 & 0 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & -1 & -2 & 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Question:

$$(1,2,3,4) \in \langle (1,0,-1,0), (0,1,2,0), (0,0,0,1) \rangle$$
?

Coefficients: 1 2 4

Result: (1, 2, 3, 4)

Answer: Yes.

17

Fact: Let F be a finite subset of \mathbb{R}^n . Suppose F is I.i. Say $v \in \mathbb{R}^n \setminus \langle F \rangle$, i.e., $v \in \mathbb{R}^n$ and $v \notin \langle F \rangle$. Then $F \cup \{v\}$ is I.i.

SKILL: Extract a basis from a spanning set.

Want to extract a basis from v_1, \ldots, v_m .

ALGORITHM:

- 1. Throw out all zero vectors.
- 2. Determine if $v_2 \in \langle v_1 \rangle$. If yes, throw it out; otherwise, keep it.
- 3. Determine if $v_3 \in \langle v_1, v_2 \rangle$. If yes, throw it out; otherwise, keep it.
- 4. Determine if $v_4 \in \langle v_1, v_2, v_3 \rangle$. If yes, throw it out; otherwise, keep it.

18

Fact: Let F be a finite subset of \mathbb{R}^n . Suppose F is l.i. Say $v \in \mathbb{R}^n \setminus \langle F \rangle$, i.e., $v \in \mathbb{R}^n$ and $v \notin \langle F \rangle$. Then $F \cup \{v\}$ is l.i. SKILL: Determine if a set of vects is l.i. and, if not, express one of them as a l.c. of the rest.

Want to check if v_1, \ldots, v_m are I.i.

ALGORITHM:

- 1. If there's a zero vector, then write it as a l.c. of the others, with 0 coefficients.
- 2. Check if $v_2 \in \langle v_1 \rangle$.
 If so, write v_2 as a l.c. of v_1 .
 - If not, v_1, v_2 are l.i.

etc.

3. Check if $v_3 \in \langle v_1, v_2 \rangle$. If so, write v_3 as a l.c. of v_1, v_2 . If not, v_1, v_2, v_3 are l.i. SKILL: Find the ker and im of a lin. transf.

KEY POINT:

Elementary row ops don't change ker. Elementary col. ops don't change image.

Note: If E is invertible, then $\ker(L_{EA}) = \ker(L_A)$ and $\operatorname{im}(L_{AE}) = \operatorname{im}(L_A)$.

SKILL: Find the ker and im of a lin. transf.

KEY POINT:

Elementary row ops don't change ker. Elementary col. ops don't change image.

Find ker of a row canonical matrix. Find image of a column canonical matrix.

$$g.:$$
 Find kernel of $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Find image of
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

Find kernel of
$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find kernel of
$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find kernel of
$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$L_A(a, b, c, d) = (a - c, b + 2c, d)$$

$$\ker(L_A) = \{(a, b, c, d) \mid a = c, b = -2c, d = 0\}$$

basis:
$$(1, -2, 1, 0)$$

c = 1

Find image of
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

$$B^{\bullet,\bullet}$$

$$L_B(a, b, c, d) = (a, b, 2b)$$

$$L_B(\mathbb{R}^4) = \{(a, b, 2b) \mid a, b \in \mathbb{R}\}$$

SKILL: Find dim of ker and im of a lin. transf.

KEY POINT:

Elementary row and col. ops change neither dim of kernel nor dim of image.

Note: If E is invertible, then

$$\ker(L_{EA})=\ker(L_A),$$
 $\operatorname{im}(L_{AE})=\operatorname{im}(L_A),$ $L_E(\ker(L_{AE}))=\ker(L_A)$ and $\operatorname{im}(L_{EA})=L_E(\operatorname{im}(L_A)).$

SKILL: Find dim of ker and im of a lin. transf.

KEY POINT:

Elementary row and col. ops change neither dim of kernel nor dim of image.

Find dimensions of kernel and image of a fully canonical matrix.

dim ker = number of zero columns in C = 1 dim im = number of nonzero rows in C = 2

number of nonzero columns in C

26

Then $[\dim(\ker(L))] + [\dim(\operatorname{im}(L))] = n$. Intuition: L kills off some dimensions from \mathbb{R}^n .

The remaining dimensions cover the image. dim(im(L)) = n - [dim(ker(L))]

Find dimensions of kernel and image of a fully canonical matrix.

Theorem: Let $L: \mathbb{R}^n \to \mathbb{R}^k$ be linear.

dim ker = number of zero columns in C = 1dim im = number of nonzero rows in C = 2

number of nonzero columns in C

27

Theorem: Let $L: \mathbb{R}^n \to \mathbb{R}^k$ be linear. Then $[\dim(\ker(L))] + [\dim(\operatorname{im}(L))] = n$.

