Financial Mathematics The Spectral Theorem

The Spectral Theorem

Rotations and reflections

Definition: An orthogonal matrix

is a matrix $R \in \mathbb{R}^{n \times n}$ s.t. $RR^t = R^tR = I$.

real square

I.e.: R is distance-preserving

I.e.: R is dot-product-preserving

Rotations and reflections

Fact: If R is an orthogonal matrix, then either det(R) = 1 or det(R) = -1.

Proof: $[\det(R)]^2 = [\det(R)][\det(R^t)]$ = $\det(RR^t) = \det(I) = 1.QED$

of determinant 1 called a rotation.

An orthogonal matrix

of determinant -1 called a reflection.

Definitions: An orthogonal matrix

A lin. transf. $L: \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if $L = L_M$ for some orthogonal $M \in \mathbb{R}^{n \times n}$.

A lin. transf. $L: \mathbb{R}^n \to \mathbb{R}^n$ is a **rotation** if $L = L_M$ for some rotation $M \in \mathbb{R}^{n \times n}$.

A lin. transf. $L: \mathbb{R}^n \to \mathbb{R}^n$ is a **reflection** if $L = L_M$ for some reflection $M \in \mathbb{R}^{n \times n}$.

3

Change of variables for quadratic forms Definition:

For any symmetric matrix $S \in \mathbb{R}^n$, the quadratic form $Q_S : \mathbb{R}^n \to \mathbb{R}$ is def'd by $Q_S(v) = (L_S(v)) \cdot v$.

- Polarization: \forall quadratic forms $Q: \mathbb{R}^n \to \mathbb{R}$, \exists unique symmetric $S \in \mathbb{R}^{n \times n}$ s.t. $Q = Q_S$.
- Def'n: Quadratic forms $Q, Q' : \mathbb{R}^n \to \mathbb{R}$ are equivalent if \exists invertible linear $L : \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q' = Q \circ L$.

Change of variables for quadratic forms

Definition:

For any symmetric matrix $S \in \mathbb{R}^n$, the quadratic form $Q_S : \mathbb{R}^n \to \mathbb{R}$ is def'd by $Q_S(v) = (L_S(v)) \cdot v$.

Fact: Let $X, S \in \mathbb{R}^{n \times n}$.

Assume S is symmetric.

Then $Q_S \circ L_X = Q_{X^t S X}$.

motivation, then pf

Polarization: \forall quadratic forms $Q: \mathbb{R}^n \to \mathbb{R}$, \exists unique symmetric $S \in \mathbb{R}^{n \times n}$ s.t. $Q = Q_S$.

Def'n: Quadratic forms $Q, Q' : \mathbb{R}^n \to \mathbb{R}$ are equivalent if \exists invertible linear $L : \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q' = Q \circ L$.

Change of variables for quadratic forms

Definition:

For any symmetric matrix $S \in \mathbb{R}^n$, the quadratic form $Q_S : \mathbb{R}^n \to \mathbb{R}$ is def'd by $Q_S(v) = (L_S(v)) \cdot v$.

Fact: Let $X, S \in \mathbb{R}^{n \times n}$.

Assume S is symmetric.

Then $Q_S \circ L_X = Q_{X^t S X}$.

motivation, then pf

The idea: Quadratic forms are equivalent iff their matrices are "t-equivalent".

Definition: $S, S' \in \mathbb{R}^{n \times n}$ are t-equivalent if \exists invertible $X \in \mathbb{R}^{n \times n}$ s.t. $S' = X^t S X$.

"S and S' are t-equivalent via X (on the right)"

Change of variables for quadratic forms

Definition:

For any symmetric matrix $S \in \mathbb{R}^n$, the quadratic form $Q_S : \mathbb{R}^n \to \mathbb{R}$ is def'd by

$$Q_S(v) = (L_S(v)) \cdot v.$$

Fact: Let $X, S \in \mathbb{R}^{n \times n}$.

Assume S is symmetric.

Then $Q_S \circ L_X = Q_{X^t S X}$.

$$\begin{array}{cccc} \text{replace} & \text{replace} \\ S & \text{by} & v & \text{by} \\ X^tSX & L_X(v) \\ \text{motivation,} \\ \text{then pf} \end{array}$$

Proof:
$$(Q_S \circ L_X)(v) \neq Q_S(L_X(v))$$

$$= [L_S(L_X(v))] \cdot [L_X(v)]$$

$$= [L_{Xt}(L_S(L_X(v)))] \cdot v$$

$$= [L_{X^t S X}(v)] \cdot v$$

$$\stackrel{\boldsymbol{\cdot}}{=} Q_{X^tSX}(v)$$

Change of variables for quadratic forms Definition:

For any symmetric matrix $S \in \mathbb{R}^n$, the quadratic form $Q_S : \mathbb{R}^n \to \mathbb{R}$ is def'd by $Q_S(v) = (L_S(v)) \cdot v$.

