Financial Mathematics
Multivariable polynomial approximation




Single variable linear approximation
f(x) =e*  f(3) =e3=20.08553692
Problem: Approximate f(3.01).

Fl(z) = et f'(3) = e3 = 20.08553692

£(3.01) ~ [20.08553692]+[20.08553692][0.01]
— 20.28639229

£(3.01) = 391 = 20.28739993

First order Taylor approx:

f(3.01) = f(3+0.01) ~ [f(3)] + [f'(3)][0.01]

2




y = f(z) =€
f(z) =§x .

Cy =[] + 3]zl

f(3.01) = f(3+0.01) = [f(3)] + [f'(3)][0.01]




y = f(z) =€
f(z) =§x .

oy =R+ )]l

f(3.01) = f(3+0.01) = [f(3)] + [f'(3)][0.01]




Multivariable linear approximation

f(x,y) = sin((z + 2y — 2)e3Y)
f(0,1) =sin(0) =0

Problem: Approximate f(0.01,1.02).
Idea: Find L :R? = R linear
s.t. [f(O+h, 14+ k)] —[F(O,1)] = L(h, k).

[/(0.01,1.02)] - [£(9, 1)] ~ L(0.01,0.02).
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Multivariable linear approximation
f(z,y) = sin((z 4+ 2y — 2)e3Y)
£(0,1) =sin(0) =0
Problem: Approximate f(0.01,1.02).
Idea: Find L:R?2 5 R linear
St [F0+ 14 B)] = [0, 1)] ~ L(h, k).
[f£(0.01, 1)] — [f(OS 1)] = L(O 01 0)
o 272777
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Multivariable linear approximation

f(x,y) = sin((z + 2y — 2)e3Y)
£(0,1) =sin(0) =0

Problem: Approximate f(0.01,1.02).

Idea: Find L :R? — R linear
s.t. [f(O+h,1+ /g)] — [f(0,1)] = L(h, lg)-

[f(0.01,1)] - [£(0,1)] ~ L(0.01,0).

f1(x) == f(z, Ly=sin(ze3) = sin(e3x)
L1 (h)~=ELh0) Watrt—L1(0.01)

[f1(0+h)] = [f1(0)] = L1(h). 7




Multivariable linear approximation
Generally: [g(z + h)] — [g(x)] = [¢'(z)]h

[f1(0 4+ r)] = [f1(0)] = [f1(0)]A
e

W Li(h) = [/ ()]
fi(af:) — [cos(e> e°]
f1(0) =3

L1(h) = e3h
L1(0.01) = [20.08553692][0.01

F1(2) = f(z.1) = sin(zed) Q\im(e%)
L1(h) := L(h,0) Want: \L1(0.01)

[f1(0+h)] = [f1(0)] = L1(h).




Multivariable linear approximation
Generally: [g(z + h)] — [9(=)] = [¢'(x)]h
[f1(0 + h)] — [f1(0)] = [f1(0)]A

Li(h) = [f1(0)]h

(@) = cos(e)][e?

f10)=e= |Llh@]| = Elf@D]]
L1(h) = e3h @) = Ha D |
L1(0.01) = [20.08553692][0.01]

1(0.01,0.02) = [L(0.01,0)] + [L(0,0.02)].

277277  0.2008553692 27777 [




Multivariable linear approximation
f(z,y) = sin((z 4 2y — 2)e3Y)
f(0,1) =sin(0) =0
Problem: Approximate f(0.01,1.02).
Idea: Find L :R? — R linear

s.t. [f(O+h,14+k)]—1[f(0,1)] =~ L(h,k).

[£(0.01,1.02)] — [£(0,1)] ~ L(0.01,0.02).

——

0 rarararar:

1(0.01,0.02) = [L(0.01,0)] + [L(0,0.02)].

227277  0.2008553692 27777 [




Multivariable linear approximation
f(z,y) = sin((z 4+ 2y — 2)e3Y)
£(0,1) =sin(0) =0
Problem: Approximate f(0.01,1.02).
Idea: Find L:R?2 5 R linear

St [0+ h 14 K)] = [0, )] ~ L(h,k).

