Financial Mathematics
Variations on Stokes’ Theorem




Green’s T heorem
and

Cauchy’'s Theorem




Green’s Theorem on rectangles
Definition:
A directed line segment in R? is

an ordered pair of points in R2, called
the starting point and ending point of L.

Viz.:

ending point
(47_1) 3




Green’s Theorem on rectangles
Definition:
A directed line segment in R? is

an ordered pair of points in R2, called
the starting point and ending point of L.

S Curves are assumed continuous.
Definition:

The standard parametrization of L = (p,q)
is the constant velocity curve ¢ : [0,1] — R?
such that ¢(0) =p and ¢(1) =gq.

Definition:
Constant velocity means: ¢’ is constant,
i.e., that, Vs,t € (0,1),

¢'(s) = ¢'(t) 4




Green’s Theorem on rectangles
Definition:
A simple chain is a finite set of
directed line segments.

E.qg.:
Viz.:

7
A




Green’s Theorem on rectangles

Definition:
A rectangle is a subset of R? of the form
I x J, where I and J are bounded intervals.

Eg: R = [1,4)x[-1,1]




Green’s Theorem on rectangles

Definition:
A rectangle is a subset of R? of the form
I x J, where I and J are bounded intervals.

\ Eg:. R = (1,4)x(-1,1)

IS an open rectangle.




Green’s Theorem on rectangles

Definition: Let R be an open rectangle.

The counterclockwise boundary

OR

IS the set of boundary line segments,

directed counterclockwise.

of R

\ Eg:. R = (1,4)x(-1,1)

IS an open rectangle.




Green’s Theorem on rectangles

Definition: Let R be an open rectangle.

The counterclockwise boundary [PDR|of R
IS the set of boundary line segments,
directed counterclockwise.

\ Eg:. R = (1,4)x(-1,1)

IS an open rectangle.




Green’s Theorem on rectangles

Definition: Let R be an open rectangle.

The counterclockwise boundary

OR

IS the set of boundary line segments,

directed counterclockwise.

of R

\ Def'ni R = (a,b) x (¢,d)
p.= (b,c), qg:= (b,d), r:= (a,d), s := (a,c)
implies  OR = {(P,Q) (g,7), (r,s), (s,p)}




Green’s Theorem on rectangles
Definition:
L et L be a directed line segment in R2.
Let ¢ = (o, B) : [0,1] — R? be the
standard parameterization of L.
Let p,q: ¢([0,1]) — R be continuous.

T hen we define:

/L p(z,y) dz + q(x,y) dy|:

/Ol[P(cb(t))][a’(t)] [g((ENIIB' ()] dt.

 Idea: Replace = by a(t), y by G8(t), and

dr by o/(t) dt, dy by B'(t) dt. 11




Green’s Theorem on rectangles
Definition:
Let C ={Ly,...,Ln} be a simple chain.
Let S be the union, over 3, of the image
of the standard parametrization of Lj.

Let p,g: S — R be continuous.

T hen we define:

/Op(fr:, y) dr + q(x,y) dy|:

12

+/L p(x,y) dx + q(x,y) dy.




Green’s Theorem on rectangles
T heorem:

et R be an open rectangle in R2.

et R be the union of R and
the boundary of R.

Let p,qg: R — R be continuous, and
smooth on R.

Let P:=p(x,y) and Q := q(x,v).

o ay_
T hen: det P Q

Pdz+Qdy = [ [ [(9:Q) ~ (9,P))da dy.

OR

13




Definition: A zero-form in x and vy is
an expression in x and y.

Definition: An expression of the form
p(xz,y) dr + q(z,y) dy is
called a one-form in x and y.

Definition: The exterior derivative
of F'= f(x,y), denoted |dF],
is the one-form Oy F dx + OyF dy.

Note: Exterior differention carries
zero-forms to one-forms.

| Pde+Qdy= [ [ [(0:Q) = (9yP)]da dy.
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Definition: A zero-form in x and vy is
an expression in x and y.

Definition: An expression of the form
p(xz,y) dr + q(z,y) dy is
called a one-form in x and y.

Definition: The exterior derivative
of F'= f(x,y), denoted |dF],
is the one-form Oy F dx + OyF dy.

SKILL: Compute the exterior derivative
of a zero-form.

| Pde+Qdy= [ [ [(0:Q) = (9yP)]da dy.
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Definition: An expression of the form

p(x,y)dx Ndy is
called a two-form in x and y.

