Financial Mathematics
The Spectral Theorem

The Sp ctra Theorem




Rotations and reflections

Definition: An orthogonal matrix
is @ matrix R € Rn\xn s.t. RRt = R'R=1.

real square

[.e.: R is distance-preserving

I.e.: R is dot-product-preserving




Rotations and reflections

Fact: If R is an orthogonal matrix,
then either det(R) = 1 or det(R) = —1.

Proof;: [det(R)]2 = [det(R)][det(R?)]
= det(RR?) = det(I) = 1.QED

Definitions: An orthogonal matrix
of determinant 1 called a rotation.

An orthogonal matrix
of determinant —1 called a reflection.

A lin. transf. L : R™ — R" is orthogonal if
L = Ljy; for some orthogonal M € R**"™,

A lin. transf. L : R"™ — R"™ is a rotation if
L = Ly, for some rotation M € R*"*",

A lin. transf. L : R™ — R" is a reflection if
L = Ly, for some reflection M € R**"™,




Change of variables for quadratic forms
Definition:
For any symmetric matrix S € R",
the quadratic form [Qg¢|: R" — R is def'd by

Qs(v) = (Lg(v)) - v.

Polarization: Vgquadratic forms @ : R" — R,
Junique symmetric S € R"*"™ s.t. Q = Qg.

Def'n: Quadratic forms Q,Q’ : R* — R are
equivalent if dinvertible linear L : R" — R"

st. Q'=Qo L.
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Change of variables for quadratic forms
Definition:
For any symmetric matrix S € R",
the quadratic form [Qg¢|: R" — R is def'd by

Rs(v) = (Lg(v)) - v.
Fact: Let X, S € R**7,

Assume S is symmetric. T
_ motivation,
Then QgoLx = Qytgx- then pf

Polarization: Vgquadratic forms @ : R" — R,
Junique symmetric S € R"*"™ s.t. Q = Qg.

Def'n: Quadratic forms Q,Q’ : R* — R are
equivalent if dinvertible linear L : R" — R"

s.t. @' =Qo L.
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Change of variables for quadratic forms
Definition:

For any symmetric matrix S € R",

the quadratic form [Qg¢|: R" — R is def'd by

Qs(v) = (Lg(v)) - v.

Fact: Let X, S € R**7,
Assume S is symmetric.

Then QgoLx = thsx- m?ﬁievr?tpi)?n’
he idea: Quadratic forms are equivalent
ifF their matrices are *“t-equivalent’ .

Definition: S, 8" € R"*" are t-equivalent
if Jinvertible X ¢ R**" s.t. &' = X!SX.

“S and S’ are t-equivalent via X (on the right)”
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Change of variables for quadratic forms
Definition:

For any symmetric matrix S € R",

the quadratic form [Qg¢|: R" — R is def'd by

retplace replace
S by v by

Assume S is symmetric: xtsx  Lx)

Then QgoLx = Q xt
Proof: (Qgo Lx)(v)

motivation,
X then pf




Change of variables for quadratic forms

Definition:

For any symmetric matrix S € R",

the quadratic form

Fact: Let X, S € R**7,

Qs

' R™" — R is def'd by

Qs(v) = (Lg(v)) - v.

Assume S is symmetric.

SKILL: Given S and X,
produce a matrix N such that

QsoLlxy =QpN.

WARNING:

N = X'SX, not XSX*.