[£(0,1.02)] — [f(OS 1)] = L(O 0. 02)
o 272777

1.(0.01,0.02) = [L(0.01,0)] +[}*Q, 0.02)].

27277  0.2008553692 277771




Multivariable linear approximation

f(x,y) = sin((z + 2y — 2)e3Y)
£(0,1) =sin(0) =0

Problem: Approximate f(0.01,1.02).

Idea: Find L :R? — R linear
s.t. [f(0+ h, 1+ k)] —[f(0,1)] = L(g, k).

[£(0.1.02)] — [£(0, 1)] ~ L(0,0.02).

f2(y) 1= f(0,y) =sin((2y — 2)e3Y)
Lo(k)-=E5L0%) Want=L,(0.02)

[f2(1 + k)] — [f2(1)] = La(k). 12




Multivariable linear approximation

Generally: [g(y 4+ k)] — [9(y)] = [¢'(»)]k
[fo(1 4 k)] — [f2(1)] = [f5(1)]k

Lo(k) = [f2(1)]k

5 (y) = [cos((2y — 2)e3¥)][2e3Y + (2y — 2)3e3Y]
f5(1) = 2¢3
Lo(k) = 23k

L~(0.02) = [40.17107385][0.02]

f2(y) := f(0,y) = sin((2y — 2)e?)
Lz(k) L= L(O, ]f) Want: LQ(O.OQ)

[f2(1 + k)] — [f2(1)] = La(k). 13




Multivariable linear approximation

Generally: [g(y 4+ k)] — [9(y)] = [¢'(»)]k
[fo(1 4 k)] — [f2(1)] = [f5(1)]k

Lo(k) = [f2(1)]k

\ 5 (y) = [cos((2y — 2)e3¥)][2e3Y + (2y — 2)3e3Y] \
f5(1) = 263 — [%[fQ(y)]]y:—ﬂ: [%[f(o’y)]}y

Lo(k) = 2e3k f2(y) = £(0,)
15(0.02) = [40.17107385][0.02]

—1

L(0.01,0.02) = [L(0.01,0)] + [L(0, 0.02)].
27277  0.2008553692 0.8034214770
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Multivariable linear approximation

f(x,y) = sin((z + 2y — 2)e3Y)
£(0,1) =sin(0) =0

Problem: Approximate f(0.01,1.02).
Idea: Find L :R? — R linear
st [f(O+h, 1+ k)] —[f(0,1)] = L(h, k).

[£(0.01,1.02)] — [f(0,1)] ~ L(0.01,0.02).
0 (@
£(0.01,0.02) = [L(0.01,0)] + [L(0,0.02)].

27277  0.2008553692 0.8034214770
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Multivariable linear approximation

Generally: [g(O+4+ h,1 4+ k)] — [¢(0,1)]
&

ah + bk,
7\

y _
d—[g(O,y)]
ay _
Next: Rephrase these,

INn terms of “partial derivatives’. ..

“lg(e, 1]

x.—0 y.—1

Generally: [9(z + h)] — [9(2)] = [¢'(2)]h




Multivariable linear approximation

Let g be a function from (part of) R? to R.
Definition: The partial derivative (or partial)

of g(x,y) with respect to z is

0
%[9(% )]

M
h—0

lg(z + h,y)] — [9(z, y)]

h

Definition: The partial derivative (or partial)
of g with respect to the first variable is
the function 019 defined by

(019)(z, y)

lim
h—Q

lg(z + h,y)] — [9(z,y)]

h

17




Multivariable linear approximation

Let g be a function from (part of) R? to R.
Definition: The partial derivative (or partial)

of g(x,y) with respect to vy is

0
8—y[g(w,y)]

lm
k—0O

lg(x,y + k)] — [9(z,y)]

k

Definition: The partial derivative (or partial)
of g with respect to the second variable is
the function 0>gdefined by

(929) (x, y)

lim
k—0O

lg(x,y + k)] — [9(x,y)]

k

18




Multivariable linear approximation

Generally: [g(O+4+ h,1 4+ k)] — [¢(0,1)]

the partial

with respect to «

of g(z,y)