Fact: Let $X, S \in \mathbb{R}^{n \times n}$.

Assume S is symmetric.

Then $Q_S \circ L_X = Q_{X^t S X}$.

SKILL: Given S and X, produce a matrix N such that $Q_S \circ L_X = Q_N$.

WARNING:

 $N = X^t S X$, not $X S X^t$.

Diagonal quadratic forms

Definition:

For any symmetric matrix $S \in \mathbb{R}^n$, the quadratic form $Q_S : \mathbb{R}^n \to \mathbb{R}$ is def'd by $Q_S(v) = (L_S(v)) \cdot v$.

- Polarization: \forall quadratic forms $Q: \mathbb{R}^n \to \mathbb{R}$, \exists unique symmetric $S \in \mathbb{R}^{n \times n}$ s.t. $Q = Q_S$.
- Definition: A quadratic form $Q: \mathbb{R}^n \to \mathbb{R}$, is diagonal if \exists a diagonal matrix $D \in \mathbb{R}^{n \times n}$ (easily studied) s.t. $Q = Q_D$.

$$D = \begin{bmatrix} x & y & z \\ a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{matrix} x \\ y \\ z \end{matrix} \Rightarrow \begin{cases} No \text{ cross-terms!} \\ Q_D(x, y, z) = \\ ax^2 + by^2 + cz^2 \end{cases}$$

Diagonal quadratic forms

e.g.:
$$Q(w,x,y,z)=5w^2-2x^2+4y^2+\pi z^2$$
 $Q(x,y)=4x^2+2y^2$ non-e.g.: $Q(x,y)=4x^2+2y^2-xy$ $Q(w,x,y,z)=5w^2-2x^2+4y^2+\pi wz$ matrix has $\pi/2$ in the $(1,3)$ and $(3,1)$ entries

Definition: A quadratic form $Q: \mathbb{R}^n \to \mathbb{R}$, is **diagonal** if \exists a diagonal matrix $D \in \mathbb{R}^{n \times n}$ (easily studied) s.t. $Q = Q_D$.

$$D = \begin{bmatrix} x & y & z \\ a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{matrix} x \\ y \\ z \end{matrix} \Rightarrow \begin{cases} \text{No cross-terms!} \\ Q_D(x, y, z) = \\ ax^2 + by^2 + cz^2 \end{bmatrix}$$

Diagonal quadratic forms

e.g.:
$$Q(w,x,y,z)=5w^2-2x^2+4y^2+\pi z^2$$
 $Q(x,y)=4x^2+2y^2$ non-e.g.: $Q(x,y)=4x^2+2y^2-xy$ $Q(w,x,y,z)=5w^2-2x^2+4y^2+\pi wz$ matrix has $\pi/2$ in the $(1,3)$ and $(3,1)$ entries

SKILL:

Recognize whether a given quadratic form is diagonal.

Definition:

A matrix M is rotationally diagonalizable if \exists rotation C s.t. C^tMC is diagonal and real.

- *I.e.*: M is t-equivalent to a diagonal matrix via a rotation matrix (on the right).
- *I.e.*: \exists rotation C s.t. $C^{-1}MC$ is diagonal.
- I.e.: M is conjugate to a diagonal matrix via a rotation matrix (on the right).

Goal:

Rotationally diagonalizable = symmetric

(To prove this, we'll need some prerequisites.)

Fact: The eigenvalues of a symmetric (real) matrix are always real.

Proof: Let P be a symmetric (real) matrix, let $z \in \mathbb{C}$, let $v \in \mathbb{C}^{n \times 1} \setminus \{0\}$ and assume that Pv = zv.