Diagonal quadratic forms
Definition:
For any symmetric matrix S € R",
the quadratic form [Qg¢|: R" — R is def'd by

Rs(v) = (Lg(v)) - v.
Polarization: Yquadratic forms @ : R" — R,
Junique symmetric S € R"*" s.t. Q = Qg.
Definition: A quadratic form @ : R" — R,
is diagonal if Ja diagonal matrix D € R*"*"
(easily studied) s.t. Q@ =Qp.

b 8 é'x No cross-terms!
a
QD(CU: Yy, Z) —
— —
D @) b O |y CLCBQ _|_ by2 _I_ CZ2
0O 0 c]= 9




Diagonal quadratic forms

e.g.. Q(w,z,y, 2) = bw? — 222 + 4y? + 722
Q(xz,y) = 4a® + 2y?
non-e.qg.. Q(z,y) = 4z2 + 2y? — xy
Q(w,x,y,z) = 5w? — 222 + 4y? + wwz

matrix has =« /2 in the
(1,3) and (3,1) entries

Definition: A quadratic form @ : R" — R,
is diagonal if Ja diagonal matrix D € R*"*"
(easily studied) s.t. Q@ =Qp.

b 8 é'x No cross-terms!
a
QD(ZU: Yy, Z) —
— —
D @) b O |y CL.CL'2 _|_ by2 _I_ CZ2
0O 0 c]= 10




Diagonal quadratic forms

e.g.. Q(w,z,y, 2) = bw? — 222 + 4y? + 722
Q(xz,y) = 4a® + 2y?
non-e.qg.. Q(z,y) = 4z2 + 2y? — xy
Q(w,x,y,z) = 5w? — 222 + 4y? + wwz

matrix has =« /2 in the
(1,3) and (3,1) entries

SKILL:

Recognize whether a given
quadratic form is diagonal.
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Definition:
A matrix M is rotationally diagonalizable
if Jrotation C s.t. C'MC is diagonal and real.

I.e.: M is t-equivalent to a diagonal matrix
via a rotation matrix (on the right).

I.e.: drotation C s.t. C~1MC is diagonal.

I.e.. M is conjugate to a diagonal matrix
via a rotation matrix (on the right).

Goal:
Rotationally diagonalizable = symmetric

(To prove this, we'll need some prerequisites.)
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Fact: The eigenvalues of a symmetric (real)
matrix are always real.

Proof: Let P be a symmetric (real) matrix,

et z€ C, let v e CP*1\{0}
and assume that Pv = zw.

Want: z €R want: z =232

v#=0, s0v-07#0. dot product in C**1

z(v-0) = (2v) - 0= (Pv) D

=v-(Pv) =v-(2v) = 2Z(v-7)
2(7) = Z(v~7)

2 =17z QED -




Fact: If A, B € R" ™ are conjugate,
then A and B have
the same characteristic polynomial,
and the same eigenvalues.

Proof: Choose an invertible C € R"xn
such that B=CAC~ 1.

det(B — \I) = det(C(A = I)C~ D)

= [det(€)][det(A — AI)][det(e—H)]
= det(A — \I)

det(A — A1), det(B — A\I) have the same roots.
A, B have the same eigenvalues. QED
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Fact: The eigenvalues of an upper triangluar
matrix are its diagonal entries.

Proof (3 x 3 case):

‘a b c 1 O O
det O d e|l—AX|0 1 O
0 0 f. 0O 0 1.
a— A b c
— det O d— A\ e
O 0 f—A_

= (a—=A)(d—=N(f—A)
Eigenvalues: a, d, f QED
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Fact: Conjugation of a symmetric matrix
by an orthogonal matrix
vields a symmetric matrix.

Proof: Let P € R""™ be symmetric.
Let R € R*"*"™ be orthogonal.

Want: R~1PR is symmetric.
Pl=pP
Rt — R—l
wWant: (R-1PR)t = R~1PR.
(R~1PR)! = (R'PR)! = R'PR
= R-1PR

QED 16




Fact: Conjugation of a symmetric matrix
by an orthogonal matrix
vields a symmetric matrix.

Definition:
A matrix M is rotationally diagonalizable
if Jrotation C s.t. C'MC is diagonal and real.

Fact: Any rotationally diagonalizable matrix
is symmetric (and real).

The MOST IMPORTANT THEOREM
INn linear algebra

The Sp ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.