Intuition: L kills off some dimensions from \mathbb{R}^n . The remaining dimensions cover the image. $\dim(\operatorname{im}(L)) = n - [\dim(\ker(L))]$

Proof: Choose $M \in \mathbb{R}^{k \times n}$ s.t. $L = L_M$. Reduce M to a fully canonical matrix $C \in \mathbb{R}^{k \times n}$

dim ker = number of zero columns in C=1 dim im = number of nonzero rows in C=2

number of nonzero columns in C

Then $[\dim(\ker(L))] + [\dim(\operatorname{im}(L))] = n$.

Intuition: L kills off some dimensions from \mathbb{R}^n .

The remaining dimensions cover the image

Theorem: Let $L: \mathbb{R}^n \to \mathbb{R}^k$ be linear.

The remaining dimensions cover the image. $\dim(\operatorname{im}(L)) \neq n - [\dim(\ker(L))]$

number of nonzero columns in C

Proof: Choose $M \in \mathbb{R}^{k \times n}$ s.t. $L = L_M$. Reduce M to a fully canonical matrix $C \in \mathbb{R}^{k \times n}$ dim ker = number of zero columns in Cdim im = number of nonzero rows in Cnumber of nonzero columns in C $[\dim \ker]$ $+[\dim \inf]$ of zero columns in C arm \lim = number of nonzero rows in C

29

Theorem: Let $L: \mathbb{R}^n \to \mathbb{R}^k$ be linear. Then $[\dim(\ker(L))] + [\dim(\operatorname{im}(L))] = n$.

Intuition: L kills off some dimensions from \mathbb{R}^n . The remaining dimensions cover the image. $\dim(\operatorname{im}(L)) = n - [\dim(\ker(L))]$

Proof: Choose $M \in \mathbb{R}^{k \times n}$ s.t. $L = L_M$. Reduce M to a fully canonical matrix $C \in \mathbb{R}^{k \times n}$ dim ker = number of zero columns in C dim im = number of nonzero rows in C number of nonzero columns in C

 $[\dim' \ker]+[\dim' im] = number of columns in C$ = n

Theorem: Let $M \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- (\bullet) M is a product of elem. matrices (\bullet) M is reducible to I via

elem. row & col. ops

- (\bullet) M is reducible to I via elem. row ops
- (\bullet) M is reducible to I via elem. col. ops
- (\bullet) M is invertible $(\bullet) \ker(M) = \{0\}$
- (ullet) L_M is 1-1 (\bullet) M has a left inverse
- (\bullet) M has a right inverse $(\bullet) \text{ im}(M) = \mathbb{R}^{n \times 1}$
- (\bullet) $L_M: \mathbb{R}^n \to \mathbb{R}^n$ is onto

Proof: All eleven properties are equivalent to:

 (\bullet) The fully canon. form of M is the identity.

Fact: If a matrix has a left inverse and a right inverse. then they are equal.

Proof: Say A is a left inverse for B, matrix and C is a right inverse for BWant: A = CA = AI = A(BC) = (AB)C = IC = C

Fact: $X, Y \in \mathbb{R}^{n \times n}$, $XY = I \Rightarrow YX = I$

Proof: X has a right inverse, namely Y. X has a left inverse. ∃left inverse If a matrix has a left inverse ∃right inverse and a right inverse. then they are equal.

Y is a left inverse for X. $\bigcirc ED$

DISCUSSION

Can (short wide) \times (tall thin)= I? Can (tall thin) \times (short wide)= I?

identity

Fact: If a matrix has a left inverse and a right inverse, then they are equal.

DISCUSSION

Can a non-square matrix have a left inverse? Can a non-square matrix have a right inverse? Can a non-square matrix have both at once?

Fact:
$$X, Y \in \mathbb{R}^{n \times n}$$
, $XY = I \Rightarrow YX = I$

Proof: X has a right inverse, namely Y. X has a left inverse.

If a matrix has a left inverse iff and a right inverse, then they are equal. Y is a left inverse for X. QED

DISCUSSION

Can (short wide)×(tall thin)= I? Can (tall thin)×(short wide)= I?

