Financial Mathematics

Vector fields and ordinary differential equations

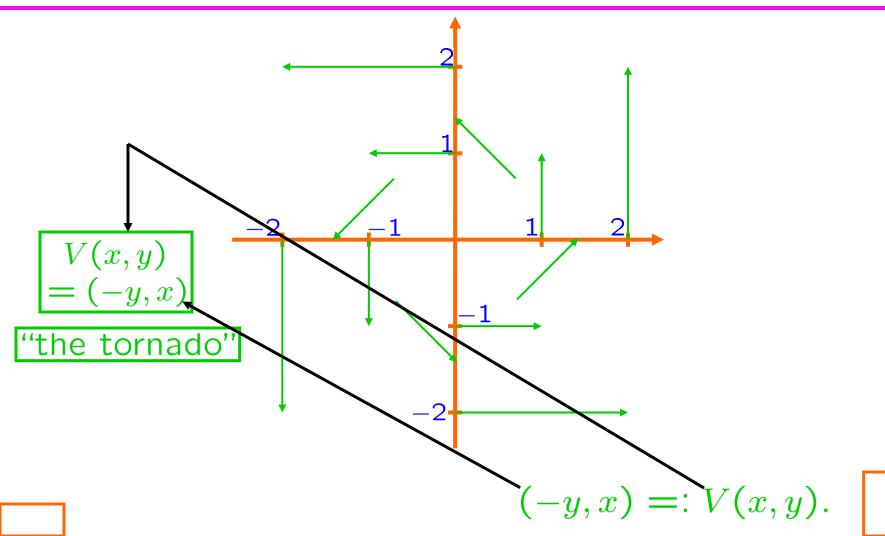
Definition: A vector field on \mathbb{R}^n is a smooth function $\mathbb{R}^n \to \mathbb{R}^n$.

(homogeneous) Definition: A vector field
$$V$$
 on \mathbb{R}^n is linear if there is a matrix $M \in \mathbb{R}^{n \times n}$ such that, for all $p \in \mathbb{R}^n$, $V(p) = L_M(p)$. the linear map

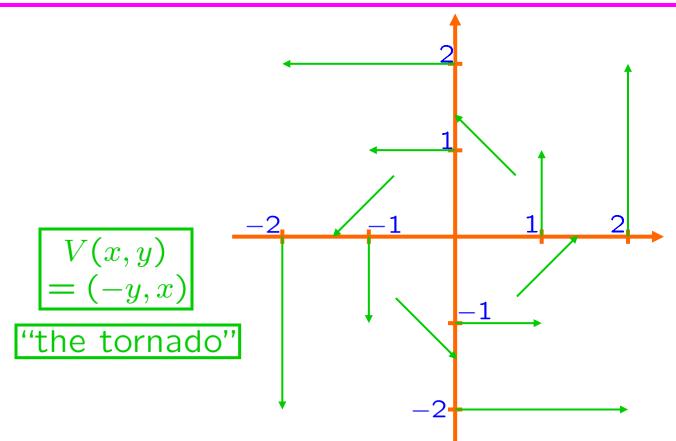
corresponding to M

e.g.: If $M = \begin{bmatrix} -92 & 72 \\ -120 & 94 \end{bmatrix}$, $N = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ then $L_M(x,y) = (-92x + 72y \ , -120x + 94y \)$, and $L_N(x,y) = (-y,x) =: V(x,y)$.

Definition: A flowline for V is a smooth function $c:(a,b) \to \mathbb{R}^n$ such that $\forall t \in (a,b)$, $[c(t)]^{\bullet} = V(c(t))$,



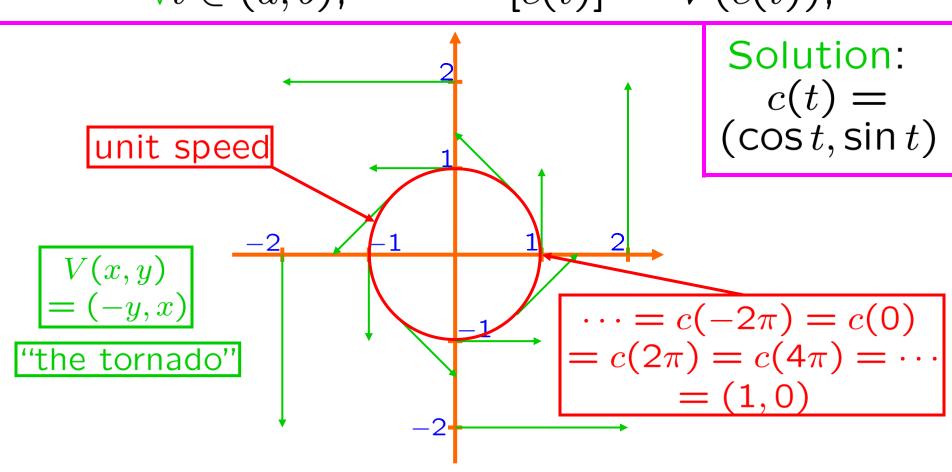
Definition: A flowline for V is a smooth function $c:(a,b)\to \mathbb{R}^n$ such that $\forall t\in(a,b)$, $[c(t)]^{\bullet}=V(c(t))$,



Problem:

Find flowline c, s.t. c(0) = (1,0).