Definition: An expression of the form

p(x,y) dr + q(z,y) dy is
called a one-form in x and y.

Conventions: fANA=fA=ANTf

f a O-form (A+B)ANC=(ANC)+ (BANC)

Ty |AN(BYC) = (ANB) + (ANC)

A, B,
forms in z.y \go A do = dy A dy = O

C AN(BANC)=(AANB)ANC

dx N\ dy = —dy N dx

OR

Pde+Qdy = [ | [(0:Q) = (9yP)]da dy.

16




Note: F(AAB) = (fA)AB= AA (fB)

Proof:
f(A/\B)—f/\(A/\B)—(f/\A)/\B ( )/\B
= AN (fB)
QED

Conventions: fANA=f ANT

f a O-form (A+ B) A (ANC)+ (BAC)
Ny IAN(B+C))\=(AAB)+ (ANC)

A B, C AN(BANC)=(AANB)ANC

forms In &y |do A dx = dy A dy = O

dx N\ dy = —dy N dx

Pde+Qdy = [ | [(0:Q) = (9yP)]da dy.

OR




SKILL: Collect terms on a two-form.

e.g.:

(422 + 3zy) dz + (2sin(zy)) dy]

—(2sin(zy)) (ye®)

Conventions: fANA=fA=ANTf

f a O-form (A+B)ANC=(ANC)+ (BANC)

A’ B!
forms in z.y \go A do = dy A dy = O

NTY IAN(B+C)=(AAB)+(ANC)
C ANBANC)=((AANB)ANC

dx N\ dy = —dy N dx

OR

Pde+Qdy = [ | [(0:Q) = (9yP)]da dy.
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SKILL: Compute exterior derivatives of
zero-forms.

e.g.: d[e*TYsin(x)] =
(Oz[e®TY sin(z)]) dz+(dyle™ TV sin(x)]) dy = - -

Definition: The exteri derivativ
of F = f(x,y) denoted |[dF

IS the one-form 0, F dx + ByF dy.

| Pde+Qdy= [ [ [(8:Q) ~ (9,P)ldzdy.

19




Definition: An expression of the form
p(xz,y) dr + q(z,y) dy is
called a one-form in x and y.

Definition: An expression of the form
p(x,y)dx Ndy is
called a two-form in x and y.

Definition: The exterior derivative
of FF = Pdx + () dy, denoted |dF],
is the two-form dP A dx + dQ N dy.

Note: Exterior differention carries
one-forms to two-forms.

Pde+Qdy = [ [ [(9:Q) ~ (9,P)ldzdy.

OR

20




SKILL: Compute exterior derivatives of
one-forms.

Definition: The exterior derivative

of FF = Pdx + () dy, denoted |dF],

o IS the two-form dP A dx + dQ A dy.
Definition: 1 he exterior derivative

of FF = Pdx + () dy, denoted |dF],
is the two-form dP A dx + dQ N dy.

OR

Pde+Qdy = [ | [(0:Q) = (9yP)]da dy.

21




SKILL: Compute exterior derivatives of

one-formes.

e.g.. d[(zsiny)dz + (x3y?)dy] =
[d(zsiny)] A dz + [d(z3y2)] A dy =
[(0y(zsiny))dy] A dz + [(8z(z3y?))dz] A dy =
(Oy(zsiny))(dy A dz) + (9:(z3y?)) (dz A dy) =

[—(Oy(xsiny)) + (8z(x3y?)):.

Definition: /R g(z,v) dz A dy

of ' = Pdx

:://R g(x,y) dxdy

Definition: The exterior derivative

() dy, denoted

dF),

is the two-form dP A dx + dQ N dy.

OR

Pde+Qdy = [ | [(0:Q) = (9yP)]da dy.

22




d(P dx -
(dPIA dx) -

[((OyP)dy) A da

[(Oy P)(dy A d
[((+0yP)(dz A dy))]
[— (3yp)

] + [(02Q) (dx A dw-

-Qdy) =
- (dQIN dy) =

- [((02Q)dx) A dy

- [(02Q) (d A dy)).

+ (0:Q)][dz A dy] =

AN

Green’s Theorem on r tangles:\

vYone-forms w in x and y,vopen rectangles R,

/ W = / deo. w Continth\%S on R
OR R ..and smooth on R

OR

Pdr+Qdy= [ [ 1(0:Q) (&,P)

‘c}fc dy.