Proof later | "




The MOST IMPORTANT THEOREM
INn linear algebra
Definition:
A matrix M iIs rotationally diagonalizable

Diﬂnltlon:nn (Y et (CACY e Aj
| —r YL Al . i , gnnnnl nAa re
matrix M is rotatlonallly chagonaﬁzableal'

Tll_h_,elsp Ctra —[heoremﬂ i< Adiannan3y| and real
Any symmetric (real) matrix is '
rotationally diagonalizable.

The Sp-ctra Corollary:
Let @Q : R™ — R be a quadratic form.
TIT_hen_da rotation R:R" — R" s.t2EM
n 1@ o R is diagonal.
The Sp ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.
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The MOST IMPORTANT THEOREM
INn linear algebra

Definition:
A matrix M is rotationally diagonalizable
if Jrotation C s.t. C'MC is diagonal and real.
The Sp ctra Theore

Any symmetric (r
rotationally

1) matrix is
agonalizable.

Q R is dlagonal.

1 Q=0Qum
diagonal and reahbe\\R = L.

Qo R=QpoLc= Qgtpc IS diagonal. —

QED




The MOST IMPORTANT THEOREM
INn linear algebra

Definition:
A matrix M is rotationally diagonalizable
if Jrotation C s.t. C'MC' is diagonal and real.
The Sp-ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.

The Sp-ctra Corollary:

Let @Q : R™ — R be a quadratic form.
Then da rotation R: R" — R"™ s t.
() o R is diagonal.

T he idea: After chg. of var., any quad. form
can be made diagonal.

The idea: Any quadr. form is equivalent

20

to one that Is easily studied.




The Sp-ctra Corollary:
Let @Q : R™ — R be a quadratic form.
Then da rotation R: R" — R" s t.
() o R is diagonal.

Application: Graph z2 + 4zy + 2y2 = 2.

The Sp-ctra Corollary:
Let @Q : R™ — R be a quadratic form.
Then da rotation R: R" — R"™ s t.
() o R is diagonal.
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The Sp-ctra Corollary:

Let @Q : R™ — R be a quadratic form.
Then da rotation R: R" — R" s t.
() o R is diagonal.

Application: Graph z2 +

4dxy

+ 2y° = 2.

The idea: Graphing az? 4 by? = ¢ is

relatively easy.

The mixed term 4zy is the troublemaker term.

T he spectral theorem says we can
get rid of it, by rotating.

Specifically, ...
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The Sp-ctra Corollary:
Let @Q : R™ — R be a quadratic form.
Then da rotation R: R" — R" s t.
() o R is diagonal.

Application: Graph z2 + 4zy + 2y2 = 2.

By the Sp ctra Corollary,
Ja rotation R : R? — R?

s.t. (Qo R)(z,y) = ax? + by?,
3417 3—-+17

where a = 5 and b =

and where R can also be described explicitly.

Let D:=QoR, so D(z,y) = az? + by?.[ =




Q(R(x,y)) =2 iff D(z,y) =2
R(z,y) € {Q =2} iff (z,y) € {D =2}
Q@ =2} =R({D =2})
Graph az? + by? = 2, then rotate by R.
Application: Graph z? 4+ 4zy + 2y2 = 2.

By the Sp ctra Corollary,
Ja rotation R : R? — R?

s.t. (Qo R)(z,y) = ax? + by?,
3417 3—-+17

where a = 5 and b =

and where R can also be described explicitly.

Let D:=QoR, so D(z,y) = azx? + by?. [




Q(R(xz,y)) =2 iff D(x,y) =2
R(z,y) € {Q =2} iff (z,y) € {D =2}

Q@ =2} =R({D =2})
Graph az? + by? = 2, then rotate by R.

Application: Graph x2 + 4zy + 2y? = 2.
Graph of z2 + 4xzy + 2y2 = 2 is an hyperbola.
Graph of ax? + by? = 2 is an hyperbola.

a >0 b<O

34+ V17 3 —+17

a — and b =
2

and where R can also be described explicitly.