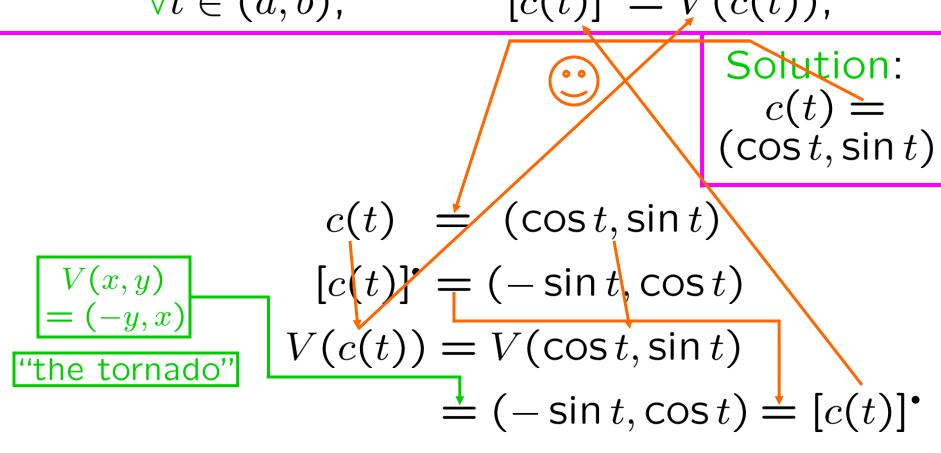
Definition: A flowline for V is a smooth function $c:(a,b)\to\mathbb{R}^n$ such that $\forall t\in(a,b)$, $[c(t)]^{\bullet}=V(c(t))$,



Problem:

Find flowline c, s.t. c(0) = (1,0).

Definition: A flowline for V is a smooth function $c:(a,b)\to \mathbb{R}^n$ such that $\forall t\in(a,b), \qquad [c(t)]^{\bullet}=V(c(t)),$



Problem:

Find flowline c, s.t. c(0) = (1,0).

vector field

Let $V: \mathbb{R}^n \to \mathbb{R}^n$ be a VF.

Question: For any
$$p \in \mathbb{R}^n$$
, does \exists a flowline $c:(a,b) \to \mathbb{R}^n$ for V s.t. $c(0) = p$?

Answer: Yes.

Question: For any
$$p \in \mathbb{R}^n$$
, does \exists a flowline $c: (-\infty, \infty) \to \mathbb{R}^n$ for V s.t. $c(0) = p$?

Answer: No:

Define
$$f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$$
 by $f(t) = \operatorname{Tan}(t)$.
Define $V: \mathbb{R} \to \mathbb{R}$ by $V(x) = f'(f^{-1}(x))$.
Then $V(f(t)) = f'(t)$; meaning? $x \mapsto f(t)$
 f is a "maximal" flowline for V .

Definition: We say that a parametric curve $c:(a,b)\to\mathbb{R}^n$ is footed at p if: $0 \in (a, b)$ and c(0) = p. Definition: Let $c:(a,b)\to\mathbb{R}^n$, $c_0:(a_0,b_0)\to\mathbb{R}^n$ be flowlines. We say that c extends c_0 if $(a_0,b_0)\subset (a,b)$ and $\forall t \in (a_0, b_0), c_0(t) = c(t).$ Definition: Let V be a VF on \mathbb{R}^n . Let $p \in \mathbb{R}^n$. A flowline for V footed at p is said to be maximal if it extends any other flowline for V footed at p. Fact: $\forall \mathsf{VF}\ V$ on \mathbb{R}^n , $\forall p \in \mathbb{R}^n$, \exists !max. flowline for V footed at p. Define $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ by $f(t)=\mathrm{Tan}(t)$. Define $V: \mathbb{R} \to \mathbb{R}$ by $V(x) = f'(f^{-1}(x))$. Then V(f(t)) = f'(t); Why?ing? f is a "maximal" flowline for V.

Fact: $\forall \mathsf{VF}\ V$ on \mathbb{R}^n , $\forall p \in \mathbb{R}^n$, $\exists !\mathsf{max}.$ flowline for V footed at p. Fact: The maximal flowline footed at p extends all flowlines footed at p.

Fact:
$$\forall VF\ V$$
 on \mathbb{R}^n , $\forall p \in \mathbb{R}^n$, $\exists ! max.$ flowline for V footed at p .

Define $f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ by $f(t) = \operatorname{Tan}(t)$.

Define $V: \mathbb{R} \to \mathbb{R}$ by $V(x) = f'(f^{-1}(x))$. Then V(f(t)) = f'(t); Why?

f is a "maximal" flowline for V.

Fact: $\forall VF\ V$ on \mathbb{R}^n , $\forall p \in \mathbb{R}^n$, $\exists ! max.$ flowline for V footed at p.

Fact: The maximal flowline footed at p extends all flowlines footed at p.

$$\lim_{t\to\pi/2^+}(f(t))=-\infty\quad\text{and}\quad\lim_{t\to\pi/2^-}(f(t))=\infty$$
 No flowline extends f .

f extends every flowline. $\nexists c$ Question: For any $p \in \mathbb{R}^n$, does $\exists a$ flowline $c: (-\infty, \infty) \to \mathbb{R}^n$ for V s.t. c(0) = p?

 $c:(-\infty,\infty) o \mathbb{R}^n$ for V s.t. c(0) Answer: No:

Define $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ by $f(t)=\mathrm{Tan}(t)$.

Define $V: \mathbb{R} \to \mathbb{R}$ by $V(x) = f'(f^{-1}(x))$. Then V(f(t)) = f'(t); Why? f is a "maximal" flowline for V.

Ordinary Differential Equations and Vector Fields

ODEs

Problem: Find an expression X of t such that

$$\frac{dX}{dt} = (0.05)X, \qquad [X]_{t=0} = 1.$$
 ODE Initial value condition

Problem: Let V be the vector field on \mathbb{R} defined by V(x) = (0.05)x. Find a flowline c for V footed at 1.

Let
$$X := c(t)$$
.
Then $dX/dt = c'(t) = V(c(t))$
 $= [0.05][c(t)] = (0.05)X$
and $[X]_{t=0} = c(0) = 1$.