Practice:
(z2y dx + 3z dy + €% dz)
A(3dx + 2e%% dy — 4y3 dz)

(—ydx + 2Ydy + zyz dz)
A2ye? dxr — dy + T2~ 1 dz)
A(cos(zy/z) dx + 3dy — z° dz)




Solutions:
(z2y dx + 3z dy + €% dz)
A(3dx + 2e%% dy — 4y3 dz)

(2y)(2e%#) (1)
—(z%y)(—4y3)(1)
—(37)(3)(1)
+(3z) (—4y>) (1)
+(e*)(3)(1)

—(e*)(2¢7)(1)

25




Solutions:
(—yde + 2Ydy + zyzdz)
A(2ye? dx — dy + Tz~ 1 dz)

A(cos(zy/z) de + 3dy — z° dz)

(=) (=1)(==2°)
(=) (72~ 1)(3)
—(@¥) (2ye?) (—2°)
+(2¥) (T2~ 1) (cos(zy/2))
+(zyz)(2ye®)(3)

—(zyz)(—1)(cos(zy/z))

26




Practice:

d(sin(xzye?))
d([e™3*¥][sin(2)])

d(z2y dz + 3z dy + €% dz)
d(—ydx + 2Ydy + zyz dz)

27




Solutions:

d(sin(xzye?))

= ([cos(zye®)]lye?]) dx

d([e=3*¥][sin(2)])
= ([e737¥][-3y][sin(2)]) d

+(|

'€—3xy:

+(|

'€—3my:

+([cos(xye®)][xe?]) dy
+([cos(zye®)]|zye®]) dz

—3z][sin(z)]) dy

cos(z)]) dz

28




Solutions:

d(z2y dz + 3z dy + €% dz)

= ([3] — [#?]) dz A dy
+([0] — [O]) dx A d=z
+([0] — [O]) dy A d=

d(—ydx + 2Ydy + zyz dz)

= ([ya¥~1] — [-1]) dz A dy
+([yz] — [O]) dx A d=z
+([zz] — [O]) dy A d=

29




Practice:

r=—1+41 dx = dt

1

(25)
/ :r;—l-y drF zy> dy
(—1,2) \
y—2—|—t dy = dt
t € [0,3]

3
:/o e(C1HO+CH) gy 4 (—1 ) (2 4+ )3 dt

3
=/O el 2ty (_144)(2343.22t43-2t2+13) dt

30







Let R:=(1,2) x (3,4).
Compute /R (€27 T3Y] dy A dz.

/R (2 T3V dy A do = l / /R (27 T3Y] dx dy

4 2 4 [o2x+3y]%T—2
_ / / 2539 do dy = — f © dy
3 J1 3 1 2 |,
4 [A+3y]  [e243y
— —/ dy
3 | 2 | | 2
o [[ertavrT® N [e2+3u]Y Y
: 2.3-3/:_’3_ i 2'3-y2—>3_ 32




(Real)Green’'s Theorem on rectangles, SETUP
Definition:
et L be a directed line segment in R2.
Let ¢ = (a, B) : [0,1] — R? be the
standard parameterization of L.
Let p,q: ¢([0,1]) — R be continuous.

T hen we define:

/L p(z,y) dz + q(x,y) dy|:

/Ol[P(cb(t))][a’(t)] [g((ENIIB' ()] dt.

 Idea: Replace z by a(t), y by G(t),

dr by o/(t) dt, dy by B'(t) dt. 33




Complex Green’'s Theorem on rectangles,
Definition: SETUP

Let L be a directed line segment in C.
Let ¢:[0,1] — C be the

standard parameterization of L.
Let p: ¢([0,1]) — C be continuous.

T hen we define:

/L p(z)dz|:=
[ oes (o) dt.

 Idea: Replace z by o(t),

dz by ¢ (t) dt. 54




(Real)Green’s Theorem on rectangles, SETUP
Definition:
Let C ={Lq,...,Lp} be a simple chain.
Let S be the union, over 3, of the image
of the standard parametrization of L.

Let p,g: S — R be continuous.

T hen we define:

/Op(w, y) dr + q(x,y) dy|:

35

+/L p(x,y) dx + q(x,y) dy.




Complex Green’'s Theorem on rectangles,
Definition: SETUP

Let C ={L4,...,Lp} be a simple chain in C.
Let S be the union, over 3, of the image
of the standard parametrization of L.