N

the partial of g(z,vy)
with respect to y

y.—1

ah + bk,
VAN
d d
il — [g(0,
e UICIR)| I Pl CICHD)
// A\
O
] < lg(z, )]
x.—0,y:—1 Oy

0

| I

r.—0,y:—1

Generally:

[9(z + h)] — [g(2)] ~ [¢'(z)]h




Multivariable linear approximation

Generally: [g(O+4+ h,1 4+ k)] — [¢(0,1)]

&

o, | O i 7
[a—m[g@,y)]]ﬁojy:ﬂ[h] Ha o))
|
- - o

Solate )| b1+l ||
- yi—1

Generally: [9(z + h)] — [9(2)] = [¢'(2)]h




Multivariable linear approximation

Generally: [g(O+4+ h,1 4+ k)] — [¢(0,1)]
U

- Iy o
519601 11+ e ) ]

W s
Generally: [g(x + h,y + k)] — [9(=, y)]
p a 2? - 8 .
Sl | B+ |5 G|k
. yi—1

Generally: [9(z + h)] — [9(2)] = [¢'(2)]h




Multivariable linear approximation

Generally: [g(O+4+ h,1 4+ k)] — [¢(0,1)]
U

- Iy o
519601 11+ e ) ]

I
L
— O

\ Generally: [g(z + h,y + k)] — [9(z, y)]
2

0 |0 '
PRGN ORAFAUCIIG

“Generally: [g(z + h,y + k)] — [g(z,y)] ~ 77777

Generally: [9(z + h)] — [9(2)] = [¢'(2)]h




Multivariable linear approximation
Generally: [g(z + h,y + k)] — [9(z, y)]

N

paremioE

o _
B [g(w,y)]_

%]

Generalp = (z,y), Ap= (h,k)x,y)]

N

paremioE

o _
B [g(w,y)]_

%]

23




Multivariable linear approximation
Generally: [g(z + h,y + k)] — [9(z, y)]

N

paremioE

o _
B [g(af,y)]_

%]

p=(z,y), Ap=(h,k)
Generally: [g(p + Ap)] — [9(p)]

U

0 o
(%[g(aﬁ,y)] | a—y[g(w,y)]) + (h, k)

Ap

24




Multivariable linear approximation
Generally: [g(z + h,y + k)] — [9(z, y)]

N

paremioE

o _
B [g(w,y)]_

%]

p=(x,y), Ap=(hk)
Generally: [¢g(p + Ap)] — [g(p)]

U

(%[g(aﬁ,y)] | a%[g(:v,y)])' + [Ap]

Next: Rephrase this,

In terms of the “gradient”. ..

25




Multivariable linear approximation

Let g be a function from (part of) R? to R.

Definition: The gradient of g is the function
from (part of) R? to R? defined by

(Vg)(z,y)

(s :
= (&c[g@,y)],ay[g(a:,y)])

|
((019)(z,y), (029)(x,y))

V= (019, 029) (019 02g] =:[d

26




Multivariable linear approximation

Generally: [g(p + Ap)] — [9(p)]
i

[(Vg)(p)] - [Ap]

p=(z,y), Ap=(h,k)

Generally: [g(p + Ap)] — [9(p)]
i

(%[g(:v,y)] | é%[g(af,y)]) + [Ap]

"

(Vg)(z,y)

27




Multivariable linear approximation

Generally: [¢g(p + Ap)] — [g(p)]
R

T (Vg)(p)] + [Ap]

gradient N
of g ( alg )

[

O2g )

Cf: Single variable linear approximation

lg(z + Az)] — [g(x)]
R
[d' ()] [Ax]




Multivariable linear approximation

Generally: [g(p + Ap)] — [9(p)]
i

he [(Vl(p)] - [Ap]
gradient/ N
of g ( 019 , 029 )

‘Definition: The graph of z = g(x,v) is

{(z,y,2) |z =g(z,y)},
which is a subset of R3.

Question: If I'm standing on the graph of
z = eY(2 4 sinx) at the point (0,0, 2),
and I seek the most uphill direction, what is it?