Ordinary Differential Equations and Vector Fields

Problem: Find expressions X, Y of t such that

System of ODEs
$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

Initial value
$$[X]_{t=0} = 3, [Y]_{t=0} = 8.$$

Problem: Let V be the vector field on \mathbb{R}^2 defined by V(x,y) = (-x+y,2x-4y). Find a flowline c for V footed at (3,8).

Ordinary Differential Equations and Difference Equations

The idea: To get flowline of V footed at p: For each integer N>0:

$$c_N(0) := p.$$

$$c_N(1/N) := [c_N(0)] + [1/N][V(c_N(0))].$$

$$c_N(2/N) := [c_N(1/N)] + [1/N][V(c_N(1/N))].$$

 $c_N(3/N) := [c_N(2/N)] + [1/N][V(c_N(2/N))].$

•

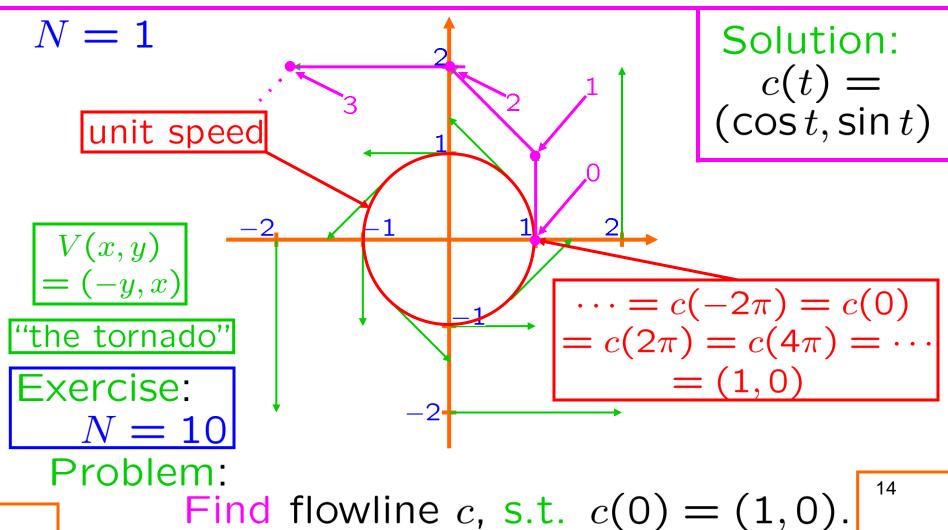
Similarly, define
$$c_N(-1/N), c_N(-2/N), \ldots$$

Piecewise linear interpolation: $c_N : \mathbb{R} \to \mathbb{R}$.

$$\operatorname{Let} c := \lim_{N \to \infty} c_N.$$

Then c is a flowline of V.

Definition: A flowline for V is a smooth function $c:(a,b)\to\mathbb{R}^n$ such that $[c(t)]^{\bullet} = V(c(t)),$ $\forall t \in (a,b),$



$$\frac{dX}{dt} = (0.05)X, \qquad [X]_{t=0} = 1.$$

Compute $[X]_{t=2}$.

Problem: Find an expression X of t defined at $t = \ldots, -0.2, -0.1, 0, 0.1, 0.2, \ldots$ by the formulas

 $\neg \mathsf{Find}\ [X]_{t=2}.$

Problem: Find an expression X of t defined at $t=\dots,-0.2,-0.1,0,0.1,0.2,\dots$ by the formulas

Let A(t) := X.

Problem: Find an expression X of t defined at $t=\ldots,-0.2,-0.1,0,0.1,0.2,\ldots$ by the formulas

Find $[X]_{t=2}$.

Problem: Find an expression X of tdefined at $t = \dots, -0.2, -0.1, 0, 0.1, 0.2, \dots$ by the formulas

Let
$$A(t) := X$$
. $A(0) := [X]_{t=0} = 1$.

$$\frac{[A(t+0.1)] - [A(t)]}{0.1} = (0.05)[A(t)]$$

$$[A(t+0.1)] - [A(t)] = (0.1)(0.05)[A(t)]$$
$$= (1/10)(0.05)[A(t)]$$

$$A(t+0.1) = [1+(1/10)(0.05)][A(t)]^{-1}$$

Problem: Find an expression X of t defined at $t = \dots, -0.2, -0.1, 0, 0.1, 0.2, \dots$ by the formulas

Let
$$A(t) := X$$
. $A(0) := [X]_{t=0} = 1$. $A(t+0.1) = [1+(1/10)(0.05)][A(t)]$

$$[X]_{t=2} = A(2) = [1 + (1/10)(0.05)][A(1.9)]$$

$$A(t+0.1) = [1 + (1/10)(0.05)][A(t)]$$

Problem: Find an expression X of t defined at $t=\ldots,-0.2,-0.1,0,0.1,0.2,\ldots$ by the formulas

$$A(t+0.1) = [1+(1/10)(0.05)][A(t)]$$
Start with \$1 in a bank account at time 0.

Every 1/10 years, add on 1/10 of 5% interest. How much in account 2 years later?

How much in account 2 years later?

$$[X]_{t=2} = A(2) = [1 + (1/10)(0.05)][A(1.9)]$$

$$= [1 + (1/10)(0.05)]^{2}[A(1.8)]$$

$$= \cdots = [1 + (1/10)(0.05)]^{20}[A(0)]$$

Problem: Find an expression X of t defined at $t=\ldots,-0.2,-0.1,0,0.1,0.2,\ldots$ by the formulas

$$(X)_{t \to t + \triangle t} - X \to \triangle X$$
 = $(0.05)X$, $[X]_{t=0} = 1$.
Find $[X]_{t=2}$. Solution: $[1 + (1/10)(0.05)]^{20}$ Compounding 10 times per year, with

nominal annual interest rate: 5%

Start with \$1 in a bank account at time 0. Every 1/10 years, add on 1/10 of 5% interest. How much in account 2 years later?