Inversion of matrices

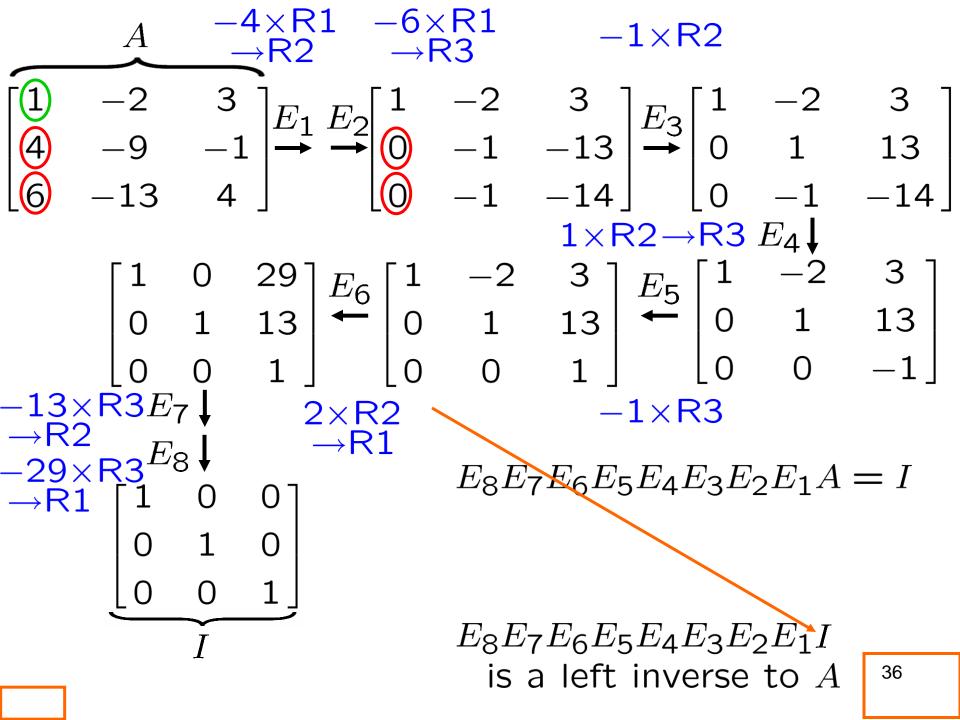
RECALL: Elem. matrices are invertible

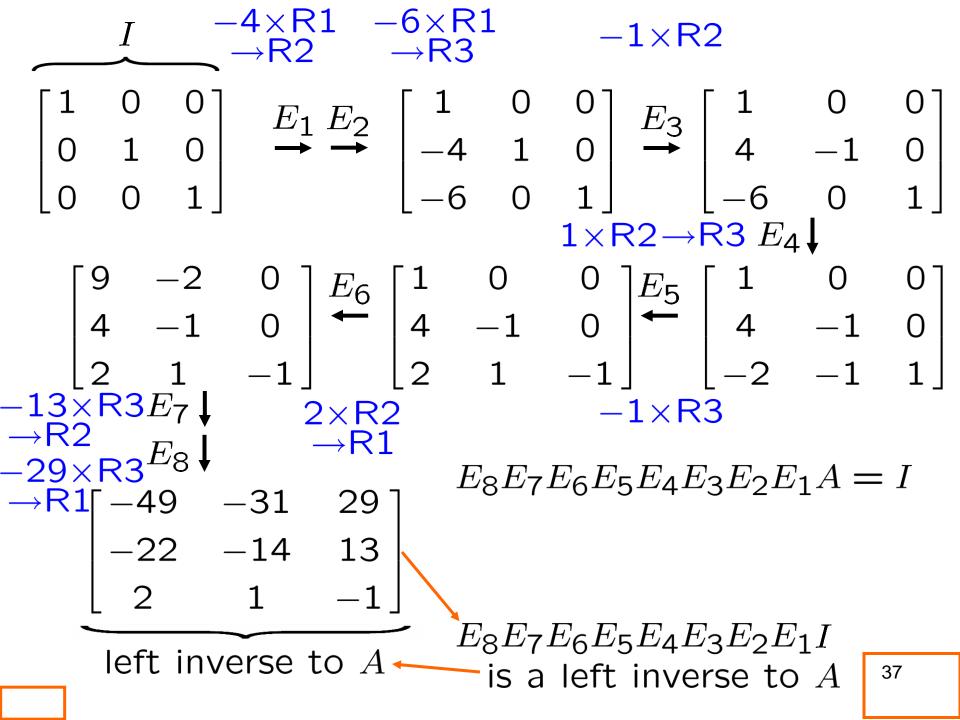
e.g.:
$$I := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}} \xrightarrow{\begin{bmatrix} \text{Elem.} \\ \text{matrix} \\ \end{bmatrix}}$$