29




Multivariable linear approximation

Question: If I'm standing on the graph of

z = e*(2+ siny) at the point (0,0,2),

and I seek the most uphill direction, what is it?

g(z,y) 1= e*(2 + siny) p:=(0,0)

(Vg)(x,y) := (e*(2 +siny), e* cosy)
(Vg)(0,0) :=(2,1)
lg(p + Ap)] — [9(p)] = [(Vg)(p)] - [Ap]
[g(0+ Ap)] - [9(0)] = (2,1) - [Ap]
= V5 |Ap COS(?)

the angle between

(2,1) and Ap

30




Multivariable linear approximation

Question: If I'm standing on the graph of
z = e*(2 4+ siny) at the point (0,0,2)
and I seek the most uphill direction, what is it?

g(x,y) ;= e*(2+ siny)
[g(p + Ap)] — [g(p)] ~

p = (0,0)

V5 | Ap| cos()

(2,1) = (V9)(0,0)

Make § = 0. 7

Goal:
Make cos(6f) as
big as possible.

"'y possible Ap

31




Multivariable linear approximation

Question: If I'm standing on the graph of
z = e*(2 4+ siny) at the point (0,0,1),
and I seek the most uphill direction, what is it?

g(z,y) = e*(2 +siny) p = (0,0)
[g(p + Ap)] — [9(p)] = V5 |Ap| cos(h)

the best Ap T
\ ......... (2,1) = (Vg)(0,0)
Make § =0. +H 7 —++
Goal: T | Key point:
Make cos(#) as| T | The gtradiel?t its) the
: - 1 | mountain-climber’'s|
big as possible. | direction!




Practice partial derivatives:
f(z,y) = sin((z + 2y — 2)e3Y)

1@ = @1)(,9) =

[cos((@ + 2y — 2)e?¥][e?]

1)) = @21 (@) =
Y

[cos((z + 2y — 2)e3Y][2e3Y + (z + 2y — 2)(3e>Y)]

33




SKILL:
Given g(x,y), compute

o, )] = (919)(,9)
and

g, m)] = (020)(2,)
Y

SKILL: Given g(x,y), compute
(Vg)(z,y)

34




Next: n independent variables

SKILL:
Given ¢g(xz,y), compute
82
@[g(w,y)] = (0119)(z,y),
82
920y lg(z,y)] = (O129)(x,y)
2 -I |
Dy g(z,y)] = (0219)(z,y),
82
and ——5lg(z,y)] = (9229)(z,y), —

Oy2




Multivariable linear approximation
Let g : R™ — R be a function.

Definition: The partial derivative (or partial)

of g(z1,...,zn) With respect to z; is
8 .
—g(z1,. .., @n)] JE
— sj:=(0,...,0,1,0,...,0)
\
lim
h—0
[g(xla ceey Lj—1,Ly + haxj—|—17 K 7'567?/)] - [g(.CL']_, R ax’n)]

h
_ i g((z1,...,zn) + he;) —g(x1,...,2n)

i 3




Multivariable linear approximation
Let g : R™ — R be a function.

Definition: The partial derivative (or partial)
of g with respect to the jth variable is

[(5;9) ()] Jth entry

|
e;:=(0,...,0,1,0,...,0)

\

- g(p + he;) — g(p)
h—0 h

37




Multivariable linear approximation

Notation:
o

O, 1S an abbreviation for —.
ox

0
Oy IS an abbreviation for —.
Iy

0

O; IS an abbreviation for Eve

etc.

38




Multivariable linear approximation

Notation:

. . 0
Or, IS an abbreviation for —.

oxq

. . 0
Oz IS an abbreviation for —.

0xo
etc.

0
Oz, 1S an abbreviation for —.

aﬂjn

39




Multivariable linear approximation

Notation:
0

dy1’
9
Oyp

Jy, 1S an abbreviation for

Oy, IS an abbreviation for

etc.

9,
Oy, IS an abbreviation for —.

Oy

40




Multivariable linear approximation

Notation:

0z, IS an abbreviation for —.

0z, IS an abbreviation for —.

etc.

8Zj iS an abbreviation for —.

41




Multivariable linear approximation

Notation:

. L 0
Js, IS an abbreviation for —.