Problem: Find an expression X of tdefined at $t = \dots, -0.2, -0.1, 0, 0.1, 0.2, \dots$ by the formulas

by the formulas
$$[X]_{t \to t + \triangle t} - X \to \triangle X \\ \hline 0.1 \to \triangle t = (0.05)X, \qquad [X]_{t=0} = 1.$$
 Find $[X]_{t=2}$. Solution: $[1 + (1/10)(0.05)]^{20}$

Compounding 10 times per year, with nominal annual interest rate: 5%

Problem: Find an expression X of tdefined at $t = \dots, -0.02, -0.01, 0, 0.01, 0.02, \dots$ such that

 $[1+(1/100)(0.05)]^{200}$ 21 Solution:

Problem: Find an expression X of tdefined at $t = \dots, -2/N, -1/N, 0, 1/N, 2/N, \dots$ by the formulas

Problem: Find an expression X of tdefined at $t = \dots, -0.02, -0.01, 0, 0.01, 0.02, \dots$ such that

$$[X]_{t \to t + \triangle t} - X \to \Delta X = (0.05)X, \qquad [X]_{t = 0} = 1.$$
Find $[X]_{t = 2}$. Compounding 100 times per year, with nominal annual interest rate: 5% Solution: $[1 + (1/100)(0.05)]^{200}$

Problem: Find an expression X of t defined at $t=\ldots,-2/N,-1/N,0,1/N,2/N,\ldots$ by the formulas

$$X \mapsto X \mapsto X = (0.05)X, \quad [X]_{t=0} = 1.$$
Find $[X]_{t=2}$. Compounding N times per year, with nominal annual interest rate: 5% Solution: $[1 + (1/N)(0.05)]^{2N}$

Problem: Find an expression X of t such that $\frac{dX}{dt} = (0.05)X, \qquad [X]_{t=0} = 1.$

Compute $[X]_{t=2}$. Solution: $\lim [1 + (1/N)(0.05)]^{2N} = e^{(0.05)2}$

23

$$\frac{dX}{dt} = (0.05)X, [X]_{t=0} = 1.$$

Compute X.

Solution:
$$\lim_{N \to \infty} [1 + (1/N)(0.05)]^{t} = e^{(0.05)t}$$

Continuous compounding, with nominal annual interest rate: 5%

Problem: Find an expression
$$X$$
 of t such that
$$\frac{dX}{dt} = (0.05)X, \qquad [X]_{t=0} = 1.$$

Compute $[X]_{t=2}$.

Solution:
$$\lim_{N\to\infty} [1+(1/N)(0.05)]^{2N} = e^{(0.05)2}$$

Continuous compounding, with nominal annual interest rate: 5%

$$\frac{dX}{dt} = (0.05)X,$$
 $[X]_{t=0} = 1.$ Compute X . Solution: $X = e^{(0.05)t}$

Solution:
$$\neq e^{(0.05)t}$$

Check:
$$[X]_{t=0} = [e^{(0.05)t}]_{t=0} = 1$$

$$\frac{dX}{dt} = (0.05)X, [X]_{t=0} = 1.$$
Solution: $X = e^{(0.05)t}$

Check:
$$[X]_{t=0} = [e^{(0.05)t}]_{t=0} = 1$$

$$\frac{dX}{dt} = \frac{d}{dt} [e^{(0.05)t}] = [e^{(0.05)t}][0.05] = (0.05)X$$

$$\frac{dX}{dt} = (0.05)X, [X]_{t=0} = 1.$$
Compute X. Solution: $X = e^{(0.05)t}$

Alternate solution:

$$Y := \ln X \qquad \text{CHAIN RULE!}$$

$$\frac{dY}{dt} = \frac{1}{X} \frac{dX}{dt} = \frac{1}{X} (0.05) = 0.05$$

$$[Y]_{t=0} = [\ln X]_{t=0} = \ln 1 = 0$$

$$Y = (0.05)t$$

$$X = e^{\ln X} = e^{Y} = e^{(0.05)t}$$

$$\frac{dX}{dt} = (0.05)X,$$
 $[X]_{t=0} = 1.$ Compute X. Solution: $X = e^{(0.05)t}$

Compute X. Solution: $X = e^{(0.05)}$ Third approach:

$$\frac{d}{dt}(c(t)) = (0.05)(c(t)), \qquad c(0) = 1.$$

is equivalent to

$$c(t) = 1 + \int_0^t (0.05)(c(s)) ds$$
 is equivalent to $A(c) = c$ $\mathcal{F} := \{\text{contin. fns } [-10, 10] \to \mathbb{R}\}.$ $c \text{ is a}$

Define $\mathcal{A}: \mathcal{F} \to \mathcal{F}$ by the rule: $\forall h \in \mathcal{F}$ the function $A(h) \in \mathcal{F}$ is defined by

 $\forall h \in \mathcal{F}$, the function $\mathcal{A}(h) \in \mathcal{F}$ is defined by:

$$(A(c))(t) (A(h))(t) = 1 + \int_0^t (0.05)(h(s)) ds.$$
 28

Let
$$\mathcal{F} := \{\text{contin. fns } [-10, 10] \to \mathbb{R}\}.$$

Define $\mathcal{A} : \mathcal{F} \to \mathcal{F}$ by the rule:
$$(\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] \, ds.$$

Fact: There is a distance (a "metric") in \mathcal{F}

$$\mathcal{F} := \{ \text{contin. fns } [-10, 10] \to \mathbb{R} \}.$$
 Define $\mathcal{A} : \mathcal{F} \to \mathcal{F}$ by the rule:

$$(\mathcal{A}(h))(t) = 1 + \int_0^t (0.05)(h(s)) ds.$$
 29

Let
$$\mathcal{F} := \{\text{contin. fns } [-10, 10] \to \mathbb{R}\}.$$

Define $\mathcal{A} : \mathcal{F} \to \mathcal{F}$ by the rule:
$$(\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] \, ds.$$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g, h \in \mathcal{F}$, dist $(\mathcal{A}(g), \mathcal{A}(h)) \leq [0.5][\operatorname{dist}(g, h)]$.