Want:
$$z \in \mathbb{R}$$
 Want: $z = \overline{z}$

$$v \neq 0$$
, so $v \cdot \overline{v} \neq 0$. dot product in $\mathbb{C}^{n \times 1}$

$$P\overline{v} = \overline{P}\overline{v} = \overline{Pv} = \overline{z}\overline{v} = \overline{z}\overline{v}$$

$$z(v \cdot \overline{v}) = (zv) \cdot \overline{v} = (Pv) \cdot \overline{v} = v \cdot (P\overline{v}) = v \cdot (\overline{z}\overline{v}) = \overline{z}(v \cdot \overline{v})$$

$$z(v\cdot \overline{v}) = \overline{z}(v\cdot \overline{v})$$

$$z = \bar{z}$$
 QED

Fact: If $A, B \in \mathbb{R}^{n \times n}$ are conjugate, then A and B have the same characteristic polynomial, and the same eigenvalues.

Proof: Choose an invertible $C \in \mathbb{R}^{n \times n}$ such that $B = CAC^{-1}$.

$$[\det(C)][\det(C^{-1})] = \det(CC^{-1}) = \det(I) = 1$$

$$det(B - \lambda I) = det(C(A - \lambda I)C^{-1})$$
$$= [det(C)][det(A - \lambda I)][det(C^{-1})]$$
$$= det(A - \lambda I)$$

 $\det(A - \lambda I)$, $\det(B - \lambda I)$ have the same roots. A, B have the same eigenvalues. QED

Fact: The eigenvalues of an upper triangluar matrix are its diagonal entries.

Proof $(3 \times 3 \text{ case})$:

$$\det \left(\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$

$$= \det \begin{bmatrix} a - \lambda & b & c \\ 0 & d - \lambda & e \\ 0 & 0 & f - \lambda \end{bmatrix}$$

$$= (a - \lambda)(d - \lambda)(f - \lambda)$$

Eigenvalues: a, d, f QED

Fact: Conjugation of a symmetric matrix by an orthogonal matrix yields a symmetric matrix.

Proof: Let $P \in \mathbb{R}^{n \times n}$ be symmetric. Let $R \in \mathbb{R}^{n \times n}$ be orthogonal.

Want: $R^{-1}PR$ is symmetric. $P^t = P$ $R^t = R^{-1}$

Want: $(R^{-1}PR)^t = R^{-1}PR$.

$$(R^{-1}PR)^t = (R^tPR)^t = R^tPR$$
$$= R^{-1}PR$$

Fact: Conjugation of a symmetric matrix by an orthogonal matrix yields a symmetric matrix.

Definition:

A matrix M is rotationally diagonalizable if \exists rotation C s.t. C^tMC is diagonal and real.

Fact: Any rotationally diagonalizable matrix is symmetric (and real).

The MOST IMPORTANT THEOREM in linear algebra

The Spectral Theorem:

Any symmetric (real) matrix is rotationally diagonalizable.

Proof later

The MOST IMPORTANT THEOREM in linear algebra

Definition:

A matrix M is rotationally diagonalizable Definition C of C^tMC is diagonal and real. A matrix M is rotationally diagonalizable The Spectral Theorem C is diagonal and real. Any symmetric (real) matrix is rotationally diagonalizable.

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t. $\vdash \bowtie$ in $IirQ \circ R$ is diagonal.

The Spectral Theorem:

Any symmetric (real) matrix is rotationally diagonalizable.

The MOST IMPORTANT THEOREM in linear algebra

Definition:

A matrix M is rotationally diagonalizable if $\exists \text{rotation } C$ s.t. $C^t M\!\!\!/ C$ is diagonal and real.

The Spectral Theorem:

Any symmetric (real) matrix is rotationally diagonalizable.

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q \circ R$ is diagonal.

Pf: M := Q[

 C^tMC is diagonal and real. Let $R:=L_C$. $Q\circ R=Q_M\circ L_C=Q_{C^tMC}$ is diagonal.

The MOST IMPORTANT THEOREM in linear algebra

Definition:

A matrix M is rotationally diagonalizable if \exists rotation C s.t. C^tMC is diagonal and real.

The Spectral Theorem:

Any symmetric (real) matrix is rotationally diagonalizable.

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form.

Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t.

 $Q \circ R$ is diagonal.

The idea: After chg. of var., any quad. form can be made diagonal.

The idea: Any quadr. form is equivalent to one that is easily studied.

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q \circ R$ is diagonal.

Application: Graph $x^2 + 4xy + 2y^2 = 2$.

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q \circ R$ is diagonal.

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q \circ R$ is diagonal.

Application: Graph
$$x^2 + 4xy + 2y^2 = 2$$
.

The idea: Graphing $ax^2 + by^2 = c$ is relatively easy.