0s1

. L 0
Os, IS an abbreviation for —.
0so

etc.

0
Os,. IS an abbreviation for —.

P 6Sp

42




Vg

Multivariable linear approximation
Let g be a function from (part of) R"™ to R.

from (part of) R™ to R"™ defined by

(Vg)(z1,. .., n)

Definition: The gradient of g is the function

— (;jl[gm,...,asn)],...,£[9<x1,...,mn>])
— ((819)(9317 < o ;ﬂfn)a A (&rzg)(mla A 735‘?’1/))
Vg|l= (019, .--,0ng) [019 Ong 1=:|g

43




SKILL:

Given ¢g(xq1,...,xn), and
an integer j € [1,n], compute
0

—[g(CE]_, e axn)] — (ajg)(ajla R

a.ccj

SKILL: Given g(x1,...,zn), COMpute
(Vg)(z1,...,2n)

Jajj)

44




Definitions:

82

Ox Oy

83

0 0

" dxdy
000

. amy

Oz Ox Oy|

0z0x 0y

83

8y4 8w2 0z

o 9 0

" OyaOwo0z

etc., etc., etc., ...

! |Oyawoz

45




SKILL:
Given g(:r:l, .. ,:Cn), and

two integers j,k € [1,n], compute

62
= (0;
Fact | |
62

lg(x1,. .., 2n)] = (Ok9) (21, -

46




Multivariable Maclaurin approximation

The second order Macl. approximation of
f(x) w.r.t. z is the polynomial of degree < 2

p(x) = a + bx + ca?
such that
£(0) = p(0), f'(0) =p'(0) and f(0) = p”(0).

The second order Macl. approximation of
f(xz,y) w.r.t. (x,y) is the poly. of degree < 2

p(x,y) = a+ bz + cy + sz? + tay + uy?
such that

f(0) = p(0),

(01)(0) = (81p)(0), (021)(0) = (92p)(0),

(311f)(0) = (011p)(0), (012/)(0) = (31210)(0),

= (0, O)‘ and (922/)(0) = (922p)(0).




p(x,y) = a+ bz + cy + sz? + tay + uy?

f£(0) = p(0),

p(x,y) = a+ bz + cy + sz? + tay + uy?

48




p(z,y) = a+ bz + cy + sx? + tzy + uy?

£(0) = p(0),

b
(01£)(0) =|(01p)(0)

, (02f)(0) =

(92p)(0),

28

(011£)(0) =|(811p)(0)

(012)(0) = (912p)(0),

and (O22f)(0) =

2U
(022p) (0),.

(01p)(z,y) = (0/0x)(p(x,y)) = b+ 2sz + ty
(Oop)(z,y) = (0/0y)(p(z,y)) = c+ tx + 2uy
(011p) (z,y) = (8/0z)%(p(z,y)) = 2s
(012p)(z,y) = (82/0z 8y) (p(z,y)) = ¢

(022p) (z,y) = (8/0y)%(p(x,y)) = 2u | ©




p(z,y) = a+ bz + cy + sx? + tzy + uy?

f(0) =la,

(01£)(0) =D,

(02£)(0) =E,

(011F)(0) = 2s,

(912£)(0) =1,

and (O22f)(0) = 2u.

(01p)(z,y) = (0/0x)(p(x,y)) = b+ 2sx + ty
(Oop)(z,y) = (0/0y)(p(z,y)) = c+ tx + 2uy
(011p) (z,y) = (8/02)?(p(z,y)) = 2s
(012p)(z,y) = (82/0z 8y) (p(z,y)) = ¢

(022p) (z,y) = (8/0y)?(p(z,y)) = 2u |~




p(x,y) = a+ bz + cy + sz? + tay + uy?

f(0) = a,
(01£)(0) =0, (02f)(0) =c,
(011f)(0) = 2s, (012f)(0) =1t,

and (O22f)(0) = 2u.

p(z,y) = [f(0)] + [(91/)(0)]x +
(011./)(0).
(012)(0).