 \mathcal{A} is a contraction w.r.t. this distance. Contraction factor is 0.5

Let
$$\mathcal{F} := \{ \text{contin. fns } [-10, 10] \to \mathbb{R} \}.$$

Define $\mathcal{A} : \mathcal{F} \to \mathcal{F}$ by the rule:
$$(\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] \, ds.$$

Fact: There is a distance (a "metric") in
$$\mathcal{F}$$
 such that, $\forall g, h \in \mathcal{F}$, dist $(\mathcal{A}(g), \mathcal{A}(h)) \leq [0.5][\operatorname{dist}(g, h)]$.

$$\forall p,q\in\mathcal{F}, \quad \operatorname{dist}(p,q) := \max_{t\in I} |(p(t)) - q(t))|$$

$$\operatorname{Fix}\ g,h\in\mathcal{F}, \text{ and let } d := \operatorname{dist}(g,h).$$

$$\operatorname{Let}\ g_0 := \mathcal{A}(g),\ h_0 := \mathcal{A}(h),\ d_0 := \operatorname{dist}(g_0,h_0).$$

Want: $d_0 \le [0.5]d$ $\forall t \in I, |(g(t)) - (h(t))| \le d$

Proof: I := [-10, 10]

Let
$$\mathcal{F} := \{\text{contin. fns } [-10, 10] \to \mathbb{R}\}.$$

Define $\mathcal{A} : \mathcal{F} \to \mathcal{F}$ by the rule:
 $(\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] \, ds.$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g, h \in \mathcal{F}$, dist(A(q), A(h)) < [0.5][dist(q, h)].

$$\forall p,q\in\mathcal{F}, \quad \operatorname{dist}(p,q) := \max_{t\in I} |(p(t)) - q(t))|$$

 $\operatorname{Fix}\ g,h\in\mathcal{F}, \text{ and let } d := \operatorname{dist}(g,h).$
Let $g_0 := \mathcal{A}(g), \ h_0 := \mathcal{A}(h), \ d_0 := \operatorname{dist}(g_0,h_0).$

Want: $d_0 \le [0.5]d$ $\forall s \in I, |(g(s)) - (h(s))| \le d$

Proof: I := [-10, 10]

$$\frac{g_0}{h_0}(t) = (\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] ds$$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g,h\in\mathcal{F}$, $\operatorname{dist}(\mathcal{A}(g), \mathcal{A}(h)) \leq [0.5][\operatorname{dist}(g, h)].$

Proof:
$$I := [-10, 10]$$

$$\forall p,q\in\mathcal{F},\quad \operatorname{dist}(p,q):=\max_{t\in I}|(p(t))-q(t))|$$
 Fix $g,h\in\mathcal{F},$ and let $d:=\operatorname{dist}(g,h).$ Let $g_0:=\mathcal{A}(g),\ h_0:=\mathcal{A}(h),\ d_0:=\operatorname{dist}(g_0,h_0).$

Fix
$$g, h \in \mathcal{F}$$
, and let $d := dist(g, h)$.

Let
$$g_0 := \mathcal{A}(g)$$
, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$

Want:
$$d_0 \le [0.5]d$$

Want:
$$d_0 \le [0.5]d$$
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

$$(g_0 - h_0)(t) = (1 - 1) + \int_0^t [0.05][(g(s)) - (h(s))] ds$$

$$g_0$$

$$h_0(t) = (\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] ds$$
Eact: There is a distance (a "metric") in \mathcal{F}

Fact: There is a distance (a "metric") in
$$\mathcal{F}$$
 such that, $\forall g,h\in\mathcal{F}$, dist $(\mathcal{A}(g),\mathcal{A}(h))\leq [0.5][\operatorname{dist}(g,h)].$

Proof:
$$I := [-10, 10]$$

$$\forall p, q \in \mathcal{F}, \quad \operatorname{dist}(p, q) := \max_{t \in I} |(p(t)) - q(t))|$$

$$\operatorname{Fix}(g, h) \in \mathcal{F}, \quad \operatorname{and} \quad \operatorname{let}(d) := \operatorname{dist}(g, h).$$

Let
$$g_0 := \mathcal{A}(g)$$
, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g, h_0)$.

Want: $d_0 \le [0.5]d$ $\forall s \in I, |(g(s)) - (h(s))| \le d$ $|s \in I, |(g(s)) - (h(s))| \le d$

$$(g_0 - h_0)(t) = (1 - 1) + \int_0^t [0.05][(g(s)) - (h(s))] ds$$

$$(g_0(t)) - (h_0(t)) = \int_0^t [0.05][(g(s)) - (h(s))] ds$$
Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g, h \in \mathcal{F}$,

$$\operatorname{dist}(\mathcal{A}(g),\mathcal{A}(h)) \leq [0.5][\operatorname{dist}(g,h)].$$
 Proof: $I := [-10,10]$

$$\forall p, q \in \mathcal{F}$$
, $\operatorname{dist}(p, q) := \max_{t \in I} |(p(t)) - q(t))|$
 $\operatorname{Fix} g, h \in \mathcal{F}$, and $\operatorname{let} d := \operatorname{dist}(g, h)$.
 $\operatorname{let} g \circ := A(g), h \circ := A(h), d \circ := \operatorname{dist}(g \circ h \circ h)$.

Let $g_0 := \mathcal{A}(g)$, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.

