Financial Mathematics

Determinants exist

An oriented parallelogram is an ordered pair of ordered pairs of scalars.

```
e.g.: (1,3) , (4,2) )
```

Questions:

Why call this a kind of parallelogram? Visualization?

```
e.g.:
 ((1,3),(4,2))
Visualization:
e.g.:
 ((1,3),(4,2))
 Visualization?
                                      3
                 3
                         5
```

e.g.: (1,3) , (4,2))

Visualization:

An oriented (3-dimensional) parallelpiped is an ordered triples of ordered triples of scalars.

```
e.g.: (1,2,3) , (4,5,6) , (7,8,9) )
```

Exercise: Visualization?
(Remember the orientation – the blue numbers.)

An oriented parallelogram is an ordered pair of ordered pairs of scalars.

Definition:

The standard oriented parallelogram is
$$((1,0), (0,1))$$

Definition:

An oriented (3-dimensional) parallelpiped is an ordered triples of ordered triples.

Definition:

The standard oriented 3-parallelpiped is
$$(1,0,0)$$
 , $(0,1,0)$, $(0,0,1)$)

IMAGINE!!

An oriented (n-dimensional) parallelpiped, or oriented n-parallelpiped, is an ordered n-tuple of ordered n-tuples of scalars.

Definition:

The standard oriented
$$n$$
-parallelpiped is $(1,0,\ldots,0)$, $(0,1,0,\ldots,0)$, \ldots , $(0,\ldots,0,1)$

Definition:

An oriented (3-dimensional) parallelpiped is an ordered triples of ordered triples.

Definition:

The standard oriented 3-parallelpiped is
$$(1,0,0)$$
, $(0,1,0)$, $(0,0,1)$

An oriented n-parallelpiped is degenerate if it has no n-dimensional volume.

e.g.:

An oriented parallelogram is degenerate if it has no area.

e.g.:
$$((1,2), (1,2))$$

 $((1,2), (2,4))$
 $((1,2), (-2,-4))$

An oriented n-parallelpiped is degenerate if it has no n-dimensional volume.

e.g.:

An oriented 3-parallelpiped is degenerate if it has no (3-dimensional) volume.

e.g.:
$$((1,2,3), (0,3,2), (2,7,8))$$

Note:
$$2 \cdot (1,2,3) + (0,3,2) = (2,7,8)$$

An oriented n-parallelpiped is positive if there's a continuous path from it to the standard oriented n-parallepiped which is never degenerate.

```
non-e.g.: (1,3) , (4,2) )
```

Question:

Why is ((1,3), (4,2)) not positive? Visualization?

non-*e.g.*: ((1,3) , (4,2))

Visualization:

non-e.g.: (1,3) , (4,2))

Visualization:

An oriented n-parallelpiped is **negative** if it's neither positive nor degenerate.

Definition:

The **signed** n-volume of an oriented n-parallelpiped of n-volume A is:

A if the parallelpiped is positive; 0 if the parallelpiped is degenerate;

-A if the parallelpiped is negative;

Note: The **signed** 2-**volume** of an oriented parallelogram is called its **signed** area.

An oriented n-parallelpiped is **negative** if it's neither positive nor degenerate.

Definition:

The **signed** n-volume of an oriented n-parallelpiped of n-volume A is:

A if the parallelpiped is positive; 0 if the parallelpiped is degenerate;

-A if the parallelpiped is negative;

Note: The **signed** 2-**volume** of an oriented parallelogram is called its **signed** area.

Note: The **signed** 2-**volume** of an oriented parallelogram is called its **signed** area.

```
e.g.: The signed area of the standard parallelogram (0,1), (1,0) is: -1.
```

IOU Exercise: Find the signed area of Note: The sign((1,3) , (4,2)) ≥nted parallelogram is called its signed area.

e.g.: The signed area of the standard parallelogram (0,1),(1,0) is: -1.

Note: The **signed** 2-**volume** of an oriented parallelogram is called its **signed** area.

```
e.g.: The signed area of the standard parallelogram (0,1), (1,0) is: -1.
```

Exercise: Find the signed area of
$$(1,3)$$
, $(4,2)$).

Notation: For any oriented n-parallelpiped P, the signed n-volume of P is denoted $\operatorname{sv}(P)$

For any $n \times n$ matrix A, for any oriented n-parallelpiped

$$P = (v_1, \dots, v_n), \qquad (v_1, \dots, v_n \in \mathbb{R}^n)$$

we define:

$$AP = (L_A(v_1), \dots, L_A(v_n)).$$

e.g.:

Let
$$A := \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$
.

Then $L_A(x,y) = (x + 4y, 3x + 2y)$.

Then $L_A(1,0) = (1,3)$

and
$$L_A(0,1) = (4,2)$$
,

so
$$A((1,0),(0,1))$$

$$=((1,3),(4,2)).$$

Let A be an $n \times n$ matrix.