(021)(0)]y+
22 /2]+
xy|+

(022)(0).

y2/2] |




Multivariable Maclaurin approximation

The second order Macl. approximation of
f(z,y) w.r.t. =,y is the poly. of degree <2

p(x,y) = a+ bz + cy + sz? + tay + uy?

such that
£(0) = p(0),

(01£)(0) = (01p)(0), (92f)(0) = (92p)(0),
(011.)(0) = (911p)(0), (812f)(0) = (912p)(0),

and (O22f)(0) =

(020p)(0).

p(z,y) = [f(0)] + [(91/)(0)]x +
(011./)(0).
(012)(0).

(021)(0)]y+
22 /2]+
xy|+

(022)(0).

y2/2] | ®




Multivariable Maclaurin approximation

The second order Macl. approximation of
f(z,y) w.r.t. =,y is the poly. of degree <2

p(z,y) = [F(0)] 4 [(91/)(0)]z +

(012£)(0).

(011.£)(0)]]
xy]+

(02£)(0)]y+

2 /2]

(022/)(0).

2 /2]

\ Exercise:

p(z,y) = [f(0)] + [(F1)(0)]z +
(011./)(0).
(012)(0).
(022)(0).

y?/2] |

(021)(0)]y+
22 /2]+
xy|+




Multivariable Maclaurin approximation

The second order Macl. approximation of
f(z,y) w.r.t. =,y is the poly. of degree <2

p(z,y) = [f(0)] + [(91/)(0)]x +
(011./)(0).
(012)(0).

(021)(0)]y+
22 /2]
xy]+

(022/)(0).

2 /2]

Exercise:

Write out the third order Maclaurin

approximation of f(xz,vy).

Exercise:

Write out the second order Maclaurin

approximation of f(x,vy, 2).
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p(x,y) = [f(0)] + [(F1£)(0)]x + [(F2f)(0)]y—+
[((911]")(0)]' 2/2]-|-

(0)1
p(z,y) = [f(0)] + [(31f)(0)]:v (32f)(0)]y+

I~ T V(1]

( 11 f)(O)___a;'Q/Q]

\ the gradient of f (0121)(0)][zy]+

(9221)(0)][y*/2]

55




p(z,y) = [f(0)] +|[(91)(0)]= + [(921)(0)]y+
[(D11)(0)][22/2]+
[(D12) (0)][zy]+
1(9221)(0). /2]
\ the gradient of f the.' o 011f O1of
Sf = (onf ot | 1= [ et

V4

(V)(ay) = ((gyé

(z,9), (02f)(x,y))

= ([970=][f(z,y)], [0/0y]lf (x,y)])

(VH)(©0) = (01)(0), (021)(0)) [ =

[0 0]z + [(92F)(0)]y

=[(VF)(0)] - (=, y)= L y(z,v)

[O1f Oof]




fl=Hf:=

(011.5)(0)]]
(012/)(0)]]
(022f)(0)]]

011f O1of ]

Hf =

D01 f 32_(311f)(0) |
(0120) (0)]]
(O22f)(0)]]

O11f O1of
O21f Ooof

57




Note:

Fli=Hf = Onf O12f The Hessian
O21f  O22f is symmetric.

Pz y) = (011/)(@,y) (0120 (z,y)

| (021/)(z,y)  (O22f)(z,y)

- ([8/02)°[f (=, )] [8%/0zdy][f(x,y)]
(02/0y 0x]([f (=, )] [0/0y]°[f (z,v)]

\

EnpOIE/AE
(012F)(O)][zy]l+ )= f(02)| Y

(9221)(0)]y?/2] =




The preceding is for real-valued
f:R" = R.
Here, f/(0) is a 1 x n matrix
and f”7(0) is an n X n matrix.

For vector-valued
f:R" — Rk, first-order Macl. approx:

f(0) is a k x n matrix f = O]+ Lo
and f”(0) would be a kK xn xn ‘“tensor”,
but we'll avoid that, and not refer to f”(0).

\ Instead, we'll write f = (f1,..., f&),
where each f; : R" — R is real-valued,

SO f’(O) and f”(O) are 1 x n and n X n,
respectlvely
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SKILL:

Given f(atl, ..