The mixed term 4xy is the troublemaker term.

The spectral theorem says we can get rid of it, by rotating.

Specifically, . . .

The Spectral Corollary:

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then \exists a rotation $R: \mathbb{R}^n \to \mathbb{R}^n$ s.t. $Q \circ R$ is diagonal.

Application: Graph
$$x^2 + 4xy + 2y^2 = 2$$
.

$$Q(x,y) := x^2 + 4xy + 2y^2$$

By the Spectral Corollary,

$$\exists$$
a rotation $R: \mathbb{R}^2 \to \mathbb{R}^2$

s.t.
$$(Q \circ R)(x, y) = ax^2 + by^2$$
,

where
$$a = \frac{3 + \sqrt{17}}{2}$$
 and $b = \frac{3 - \sqrt{17}}{2}$

and where R can also be described explicitly.

Let $D := Q \circ R$, so $D(x,y) = ax^2 + by^2$.

Application: Graph
$$x^2 + 4xy + 2y^2 = 2$$
.
$$Q(x,y) := x^2 + 4xy + 2y^2$$
 By the Spectral Corollary,

Q(R(x,y)) = 2 iff D(x,y) = 2

 $R(x,y) \in \{Q=2\} \text{ iff } (x,y) \in \{D=2\}$

 ${Q = 2} = R({D = 2})$

Graph $ax^2 + by^2 = 2$, then rotate by R.

 \exists a rotation $R: \mathbb{R}^2 \to \mathbb{R}^2$

where $a = \frac{3 + \sqrt{17}}{2}$ and $b = \frac{3 - \sqrt{17}}{2}$

s.t. $(Q \circ R)(x,y) = ax^2 + by^2$,

and where R can also be described explicitly. Let $D := Q \circ R$, so $D(x,y) = ax^2 + by^2$.

Graph
$$ax^2 + by^2 = 2$$
, then rotate by R .
Application: Graph $x^2 + 4xy + 2y^2 = 2$.
Graph of $x^2 + 4xy + 2y^2 = 2$ is an hyperbola.

Graph of $ax^2 + by^2 = 2$ is an hyperbola.

b < 0

Q(R(x,y)) = 2 iff D(x,y) = 2

 $R(x,y) \in \{Q=2\} \text{ iff } (x,y) \in \{D=2\}$

 ${Q = 2} = R({D = 2})$

$$a = \frac{3+\sqrt{17}}{2} \text{ and } b = \frac{3-\sqrt{17}}{2}$$
 and where R can also be described explicitly.

a > 0

Let $D := Q \circ R$, so $D(x,y) = ax^2 + by^2$.

$$Q(R(x,y)) = 2$$
 iff $D(x,y) = 2$
 $R(x,y) \in \{Q=2\}$ iff $(x,y) \in \{D=2\}$
 $\{Q=2\} = R(\{D=2\})$
Graph $ax^2 + by^2 = 2$, then rotate by R .
Application: Graph $x^2 + 4xy + 2y^2 = 2$.

Graph of
$$x^{2} + 4xy + 2y^{2} = 2$$
 is an hyperbola.

Graph of
$$ax^2 + by^2 = 2$$
 is an hyperbola.

$$a > 0 \qquad \qquad b < 0$$

$$a = \frac{3 + \sqrt{17}}{2} \text{ and } b = \frac{3 - \sqrt{17}}{2}$$

and where R can also be described explicitly.

26 Next: How to find R, a and b?

$$Q(x,y) := x^2 + 4xy + 2y^2$$

Graph
$$ax^2 + by^2 = 2$$
, then rotate by R .

Application: Graph
$$x^2 + 4xy + 2y^2 = 2$$
.

Graph of
$$x^2 + 4xy + 2y^2 = 2$$
 is an hyperbola.

Graph of $ax^2 + by^2 = 2$ is an hyperbola.

$$a > 0$$
 $b < 0$

$$a = \frac{3 + \sqrt{17}}{2}$$
 and $b = \frac{3 - \sqrt{17}}{2}$

and where ${\cal R}$ can also be described explicitly.

Next: How to find R, a and b?

$$Q(x,y) := x^2 + 4xy + 2y^2$$

Application: Graph
$$x^2 + 4xy + 2y^2 = 2$$
.

Graph of
$$x^2 + 4xy + 2y^2 = 2$$
 is an hyperbola.