We say that A has a determinant if there is a number, denoted det(A), such that,

for ANY oriented n-parallelpiped P, sv(AP) = [det(A)][sv(P)].

e.g.:
$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
 doubles base, fixes height, so has a determinant.

$$\det\left(\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}\right) = 2.$$

Note: One usually writes: det $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.

e.g.: $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ has a determinant. $\det \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = 3.$ Fact: Let $A, B \in \mathbb{R}^{n \times n}$. If A and B both have determinants, then AB has a determinant,

and
$$det(AB) = [det(A)][det(B)].$$

$$\begin{array}{c} e.g.: \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} & \text{has a determinant.} \\ \text{Fact: Any} \\ \text{det} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = 2 \cdot 3 = 6. & \text{diagonal matrix has a det., equal to the product of all diagonal entries.} \end{array}$$

Let
$$A:=\begin{bmatrix}1&1\\0&1\end{bmatrix}$$
 $L_A(x,y)=(x+y,y)$ "shearing" All points move 2 units right $L_A(x,y)=(x+y,y)$ $L_A(x,y)$

Let
$$A := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $L_A(x,y) = (x+y,y)$

For all oriented parallelograms P, we have: sv(P) = sv(AP).

A has a determinant, and det(A) = 1.

shearing preserves signed area of oriented parallelograms

shearing preserves area of parallelograms

e.g.:
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 has a determinant.
$$\det \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = 1.$$

Fact: A square matrix which agrees with the identity except in one non-diagonal entry has a determinant, with det = 1.

Fact: Any elementary matrix has a determinant.

Theorem:

Any matrix M can be written $M = E_1 \cdots E_k C E'_1 \cdots E'_l$ where $E_1, \ldots, E_k, E'_1, \ldots, E'_l$ are elementary, and C is fully canonical.

$$\begin{array}{l}
\mathbf{e.g.:} \\
M := \begin{bmatrix}
0 & 0 & 3 & 6 & -21 \\
-5 & 0 & -10 & -15 & 35 \\
-4 & 0 & -4 & -6 & 10 \\
-3 & 0 & -7 & -8 & 13
\end{bmatrix} \quad C := \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$E_1\cdots E_{12}CE_1'\cdots E_5'=M$$

Note: A square canonical matrix is diagonal, and so has a determinant.

Theorem:

—Every square matrix has a determinant.

Fact:

Let A be an $n \times n$ matrix.

Then there is a number, denoted $\det(A)$, such that, for ANY oriented n-parallelpiped P, $\operatorname{sv}(AP) = [\det(A)][\operatorname{sv}(P)].$

Corollary:

Let A be an $n \times n$ matrix.

Let P be an n-dim'l parallelpiped. (e.g., an n-dim'l rectangular box).

Then $\operatorname{vol}(L_A(P)) = [|\det(A)|][\operatorname{vol}(P)].$

Theorem:

Every square matrix has a determinant.

Fact:

Let A be an $n \times n$ matrix.

Then there is a number, denoted $\det(A)$, such that, for ANY oriented n-parallelpiped P, $\operatorname{sv}(AP) = [\det(A)][\operatorname{sv}(P)].$

Corollary:

Let A be an $n \times n$ matrix.

Let P be an n-dim'l parallelpiped. (e.g., an n-dim'l rectangular box).

Then $\operatorname{vol}(L_A(P)) = [|\det(A)|][\operatorname{vol}(P)].$

Let A be an 2×2 matrix, let p, q > 0.

Then Area $(L_A([0,p]\times [0,q]))$

$$= [|\det(A)|][\operatorname{Area}(0,p] \times [0,q])]$$

$$=[|\det(A)|]pq$$

Let A be an 2×2 matrix, let a, b, c, d > 0.

$$(L_A(-a,-c)) + (L_A([0,a+b] \times [0,c+d]))$$

Then Area $(L_A([-a,b] \times [-c,d]))$
 $(-a,-c) + ([0,a+b] \times [0,c+d])$

Let
$$A$$
 be an 2×2 matrix, let $p, q > 0$.
Then $Area(L_A([0, p] \times [0, q]))$

$$= [|\det(A)|][Area(0, p] \times [0, q])]$$

$$= [|\det(A)|]pq$$

Let A be an 2×2 matrix, let a, b, c, d > 0.

$$(L_A(-a,-c)) + (L_A([0,a+b] \times [0,c+d]))$$

Then Area $(L_A([-a,b] \times [-c,d]))$
 $= \text{Area}(L_A([0,a+b] \times [0,c+d]))$
 $= [|\det(A)|](a+b)(c+d)$

Let
$$A$$
 be an 2×2 matrix, let $p, q > 0$.
Then $Area(L_A([0, p] \times [0, q]))$

$$= [|\det(A)|][Area(0, p] \times [0, q])]$$

$$= [|\det(A)|]pq \quad p : \rightarrow a + b, q : \rightarrow c + d]$$

e.g.: Let
$$A := \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$
. $det(A) = ??$

$$E_1 := \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

$$E_1 A = \begin{bmatrix} 1 & 4 \\ 0 & -10 \end{bmatrix}$$

$$E_2 := \begin{bmatrix} 1 & 0 \\ 0 & -1/10 \end{bmatrix}$$
 $E_2 E_1 A = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$

$$[-1/10][1][\det(A)] = \det(E_2E_1A) = 1$$

$$\det(A) = -10$$

$$A := \begin{bmatrix} 1 & 4 \\ A := \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \quad \det(A) = -10$$

Exercise: Find the signed area of (1,3), (4,2)).

$$\det(A) = -10$$

$$A := \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \qquad \det(A) = -10$$

Exercise: Find the signed area of
$$(1,3)$$
, $(4,2)$).

Solution:
$$P := ((1,0) , (0,1)).$$

$$AP = ((1,3), (4,2)).$$

Want: sv(AP)

$$sv(AP) = [det(A)][sv(P)]$$

= $[-10][1] = -10$