Let ¢ : § — C be continuous.

T hen we define:

/C’ o(z)dz|:=

/L1 b(z)dz+ -

36

+ . o(z) dz.




(Real) Green’s Theorem on rectangles

T heorem:
Let R be an open rectangle in R2.

et R be the union of R and
the boundary of R.

Let p,g: R — R be continuous, and
smooth on R.

Let w:i=p(z,y)dr + q(z,y) dy.

T hen:

/ w=/ dw.
OR R 37




Complex Green’s Theorem on rectangles

T heorem:

Let R be an open rectangle in C.

et R be the union of R and
the boundary of R.

Let ¢ : R — C be continuous, and
smooth on R.

Let w = ¢(2) dz.

T hen:

One variable!

fon*= Ja?

~

Want:

Complex
exterior

differentiation.

w.

38




Exercise: Compute d[(sin x) dx],
the exterior derivative of
(sin x) dx
with respect to .

Solution:

d[(sin z) dzx] = [d(sin x)] A dx
= [0z(Sin x) dx] A dx
=0

39




Exercise: Compute dle” dx]

the exterior derivative of
et dax
with respect to x.

Solution:

dle® dx] = [d(e®)] A dx
= [0x(e%) dx] A dx
=0

40




Fact:
dlo(x) dx] = 0, for any smooth ¢.

Proof:
dl¢(z) dz] = [d(¢(z))] N dx
= [0z(&d(x)) dx] A dx
=0
QED




Complex Green’s Theorem on rectangles

T heorem:

Let R be an open rectangle in C.
Let R be the union of R and

the boundary of R.

Let ¢ : R — C be continuous, and

Let w = ¢(2) dz.

T hen:

smooth on R.
Need: Complex differentiable

Expect: O

sometimes!
/ w=/ dw.
OR R 42




Complex Green’'s Theorem on rectangles,
Definition: SETUP

Let R be an open set in C.

Let ¢ : R — C be smooth. Let z € R.
e FGE W] - )
h—0O h

then we say that f is
complex differentiable at z,
and we define|f/(z)|= L.

exists,

 Exercise: Define f:C—C by f(2) =e3.
Show, for all z € C,
that f is complex differentiable at z,

and that f/(z) = 3e3~. %




Complex Green’'s Theorem on rectangles,

SETUP
IT L= Iim Lz 4 1)l = [£(2)] exists,
h—0 h
then we say that f
IT L= Iim /(= + h)] — f(2)] exists,

h—0

CAl I NA VVi™ NAN 111 IJ \A//I— A 4 .

_then We c~nwws +hhA+

non-e.d.: Define f: C—>C by f(2) = |z|2.

LOIII}JIC/\ UITHITICTIHILIAdUVIC

and we define [f/(2)

<y

= L.

44




Complex Green’'s Theorem on rectangles,

SETUP
IT L= Iim Lz 4 1)l = [£(2)] exists,
h—0O h
then we say that f is

complex differentiable at z,
and we define|f/(z)|= L.

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 17 m g TAFRDN- QN P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = [ *®




Complex Green’'s Theorem on rectangles,
Yo,y € R, f(z + iy) = 22 + y°. SETUP
h

L [+ 22407 - [12 407
L' = lim J

]—00 hl.
h— 0 J

h
[12 4+ (3)?] - [12 + 0?]

L' = lim Z
]—00 ' =
M 1h ;

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 1R m g TAFRON 1A P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = L1 *




Complex Green’'s Theorem on rectangles,

Vm,yER,f(mh—Fiy):a:Q—l-yQ- SETUP
R [A+n)2+04-[1740% _[d, > 2
L _iILT;IO hh - [alac(a3 0 )]le
h— 0 h y=0
o1 i [P R - [12 407
h—>}(l)_>0 ih th

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 1R m g TAFRON 1A P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = LY




Complex Green’'s Theorem on rectangles,

Va,y € R, f(z +iy) = 22 + y°. SETUP
r . [A+Rr)2+0%] (12407 _ [d, 5 Y5
L = lim g = [+ _,
=0
iy 12482 - (12407 ’
_h—>0 1h

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 1R m g TAFRON 1A P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = L1 *




Complex Green’'s Theorem on rectangles,

vo,y € R, f(x + iy) = z2 + y°. SETUP
_ 14+ h)2 4+ 02] — (12402 " d
[0, 2, 2
o1 i [P R - [12 407 =[5 Y )](m,y)z(l,m
h—0 1h