., Tn), COMpute

the gradient, Hessian and
2nd order Macl. approximation of f.

Oor n X n Hessian,

Notation:

The gradient of f is denoted
gradient /
ety —f'| or [V fl or |grad(f)|
Notation:

The Hessian of f is denoted

f//

or

VVf

or

Hess(f)

or

o1l
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Multivariable jets

Def'n: Let f=(f1,...,fq) be an R?%valued fn
defined and smooth on a neighborhood
of (0,...,0) in R,
Let £ > 0 be an integer.
Let S be the set of monomials in 01,...,0n
of degree < k.

The k-jet of f at (0,...,0) is the function

qgf: Sx{1,....a} - R |

Note:Let M := (#S) -q = (n . k) . q.

Fixing an ordering of S x{1,...,q}, a k-jet

61

can be thought of as an element of RM.




Multivariable Maclaurin approximation

Def'n: Let f=(f1,...,fq) be an R?%valued fn
defined and smooth on a neighborhood
of (0,...,0) in R™.
Let £ > 0 be an integer.

Let S be the set of monomials in 01,...,0n
of degree < k.

The kth order Maclaurin approx. of f is the
poly. P = (Pq,...,P;) : R®" — R? of degree <k

s.t. JEf = J5P,

i.e., s.t., va{l---.a%“.e S, Vjedl,...,q},
(- Al £)(0) = (891 --- 81 P;)(0).
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SKILLS:

Find the gradient and n X n Hessian
of a function of n variables.

Find the k-jet at (0,...,0)
of a function of n variables.

Find the kth order Macl. approx.
of a function of n variables.

Count the number of terms
iIn the kth order Macl. approx.

of a function of n variables.

Count the number of entries
in the k-jet at (0,...,0)

of a function of n variables. 63




Denote this function by F'.
Say we've computed F(100,97,0.01,0.2).

T here are
a constant C € R?

a homogeneous linear L : R4 — R?2,
£ a homogeneous quadratic Q : R* — R=?,
agrees, at (0,0,0,0), to order two|, with
F(100 + w, 97 4+ z,0.01 45\3, 0.2 4 2).

meaning?

e.g.. Black-5Scholes gives a function that maps
(spot, strike, risk-free rate, volatility)

four input 'F_> (price, Delta) ”

two output




C L(w,z,y, 2)

Qw,z,y, z)

agrees, at (0,0,0,0), to_order [two|, with
F(100 + w,97 + 2,0.01 4+ vy,0.2 + 2).

Meaning:

C _I_ L(wﬂ mﬂyﬂ Z) _I_ Q(w7 mﬂyﬂ Z)
agrees, at (0,0,0,0), to order two, with
F(100 + w,97 + 2,0.01 + vy, 0.2 + 2).
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C L(w,:c,y,z) Q(wamayaz)§;4(ww 2)
agrees, at (0,0,0,0),to order [zero), with """
F(100 4 w, 97 0.01+y.02+2).

N
Meaning:

B(w,a}z‘,y,z)
[ C + L,y Qo]
w =
xr=0
e y=20
ordered z2=0
pairs |
\
[F(lOO—I—w,Q?—I—:B,0.0l + v,0.2 4+ 2 ———
r=20
one vector two scalar 7 8|
equation equations

(o))
(o))




C L(wﬂ mﬂyﬂ Z) Q(w7 $7y7 Z)Q
— 'A(w7m7y,z)
agrees, at (0,0,0,0),to order zero, with

F(100 + w,97 + 2,0.01 4+ vy,0.2 + 2).
—_ e e T s T

Meaning: B(w,,y,2)

[ A(w,az‘,y,z) ]w=0

=20

e y=20

ordered z=0
pairs |

\

[ B(w, 9, 2) ]w .

xr=0

one vector two scalar 228

equation equations

(@]
g




C L(wﬂ :ijj Z) Q(w7 :‘C?yﬂ Z)Q
— 'A(w7$,y,z)
agrees, at (0,0,0,0),to order zero, with