Want: $d_0 \le [0.5]d$ $\forall s \in I, |(g(s)) - (h(s))| \le d$

$$\operatorname{dist}(g_0, h_0) := \max_{t \in I} |(g_0(t)) - h_0(t))|$$

$$|(g_0(t)) - (h_0(t))| = \left| \int_0^t [0.05][(g(s)) - (h(s))] \, ds \right|$$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g, h \in \mathcal{F}$, $dist(\mathcal{A}(g), \mathcal{A}(h)) \leq [0.5][dist(g,h)].$

Proof:
$$I := [-10, 10]$$
 $\forall p, q \in \mathcal{F}$, $\text{dist}(p, q) := \max_{t \in I} \frac{|(p(t)) - q(t))|}{g_0 h_0}$ Fix $g, h \in \mathcal{F}$, and let $d := \text{dist}(g, h)$.

Let $g_0 := \mathcal{A}(g)$, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.

Want:
$$d_0 \le A(g)$$
, $h_0 := A(h)$, $a_0 := \operatorname{dist}(g_0, h_0)$
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

$$dist(g_0, h_0) := \max_{t \in I} |(g_0(t)) - h_0(t))|$$
$$= \max_{t \in I} \left| \int_0^t [0.05][(g(s)) - (h(s))] ds \right|$$

Fact: There is a distance (a "metric") in
$$\mathcal{F}$$
 such that, $\forall g,h\in\mathcal{F}$, $\mathrm{dist}(\mathcal{A}(g),\mathcal{A}(h))\leq [0.5][\mathrm{dist}(g,h)].$

$$\forall p,q\in\mathcal{F},\quad \mathrm{dist}(p,q):=\max_{t\in I}|(p(t))-q(t))|$$
 Fix $g,h\in\mathcal{F},$ and let $d:=\mathrm{dist}(g,h).$

Let $g_0 := \mathcal{A}(g)$, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.

Want:
$$d_0 \le A(g)$$
, $h_0 := A(n)$, $a_0 := \operatorname{dist}(g_0, h_0)$
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

Proof: I := [-10, 10]

 $dist(g_0, h_0)$

$$dist(g_0, h_0) = \max_{t \in I} \left| \int_0^t [0.05][(g(s)) - (h(s))] ds \right|$$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g,h\in\mathcal{F}$, $dist(\mathcal{A}(g), \mathcal{A}(h)) \leq [0.5][dist(g,h)].$

Proof:
$$I := [-10, 10]$$

$$\forall p, q \in \mathcal{F}, \quad \operatorname{dist}(p, q) := \max_{t \in I} |(p(t)) - q(t))|$$

Fix $g, h \in \mathcal{F}$, and let d := dist(g, h). Let $g_0 := \mathcal{A}(g)$, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.

Want:
$$d_0 \le [0.5]d$$
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

$$d_0 = \max_{t \in I} \left| \int_0^t [0.05][(g(s)) - (h(s))] ds \right|$$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g,h\in\mathcal{F}$, $dist(\mathcal{A}(g), \mathcal{A}(h)) \leq [0.5][dist(g,h)].$

Proof:
$$I := [-10, 10]$$

Proof:
$$I := [-10, 10]$$

$$\forall p, q \in \mathcal{F}, \quad \operatorname{dist}(p, q) := \max_{t \in I} |(p(t)) - q(t))|$$

Fix
$$g, h \in \mathcal{F}$$
, and let $d := dist(g, h)$.

Let
$$g_0 := \mathcal{A}(g)$$
, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.

Want:
$$d_0 \le [0.5]d$$

Want:
$$d_0 \le [0.5]d$$
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

$$d_0 = \max_{t \in I} \left| \int_0^t [0.05][(g(s)) - (h(s))] ds \right|$$
between $\pm d$

$$\text{between } \pm t[0.05]d$$
so between $\pm 10[0.05]d$

so between $\pm [0.5]d$

Proof:
$$I := [-10, 10]$$

$$\forall p, q \in \mathcal{F}$$
, $\operatorname{dist}(p, q) := \max_{t \in I} |(p(t)) - q(t))|$

Fix
$$g, h \in \mathcal{F}$$
, and let $d := dist(g, h)$.

Let
$$g_0 := \mathcal{A}(g)$$
, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.

Want:
$$d_0 \leq [0.5]d$$

$$|a|$$
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

between 0 and [0.5]d

so between $\pm [0.5]d$

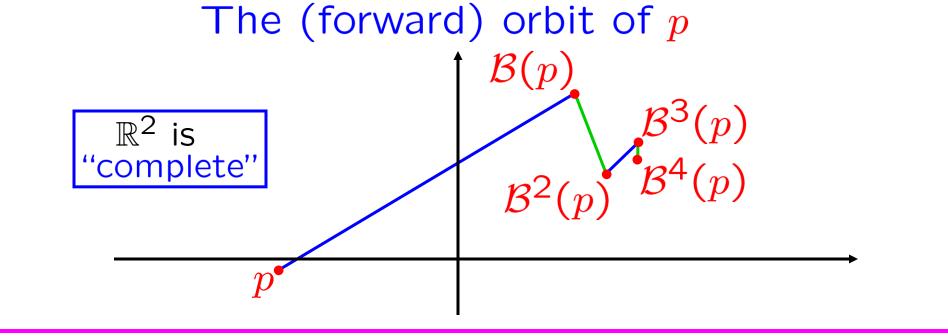
 $\forall s \in I, |(g(s)) - (h(s))| \le d$

between 0 and
$$[0.5]d$$

$$d_0 = \max_{t \in I} \left| \int_0^t [0.05][(g(s)) - (h(s))] ds \right|$$
between $\pm d$
between $\pm t[0.05]d$
so between $\pm 10[0.05]d$