Graph of $ax^2 + by^2 = 2$ is an hyperbola.

$$a > 0$$
 $b < 0$

$$a = \frac{3 + \sqrt{17}}{2}$$
 and $b = \frac{3 - \sqrt{17}}{2}$

and where ${\cal R}$ can also be described explicitly.

Next: How to find R, a and b?

28

$$Q(x,y) := x^2 + 4xy + 2y^2$$

$$P := \begin{bmatrix} x & y \\ 1 & 2 \\ 2 & 2 \end{bmatrix} x \qquad Q_P(x,y) = x^2 + 4xy + 2y^2$$

$$= Q(x,y)$$

$$\chi_P(\lambda) = (1-\lambda)(2-\lambda) - 4$$

$$= \lambda^2 - 3\lambda - 2$$
eigenvalues: $a = \frac{3+\sqrt{17}}{2}$ and $b = \frac{3-\sqrt{17}}{2}$

Next: How to find R, a and b?

$$Q(x,y) := x^2 + 4xy + 2y^2$$

$$P := \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} x \qquad Q_P(x,y) = x^2 + 4xy + 2y^2 \\ = Q(x,y) \qquad = Q(x,y)$$

$$\chi_P(\lambda) = (1 - \lambda)(2 - \lambda) - 4 \\ = \lambda^2 - 3\lambda - 2$$
eigenvalues: $a = \frac{3 + \sqrt{17}}{2}$ and $b = \frac{3 - \sqrt{17}}{2}$

Fact: The eigenvalues of a symmetric (real) matrix are always real.

$$Q(x,y) := x^2 + 4xy + 2y^2$$

$$P := \begin{bmatrix} x & y \\ 1 & 2 \\ 2 & 2 \end{bmatrix} x \qquad Q_P(x,y) = x^2 + 4xy + 2y^2 \\ = Q(x,y)$$
 eigenvalues: $a = \frac{3 + \sqrt{17}}{2}$ and $b = \frac{3 - \sqrt{17}}{2}$ Exercise: Find a rotation matrix R_0 s.t. eigenvalues: $a : L_{R_0}(1,0)$ is an a -eigenvector.

$$Q(x,y) := x^2 + 4xy + 2y^2$$

$$P:=\begin{bmatrix}x&y\\1&2\\2&2\end{bmatrix}^{x}\qquad Q_{P}(x,y)=x^{2}+4xy+2y^{2}\\=Q(x,y)$$
 eigenvalues: $a=\frac{3+\sqrt{17}}{2}$ and $b=\frac{3-\sqrt{17}}{2}$

Exercise: Find a rotation matrix R_0 s.t.

$$L_{R_0}(1,0) \text{ is an } a\text{-eigenvector.}$$

$$PR_0\begin{bmatrix}1\\0\end{bmatrix}=aR_0\begin{bmatrix}1\\0\end{bmatrix}\text{ so } R_0^{-1}PR_0\begin{bmatrix}1\\0\end{bmatrix}=a\begin{bmatrix}1\\0\end{bmatrix}$$

Fact: Conjugation of a symmetric matrix by an orthogonal matrix yields a symmetric matrix.

$$R_0^{-1}PR_0 \in \begin{bmatrix} a & * \\ 0 & * \end{bmatrix}$$
 $R_0^{-1}PR_0 \in \begin{bmatrix} a & 0 \\ 0 & * \end{bmatrix}$ eigenvalues: a, b

$$P := \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \qquad \begin{aligned} Q_P(x,y) &= x^2 + 4xy + 2y^2 \\ &= Q(x,y) \end{aligned}$$
 eigenvalues: $a = \frac{3 + \sqrt{17}}{2}$ and $b = \frac{3 - \sqrt{17}}{2}$

Exercise: Find a rotation matrix R_0 s.t. $L_{R_0}(1,0)$ is an a-eigenvector.

$$PR_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = aR_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ so } R_0^{-1} PR_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $Q_P(x,y) = x^2 + 4xy + 2y^2$

Fact: Conjugation of a symmetric matrix by an orthogonal matrix yields a symmetric matrix.

$$R_0^{-1}PR_0 \in \begin{bmatrix} a & * \\ 0 & * \end{bmatrix}$$
 $R_0^{-1}PR_0 \in \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ eigenvalues: a, b

$$P := \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \qquad \begin{aligned} Q_P(x,y) &= x^2 + 4xy + 2y^2 \\ &= Q(x,y) \end{aligned}$$
 eigenvalues: $a = \frac{3 + \sqrt{17}}{2}$ and $b = \frac{3 - \sqrt{17}}{2}$