Let D:=QoR, so D(z,y) = az? + by?.[ =




Q(R(xz,y)) =2 iff D(x,y) =2
R(z,y) € {Q =2} iff (z,y) € {D =2}

Q@ =2} =R({D =2})
Graph az? + by? = 2, then rotate by R.

Application: Graph x2 + 4zy + 2y? = 2.
Graph of z2 + 4xzy + 2y2 = 2 is an hyperbola.
Graph of ax? + by? = 2 is an hyperbola.

a >0 b<O

34+ V17 3 —+17

a — and b =
2

and where R can also be described explicitly.

Next: How to find R, a and b7 26




Q(x,y) 1= 22 + 4y + 2y

Graph az? + by? = 2, then rotate by R.
~ Application: Graph z? 4 4zy 4 2y? = 2. W
Graph of z2 4 4zy + 2y2 = 2 is an hyperbola.
Graph of ax? + by? = 2 is an hyperbola.

a >0 b<O

34+ V17 3 —+17

a — and b =
2

and where R can also be described explicitly.

Next: How to find R, a and b7 27




Q(x,y) 1= 22 + 4y + 2y

We seek: a rotation R:R?2 - R? and a,b € R
s.t. (Qo R)(z,y) = ax? + by-.

Application: Graph x2 + 4zy + 2y? = 2.
Graph of z2 + 4xzy + 2y2 = 2 is an hyperbola.
Graph of ax? + by? = 2 is an hyperbola.

a >0 b<O

34+ V17 3 —+17

a — and b =
2

and where R can also be described explicitly.

Next: How to find R, a and b7 28




_______ Qz,y) ==z +4ay+24°

We seek: a rotation R:R?2 - R? and a,b € R
s.t. (Qo R)(z,y) = ax? + by-.

1 27 Qp(w,y) = 22 + day + 2y?
2 2]y = Q(z,y)
xp(A) =1 -2)(2-X) -4
= A2 —3)\-2
3+ V17 3—-V17
g

eigenvalues: a = 5 and b =

P =

Next: How to find R, a and b7 29




Q(x,y) 1= 22 + 4y + 2y

We seek: a rotation R:R?2 - R? and a,b € R
s.t. (Qo R)(z,y) = ax? + by-.

r Yy
po— |1 2|7 Qp(z,y) =22+ 4zy + 2y°
12 2]y = Q(z,y)
xp(A) =(1—=XA)(2-X)—4
=2 —-3\-2
| 34+ V17 3-V17
eigenvalues: a = 5 and b =

Fact: The eigenvalues of a symmetric (real)
matrix are always real. 0




Q(x,y) 1= 22 + 4y + 2y

We seek: a rotation R:R?2 - R? and a,b € R
s.t. (Qo R)(z,y) = ax? + by-.

T Y
p— |1 21" Qp(zy) =2+ 4zy+2y°
2 2y = Q(z,y)
, 34+ V17 3—17
eigenvalues: a = 5 and b =

Exercise: Find a rotation matrix Rg s.t. _—
eigenvalues: a :LRo(l’QO) IS an ai-elgenvgctor.
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Q(x,y) 1= 22 + 4y + 2y

We seek: a rotation R:R?2 - R? and a,b € R
s.t. (Qo R)(z,y) = ax? + by-.

T Y
p— |1 21" Qp(zy) =2+ 4zy+2y°
2 2]y = Q(z,y)
, 34+ V17 3—17
eigenvalues: a = 5 and b =

Exercise: Find a rotation matrix Rg s.t.
Lgr,(1,0) is an a-eigenvector.

