Financial Mathematics
The multivariable chain rule
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Problem: Find the second-order Maclaurin
approximation, q(xz,vy), (w.r.t. (z,y)) to the
expression g(z,y) ;= [sin(e* T3] +4zy+4y—2.

Unassigned exercise:
With ¢(x,y) and g(x,y) as above,

see if you can show that
i 9@y) —a(zy)
(z,y)—(0,0) 2+ y?

i.e., that g(z,vy) = (¢(z,v)) + (o(a? + y2))
near (x,y) = (0,0).
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Know: q is the 2nd order Macl. approx of g

Want: i g(z,y) —q(z,y)

=0
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Know: q is the 2nd order Macl. approx of g

Want: M

g(z,y) —q(z,y)

(z,y)—(0,0)] 72+ y?

Let B := ball of radius 100 about (0,0).

Estimate [(g(z,y)) — (¢(z,y))| for (z,y) € B,
then divide by z2 + y2,
then show quotient — 0, as (z,y) — (0,0).
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p IS the 2nd order M. approx of f

f(t) := g(=7t,9t)
p(t) := q(=7t, 9t)

f(1) —p(1) = [f"(s)]
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f'() = [(019) (=7t 9D)][(d/dt)(~T0)]

W/mx-?t, ot)][(d/dt)(9t)]
= [ 7H{(B19) (—7t,90)] + [9]((929) (—T¢,90)]
= (—7(019) + 9(029))(—T7t,9t)

Chain rule
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Choose M > 0 so large that: |01119| < M,
|8112g| < M, |61229| < M, |82229| < M on B.
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Let B := ball of radius 100 about (0,0),

Estimate [(g(z,y)) — (¢(z,y))| for (z,y) € B,
then divide by z2 + y2,
then show quotient — 0, as (z,y) — (0,0).

» 0, as (z,y) — (0,0).

3
(‘jQ_:_'y'Q) < 2(|z| + |y 0, as (x,y) — (0,0)
Y QE
V(z,y) € B,

(g(z,9)) — (q(z,9)| < (lz| +|y)>M/6|"




Let B := ball of radius 100 about (0,0),

Estimate [(g(z,y)) — (¢(z,y))| for (z,y) € B,
then divide by z2 + y2,
then show quotient — 0, as (z,y) — (0,0).

» 0, as (z,y) — (0,0).