Proof:
$$I := [-10, 10]$$
 $\forall p, q \in \mathcal{F}$, $\text{dist}(p, q) := \max_{t \in I} |(p(t)) - q(t))|$
 $\text{Fix } g, h \in \mathcal{F}$, and let $d := \text{dist}(g, h)$.
Let $g_0 := \mathcal{A}(g)$, $h_0 := \mathcal{A}(h)$, $d_0 := \text{dist}(g_0, h_0)$.
Want: $d_0 \leq [0.5]d$

Suppose $\mathcal{B}: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous, and $\forall q, r \in \mathbb{R}^2$, $\mathsf{dist}(\mathcal{B}(q), \mathcal{B}(r)) \leq [0.5][\mathsf{dist}(q, r)]$.



$$p, \mathcal{B}(p), \mathcal{B}^2(p), \mathcal{B}^3(p), \mathcal{B}^4(p), \ldots \rightarrow q$$

$$\mathcal{B}(p), \mathcal{B}^2(p), \mathcal{B}^3(p), \mathcal{B}^4(p), \mathcal{B}^5(p), \ldots \rightarrow \mathcal{B}(q)$$

Key point: For a contraction mapping, the lim of any forward orbit is a fixpt.

Let
$$\mathcal{F} := \{ \text{contin. fns } [-10, 10] \to \mathbb{R} \}.$$

Define $\mathcal{A} : \mathcal{F} \to \mathcal{F}$ by the rule:

$$(\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] \, ds.$$

Fact: There is a distance (a "metric") in \mathcal{F} such that, $\forall g,h\in\mathcal{F}$, dist $(\mathcal{A}(g),\mathcal{A}(h))\leq [0.5][\operatorname{dist}(g,h)]$.

 ${\cal A}$ is a contraction w.r.t. this distance.

with respect to

Fact:
$$\forall f \in \mathcal{F}$$
, the forward orbit of f under \mathcal{A} the sequence $f, \mathcal{A}(f), \mathcal{A}^2(f), \mathcal{A}^3(f), \ldots$ converges in \mathcal{F} to a fixpoint of \mathcal{A} .

Problem: Find an expression X of t such that dX

 $\frac{dX}{dt} = (0.05)X,$ $[X]_{t=0} = 1.$ Compute X. Solution: $X = e^{(0.05)t}$

Third approach:

$$\frac{d}{dt}(c(t)) = (0.05)(c(t)), \qquad c(0) = 1.$$
 is equivalent to $\mathcal{A}(c) = c$.

$$\mathcal{F}=\{ ext{contin. fns } [-10,10] o\mathbb{R}\} \qquad \mathcal{A}:\mathcal{F} o\mathcal{F}$$
 $(\mathcal{A}(h))(t)=1+\int_0^t [0.05][h(s)]\,ds$

Define
$$f \in \mathcal{F}$$
 by $f(t) = 1$.
Let c be the limit of $f, \mathcal{A}(f), \mathcal{A}^2(f), \ldots$

$$(\mathcal{A}(f))(t) = 1 + (0.05)t \\ (\mathcal{A}^{2}(f))(t) = 1 + (0.05)t + (0.05)^{2}(t^{2}/(2!)) \\ (\mathcal{A}^{3}(f))(t) = 1 + (0.05)t + (0.05)^{2}(t^{2}/(2!)) \\ \vdots & + (0.05)^{3}(t^{3}/(3!)) \\ \downarrow & \downarrow & \text{Note: Works for all } t \in \mathbb{R}, \\ \text{not just } t \in [-10, 10] \\ \mathcal{F} = \{ \text{contin. fns } [-10, 10] \to \mathbb{R} \} \quad \mathcal{A} : \mathcal{F} \to \mathcal{F}$$

$$(\mathcal{A}(h))(t) = 1 + \int_0^t [0.05][h(s)] \, ds$$
 Define $f \in \mathcal{F}$ by $f(t) = 1$.

Let c be the limit of $f, \mathcal{A}(f), \mathcal{A}^2(f), \ldots$

$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$
$$[X]_{t=0} = 3, \qquad [Y]_{t=0} = 8.$$

Problem 2: Let V be the vector field on \mathbb{R}^2 defined by V(x,y) = (-x+y,2x-4y). Find a flowline c for V footed at (3,8).

$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

$$Z := \begin{bmatrix} X \\ Y \end{bmatrix} \qquad \qquad A := \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}$$

$$\dot{Z} = \begin{bmatrix} \dot{X} \\ \dot{Y} \end{bmatrix} = \begin{bmatrix} -X + Y \\ 2X - 4Y \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

$$\dot{Z} = AZ$$

$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

$$Z := \begin{bmatrix} X \\ Y \end{bmatrix} \qquad \qquad A := \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}$$

$$\dot{Z} = AZ$$

$$\frac{d}{dt}e^{tA} = Ae^{tA}$$

$$\dot{Z} = AZ$$

1: Find expressions
$$X, Y$$
 of t such that
$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

$$Z := \begin{bmatrix} X \\ Y \end{bmatrix} \qquad A := \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}$$

$$2 \times 2 \quad \frac{d}{dt}e^{tA} = Ae^{tA} \qquad Z = e^{tA}$$

$$2 \times 1 \quad \frac{d}{dt}[e^{tA}C] = Ae^{tA}C$$

 $\forall C \in \mathbb{R}^{2 \times 1}, \quad \frac{d}{dt} [e^{tA}C] = Ae^{tA}C$ $Z = e^{tA}C$

$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

Problem: $\dot{B} = (0.05)B$ Solutions: $\forall C \in \mathbb{R}$, $B = Ce^{(0.05)t}$ is a solution.

Problem: $\dot{B} = aB$ Solutions: $\forall C \in \mathbb{R}$, $B = Ce^{at}$ is a solution.