F(100 + w,97 + 2,0.01 4+ vy,0.2 + 2).
—_ e e T s T

Meaning: B(w,,y,2)
A(0,0,0,0)
ordered
pairs H
B(0,0,0,0)
one vector two scalar

68

equation equations




C L(w,x,y,z) Q(’w,m,y,Z)i,.

agrees, at (0,0,0,0),to order

ZEIro

. A(w, x,y, z
“Wwith )

F(100 + w,97 + 2,0.01 4+ vy,0.2 + 2).
—_ s T T s T

Meaning:

A(0,0,0,0)= B(0,0,0,0)

A(O7 O? 07 O)

B(0,0,0,0)

B(w,,y,2)

69




C L(w,2,y,2) Qw,x,y,2)-.
agrees, at (0,0,0,0), to order [one], with

F(lOO—I—w o7 + x, OOl—I—y,OQ—I—z)
Meaning: B(wazyz)
A(0,0,0,0)=B(0,0,0,0)
(01A4)(0,0,0,0)=(01B)(0,0,0,0)

A(w, x,y, 2)

© ©

11(9,4)(0,0,0,0) = (8:8)(0,0,0,0)| £,

gg(a?)A)(Oa O: Oa O) — (83B)(Oa Oa Oa O) -gg
(8414)(07 O: Oa O) — (84B)(Oa Oa Oa O)

four vector eight scalar
equations equations
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C L(w7 xﬂyﬁ Z) Q(w7 'CU?y? Z)Q
— 'A(w7m,y,z)
agrees, at (0,0,0,0), to order one, with

F(100 + w,97 + 2,0.01 4+ vy,0.2 + 2).
T —————\
Meaning: B(w,\éc,y,z>

A(0,0,0,0) = B(0,0,0,0)
(8114)(07 0, 0, O) — (61B)(Oa 0, 0, O)
(8214)(07 0, 0, O) — (62B)(Oa 0, 0, O)
(8314)(07 0, O, O) — (63B)(Oa 0, 0, O)

(924)(0,0,0,0) = (048)(0,0,0,0)

N\
%(A(’w,m,yaz))] \i \[\%(B(w,w,y,Z))]

too much space -

ele]e)

ne 88

ne 88
IRIRINI
OO

[ —




C L(w,2,y,2) Qw,z,y,2)~.
agrees, at (0,0,0,0), to order one, with

A(w, x,y, 2)

F(lOO—I—w o7 + x, 001+y702—|—z)

Meaning:
A(0,0,0,0)=B(0,0,0,0)

(81A)(O,O,O,O)=(61B)(O,O,O,O)
(024)(0,0,0,0) =(82B)(0,0,0,0)
(03A)(0,0,0,0)=(03B)(0,0,0,0)
(044)(0,0,0,0) =(094B)(0,0,0,0)

vVintegers j € [1, 4],

B(wazyz)
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C L(wﬂ :Eﬂy) Z) Q(w7 :‘Uﬂyﬂ Z)Q
— 'A(w,m7y,z)
agrees, at (0,0,0,0), to order [onel, with

F(100 + w,97 + 2,0.01 4+ vy,0.2 + 2).

T —
Meaning: B(w,\:‘n,y,z)

A(0,0,0,0)=B(0,0,0,0)

and

Vintegers j € [1, 4],

vVintegers j € [1, 4],
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C L(w,2,y,2) Qw,z,y,2) .
agrees, at (0,0,0,0), to order - with
F(lOO—I—w o7 + x, 001+y702—|—z)

Meanlng B(wazyz)
A(0,0,0,0)=B(0,0,0,0)
and

Vintegers j € [1, 4],
and

Vintegers j,k € [1, 4],
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twice as many scalar eq’'ns as vector eqg’'ns




C L(’w X y,Z) Q(w L y,z)\ )
agrees, at (0,0, 0,0), to order two, with—=>""
F(lOO—I—w 97 + x,0.01 0. +z)

/ )ﬂ‘y -

e.g.: two scalar eq'ns
(9,054)(0,0,0,0) = (9,955)(0,0,0,0)

too much space

(A(w, y,z))‘ .— Z))] —
83:8 ’lfé=8 %:8
y=20 y=20
z=20 z=0

Vintegers j,k € [1, 4],