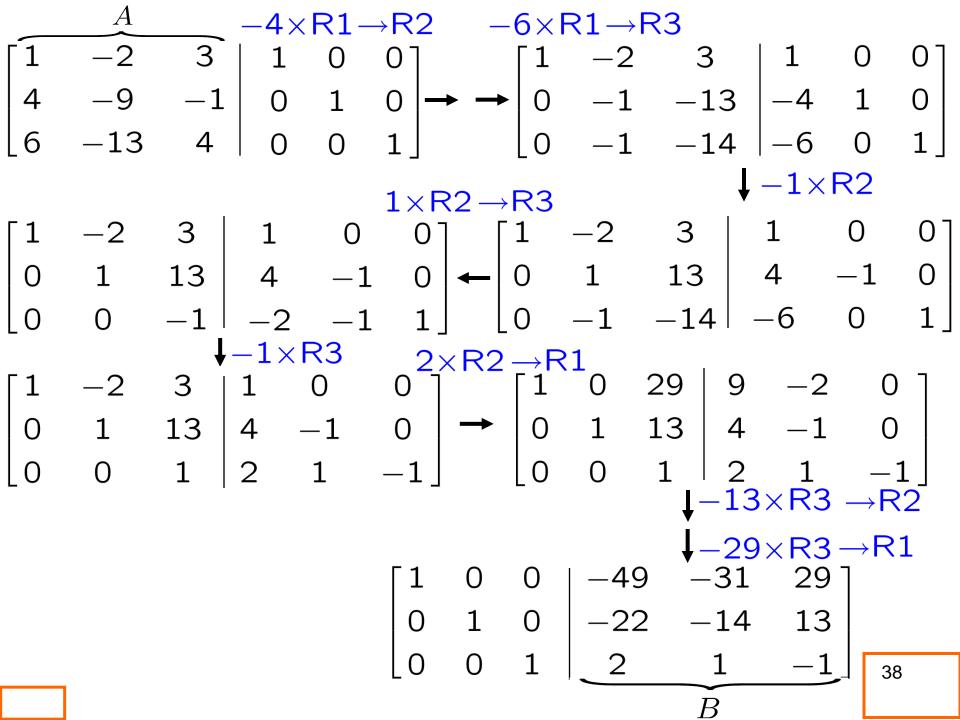
Subtract second row from third
$$B$$

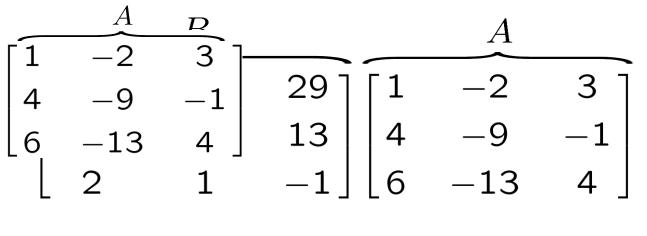
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Exercise: Check that AB = BA = I.









$$\begin{bmatrix} -49 & -31 & 29 \\ -22 & -14 & 13 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A=(E_1)^{-1}\cdots(E_8)^{-1}$$
 so A is invertible, with inverse $E_8\cdots E_1$.

$$AB = ABAA^{-1} = AIA^{-1} = I$$

$$AB = BA = I$$

A is the (two-sided) inverse of B.

SKILLS:

Determine if a matrix is invertible.

Given an invertible matrix, find its inverse.

SKILL:

Given a system of equations

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$$

$$a_{n1}x_1 + \cdots + a_{nn}x_n = b_n$$

with all the a_{jk} fixed, but with, each day, a new choice of b_1, \ldots, b_n , find an efficient algorithm for finding solutions.

$$A := [a_{jk}]_{k=1,\dots,n}^{j=1,\dots,n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Given a system of equations
$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{n1}x_1 + \cdots + a_{nn}x_n = b_n$$

$$Ax = b$$

with all the a_{jk} fixed, but with, each day,

efficient algorithm for finding solutions.

a new choice of b_1, \ldots, b_n , find an

SKILL: matrix equation

 $b := [b_k]_{k=1,...,n} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \quad x := [x_k]_{k=1,...,n} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

$$A := [a_{jk}]_{k=1,\dots,n}^{j=1,\dots,n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

 $b := [b_k]_{k=1,...,n} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \quad x := [x_k]_{k=1,...,n} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Ax = b Ax = b with all the a_{jk} fixed, but with, each day, a new choice of b_1, \ldots, b_n , find an efficient algorithm for finding solutions.

$$A := [a_{jk}]_{k=1,\dots,n}^{j=1,\dots,n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

$$b:=[b_k]_{k=1,\dots,n}=\begin{bmatrix}b_1\\ \vdots\\ b_n\end{bmatrix} x:=[x_k]_{k=1,\dots,n}=\begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix}$$
 SKILL: Given a matrix equation

with A fixed, but with, but with, each day, a new choice of b, find an efficient algorithm for finding solutions.

Ax = b

$$A := [a_{jk}]_{k=1,\dots,n}^{j=1,\dots,n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

$$b := [b_k]_{k=1,\dots,n} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \quad x := [x_k]_{k=1,\dots,n} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

SKILL:

is invertible. Ax = bUse $x = A^{-1}b$. with A fixed, but with, each day, a new choice of b, find an

efficient algorithm for finding solutions.

Method:

Find A^{-1}

assuming A