Problem: $\dot{Z} = AZ$ Solutions: $\forall C \in \mathbb{R}^{2 \times 1}$, $Z = e^{tA}C$ is a solution.

$$\forall C \in \mathbb{R}^{2 \times 1}, \quad \frac{d}{dt}[e^{tA}]C = Ae^{tA}C$$

50

$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

$$[X]_{t=0} = 3,$$
 $[Y]_{t=0} = 8.$

$$A := \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}$$

$$Z = e^{tA}C$$
 is a solution.

$$Z = e^{tA}C \text{ is a solution.}$$

$$Z = [Z]_{t=0} = [e^{tA}C]_{t=0} = IC = C$$

51

$$\begin{bmatrix} X \\ Y \end{bmatrix} = Z = e^{tA}C = (\exp(tA))C$$

$$= \left(\exp\left(t\begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}\right)\right) \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

$$Z := \begin{bmatrix} X \\ Y \end{bmatrix} \qquad A := \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}$$

$$Z = AZ$$

$$\forall C \in \mathbb{R}^{2 \times 1}, \quad Z = e^{tA}C \text{ is a solution.}$$

 $= \begin{vmatrix} X \\ Y \end{vmatrix}_{t=0} = [Z]_{t=0} = [e^{tA}C]_{t=0} = IC = C$ 52

$$\begin{bmatrix} X \\ Y \end{bmatrix} = Z = e^{tA}C = (\exp(tA))C$$
$$= \left(\exp\left(t\begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}\right)\right) \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \left(\exp \left(t \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix} \right) \right) \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

$$\frac{dX}{dt} = -X + Y, \qquad \frac{dY}{dt} = 2X - 4Y,$$

$$[X]_{t=0} = 3,$$
 $[Y]_{t=0} = 8.$

Solution:
$$\begin{bmatrix} X \\ Y \end{bmatrix} = \left(\exp\left(t \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}\right) \right) \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

Exercises: Find an invertible
$$B \in \mathbb{R}^{2 \times 2}$$
 s.t. $D := BAB^{-1}$ is diagonal Compute $\exp(tD)$.

Compute $B^{-1}(\exp(tD))B = \exp(tA)$. [54]

SKILLS: Integrate a constant vector field. Integrate a homogeneous linear vector field. Integrate an inhomogeneous linear vector field.

Solution:
$$\begin{bmatrix} X \\ Y \end{bmatrix} = \left(\exp\left(t \begin{bmatrix} -1 & 1 \\ 2 & -4 \end{bmatrix}\right) \right) \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

Exercises: Find an invertible $B \in \mathbb{R}^{2 \times 2}$ s.t. $D := BAB^{-1}$ is diagonal Compute $\exp(tD)$.

Compute $B^{-1}(\exp(tD))B = \exp(tA)$.

SKILLS: Integrate a constant vector field. Integrate a homogeneous linear vector field. Integrate an inhomogeneous linear vector field.

Example: Find the flowline, footed at (8,9), for V(x,y) = (3x + 2y + 5, 2x + 3y + 7).

inhomogeneous linear

Corresponding homogeneous linear:

Example: Find the flowline, footed at (8, 9, 1), for W(x, y, z) = (3x + 2y + 5z, 2x + 3y + 7z, 0).

Last coordinate is always 1.

First two coordinates solve the inhomgeneous problem.

Next: 2nd deriv test

The second derivative test

Terminology:

A function taking values in the scalars (i.e., in the real numbers) is often called a **functional**

So functional = scalar-valued function.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth functional.

Goal: Maximize and/or minimize f.

Definition: f attains a local max at $a \in \mathbb{R}^n$ if $\exists \delta > 0 \text{ s.t.: } |x-a| < \delta \text{ implies } f(x) \leq f(a).$

Definition: f attains a local min at $a \in \mathbb{R}^n$ if

 $\exists \delta > 0 \text{ s.t.: } |x-a| < \delta \text{ implies } f(x) \geq f(a).$

The second derivative test

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth functional.

Goal: Maximize and/or minimize f.

Definition: A critical point for f is a point $a \in \mathbb{R}^n$ s.t. f'(a) = 0.

Fact: If f attains a local max or local min at a, then a is a critical point for f.

Second derivative test:

Let [C(x)] + [L(x)] + [(Q(x))/(2!)] be the second order Macl. approx. of f(x + a).

Assume that a is a critical point of f, i.e., that L = 0.

If Q is positive definite, $L = C_{f(a)}$ then f attains a local min at $a \cdot Q = Q_{f''(a)}$ neg. def. \Rightarrow loc. max. $C = C_{f(a)}$ $L = L_{f'(a)}$

The gradient and reverse-gradient flows

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth functional.

Goal: Minimize f.

Approach.

Pick a "starting point" $s \in \mathbb{R}^n$.

Let $V: \mathbb{R}^n \to \mathbb{R}^n$ be the reverse gradient VF, defined by $V(x) = -(\nabla f)(x)$.

Let c be a flowline for V footed at s.

Hope that c(t) is defined for all t > 0.

Hope that $a := \lim_{t \to 0} c(t)$ exists. Critical point

Hope that f attains its minimum at a.

e.g.:
$$f(x,y) = (x^2 + y^2)/4$$

$$-(\nabla f)(x,y) = (-x/2, -y/2)$$



The gradient and reverse-gradient flows

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth functional.

Goal: Maximize f.

Approach:

Pick a "starting point" $s \in \mathbb{R}^n$.

Let $V:\mathbb{R}^n\to\mathbb{R}^n$ be the gradient VF, defined by $V(x) = (\nabla f)(x)$.

Let c be a flowline for V footed at s.

Hope that c(t) is defined for all t > 0.

Hope that f attains its maximum at a'.