Exercise: Find a rotation matrix R_0 s.t. $L_{R_0}(1,0)$ is an a-eigenvector.

$$PR_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = aR_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ so } R_0^{-1} PR_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $Q_P(x,y) = x^2 + 4xy + 2y^2$

$$Q_P(x,y) = Q(x,y)$$

$$R_0^{D_0} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

$$Q_P(x, y)$$

$$= Q(x, y)$$

$$a = \frac{3 + \sqrt{17}}{2} \text{ and } b = \frac{3 - \sqrt{17}}{2}$$

$$a = \frac{3 + \sqrt{17}}{2}$$
 and $b = \frac{3 - \sqrt{17}}{2}$

$$Q_{P}(x,y) = Q(x,y)$$

$$R := L_{R_{0}}$$

$$Q \circ R = Q_{P} \circ L_{R_{0}}$$

$$= Q_{R_{0}^{t}PR_{0}}$$

$$= Q_{D_{0}}$$

$$D_{0}$$

$$R_{0}^{-1}PR_{0} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} y$$

$$= Q_{D_{0}}$$

$$(Q \circ R)(x,y) = Q_{D_0}(x,y) = ax^2 + by^2$$

We seek: a rotation $R: \mathbb{R}^2 \to \mathbb{R}^2$ and $a,b \in \mathbb{R}$

Fact: A direct sum of rotationally diagonalizable matrices is rotationally diagonalizable.

Proof: Say
$$C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$
,

with A, B rotationally diagonalizable. Want: C is rotationally diagonalizable.

Fix rotations X and Y s.t. $X^{-1}AX$ and $Y^{-1}BY$ are diagonal.

Let
$$Z := \begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$$
. Then Z is a rotation.

Then
$$Z^{-1}CZ = \begin{bmatrix} X^{-1}AX & 0 \\ 0 & Y^{-1}BY \end{bmatrix}$$
.

Then $Z^{-1}CZ$ is diagonal.

37

Fact: Any rotationally diagonalizable matrix is symmetric (and real).

The Spectral Theorem:

Any symmetric (real) matrix is rotationally diagonalizable.

Any symmetric (real) matrix is rotationally diagonalizable.

Proof (in the 3×3 case, given the 2×2 case):

The Spectral Theorem:

Any symmetric (real) matrix is rotationally diagonalizable.

Any symmetric (real) matrix is rotationally diagonalizable.

Proof (in the 3×3 case, given the 2×2 case):

Let $S \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix.

Let a be an eigenvalue of S. Then $a \in \mathbb{R}$. Let $v \in \mathbb{R}^{3 \times 1}$ be an a-eigenvector of S

s.t.
$$|v|=1$$
.
Let $e_1 \in \mathbb{R}^{3 \times 1}$ have entries $1,0,0$.

Let R be a rotation matrix s.t. $Re_1 = v$. $SRe_1 = Sv = av = aRe_1$ $R^{-1}SRe_1 = ae_1$

Any symmetric (real) matrix is rotationally diagonalizable.

Proof (in the 3×3 case, given the 2×2 case):

Let $S \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix.

Let a be an eigenvalue of S. Then $a \in \mathbb{R}$. Let $v \in \mathbb{R}^{3 \times 1}$ be an a-eigenvector of S

s.t.
$$|v|=1$$
.
Let $e_1 \in \mathbb{R}^{3 \times 1}$ have entries $1,0,0$.

Let R be a rotation matrix s.t. $Re_1 = v$. $SRe_1 = Sv = av = aRe_1$

$$R^{-1}SRe_1 = ae_1$$

$$\frac{R^{-1}SR}{\text{metric}} \in \begin{bmatrix} a & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$

Any symmetric (real) matrix is rotationally diagonalizable.

Proof (in the 3×3 case, given the 2×2 case):

Let $S \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix. Let a be an eigenvalue of S. Then $a \in \mathbb{R}$.

Let $v \in \mathbb{R}^{3 \times 1}$ be an a-eigenvector of S s.t. |v| = 1.

Let $e_1 \in \mathbb{R}^{3 \times 1}$ have entries 1, 0, 0.

Let R be a rotation matrix s.t. $Re_1 = v$.

 $SRe_1 = Sv = av = aRe_1$ symmetric, so rotationally $R_{-1}^{-1}SRe_1 = ae_1$ diagonal diagonalizable rotationally diagonalizable