1 1 4 1 1
PR = alR sO RA"PR = a
’lo °lo 0~ "o 0
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Fact: Conjugation of a symmetric matrix
by an orthogonal matrix
yields a symmetric matrix.

a a O

R-IPRy € R-IPRy €
0 0 0
\ 0 x eigenvall?es: a, b O ]

|1 2 Qp(z,y) = a2 + 4zy + 2y?
2 2 = Q(z,y)

, 34+ v17 3—V17
eigenvalues: a = 5 and b =

Exercise: Find a rotation matrix Rg s.t.
Lgr,(1,0) is an a-eigenvector.
1 1 1 1

PR = aRR so R5PR =
Olo| ~— "0 0 "0 ol T %0
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Fact: Conjugation of a symmetric matrix
by an orthogonal matrix
yields a symmetric matrix.

a a O

R-IPRy € R-IPRy €
0 0 0
\ 0 x eigenvall?es: a, b L0 b

|1 2 Qp(z,y) = a2 + 4zy + 2y?
2 2 = Q(z,y)

, 34+ v17 3—V17
eigenvalues: a = 5 and b =

Exercise: Find a rotation matrix Rg s.t.
Lgr,(1,0) is an a-eigenvector.
1 1 1 1

PR = aRR so R5PR =
Olo| ~— "0 0 "0 ol T %0
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QP(xay) — Q(xay)

o &
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Qp(xay) — Q(xay)

= B Do | r Y
QOR:QPOLRO '\\R_]_PRO: a O|x
:QREPRO O O by
= @D,

(Q o R)(z,y) = Qp,(x,y) = ax? + by?

We seek: a rotation R:R?2 - R? and a,beR
s.t. (Qo R)(x,y) = ax? + by?.
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Fact: A direct sum of
rotationally diagonalizable matrices
IS rotationally diagonalizable.

Proof: Say C =

4 0
0 B

with A, B rotationally diagonalizable.
Want: ' is rotationally diagonalizable.

Fix rotations X and Y s.t.
Y —1BY are diagonal.

X—l_AX ang
X
Let Z 1= 0 .
— O Y-
' X—lAXx
Then Z=1Ccz = 5

Then Z—1CZ is diagonal.

T hen Z iIs a rotation.

0
Y~IBY |’

QED 37




Fact: Any rotationally diagonalizable matrix
is symmetric (and real).

The Sp ctra Theorem:
Any symmetric (real) matrix is

rotationally diagonalizable.
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The Sp-ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.

Proof (in the 3 x 3 case, given the 2 x 2 case):

The Sp ctra Theorem:

Any symmetric (real) matrix is
rotationally diagonalizable.
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The Sp-ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.

Proof (in the 3 x 3 case, given the 2 x 2 case):

et § € R3%3 be a symmetric matrix.
_et a be an eigenvalue of S. Then a € R.
et v € R3%1 be an a-eigenvector of S
s.t. Jv| = 1.
Let e; € R3%! have entries 1,0, 0.
Let R be a rotation matrix s.t. Re; = v.
SRe1 = Sv = av = aReq
R 1SReq = aey

a [*] [*

X X

lelsR €

40
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The Sp-ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.

Proof (in the 3 x 3 case, given the 2 x 2 case):

et § € R3%3 be a symmetric matrix.
_et a be an eigenvalue of S. Then a € R.
et v € R3%1 be an a-eigenvector of S
s.t. Jv| = 1.
Let e; € R3%! have entries 1,0, 0.
Let R be a rotation matrix s.t. Re; = v.
SRe1 = Sv = av = aReq
R 1SReq = aey

a

lelsR €

41
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The Sp-ctra Theorem:
Any symmetric (real) matrix is
rotationally diagonalizable.

Proof (in the 3 x 3 case, given the 2 x 2 case):

et S € R3%3 be a symmetric matrix.
_et jJa be an eigenvalue of S. Then a € R.
et/ v € R3%1 be an a-eigenvector of S

s.t. Jv| = 1.
L¢t e € R3%1 have entries 1,0, 0.
et R be a rotation matrix S.t. Req1 = .

SRe1 = Sv = av = aReq [symmetric, so
—1 rotationally
LL__Shey = ae; diagonall |diagonalizable
rotationally = —
dlago\n?llzable ‘a O O] \ " _
C
R_]'SR =10 b c | = [a] D QED
F A c d 42
symmetric 0O ¢ d - -