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 1R m g TAFRON 1A P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = L1 %




Complex Green’'s Theorem on rectangles,

va,y € R, f(z +iy) = a* +y°, SETUF
2 21 _ 12 2 - :
A i [A M2 402 (12402 9 o o
h—0 h :889: I(z.y)=(1,0)
— | 2 .2 2
g o T LR B 2" TV =0y
h—0 1

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 1R m g TAFRON 1A P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = L1~




Complex Green’'s Theorem on rectangles,

Va,y € R, f(z +iy) = 22 + y°. SETUP
TR _ [(14+h)?+0%] - [12407] _ 9 )]
h—Q0 h | Ox (z,y)=(1,0)
o1 i (124 2] = [12 4 07) 12+h2] — (12 +07]

1
h—0 i l h

non-e.g.: Define f:C — C by f(z) = |z|?.

f is not complex diff. at 1:

Vintegers j > 0, let hR = 1/4 and h§ = 1/j.
[f(1+ hR)] — [f(l)]

Let L' = lim - i =1
J—00 h
;o [f(1+hf)] [f(1)] Want:
L = |Iim

. : 1
j—00 hjf- L = L1




Complex Green’'s Theorem on rectangles,

Vr,y € R, f(z 4+ iy) = x2 + y~. SETUP
2 21 12 2 1
LRZAimO[(1+h) +0h] [14-07] _ g(xzﬂz)
— LOX 1(z,y)=(1,0)
;1 [12+r2)—[12+0° 1_1[d o, o] 07
L ’L]’IL[TIO h _i_i_dy(l +v7)

1y=0

non-e.g.: Define f:C — C by f(z) = |z|?.

f is not complex diff. at 1:

Vintegers j > 0, let hR = 1/4 and h§ = 1/j.
[f(1+ hR)] — [f(l)]

Let L' = lim - i =1
J—00 h
;o [f(1+hf)] [f(1)] Want:
L = |Iim

. : 1
j—00 hjf- L = [




Complex Green’'s Theorem on rectangles,

vo,y € R, f(z +iy) = z° + y°. SETUP
2 21 2 2 .
LRZAimO[(1+h) +0h] [1 +0]= ag(szryz)
— LOX 1 (z,y)=(1,0)
12 4+ h2] — [12 4+ 02 1
zh—>0 /) - 1 14=0

non-e.g.: Define f:C — C by f(z) = |z|°.

f is not complex diff. at 1:

Vintegers j > 0, let hR = 1/4 and h§ = 1/j.
[f(1+ hR)] — [f(l)]

Let L' = lim - i =1
J—00 h
;o [f(1+hf)] [f(1)] Want:
L = |Iim

. : 1
j—00 hjf- L = L1 >




Complex Green’'s Theorem on rectangles,

v,y € R, f(z +iy) = 22 + y~. SETUP
R oo [(A4+R)24+04—[1240%] _ [0, 5, »
L= fIL[I:]O h o aw(x Ty )] (z,y)=(1,0)
;1. [124hR%-[12404 _1[d Tr ]
= h U _dy([m :f/lle) y=0

non-e.g.: Define f:C — C by f(z) = |z|?.
f is not complex diff. at 1:
Vintegers j > 0, let th = 1/4 and h§ = 1/j.

R - .
et 1R m g TAFRON 1A P
j—00 i
o [FAERDI- @] Want:

. : 1
j—00 hjf- L = L'




Complex Green’'s Theorem on rectangles,

vo,y € R, f(x + iy) = z2 + y°. SETUP
[+ h)?2+0%] (12402 [0, 5, >
It = = |—
hﬂqo h _ax(m Ty )](;v,y)z(l,O)
2 21 2 2 i
! =l, lim 17+ n7] — 17 + 07 —1. d([$2+y2]$=1)]
i h—0 h 1 | dy y=0
1[0
= - 8(3324‘3/2)]
v Loy (z,y)=(1,0)

55




Complex Green’'s Theorem on rectangles,

Vr,y € R, f(z +iy) = 22 + y~. SETUP
2 21 2 2 - .
IR — lim [(A1+h)=+07] - [1°407] _ 3($2+y2)
h—Q0 h | Ox " 1(z,y)=(1,0)
2 21 2 2 [ ' ]
LI:l,Iim[l + h<] — [1° 4 07] —l£($2+y2)
i h—0 h i [0y I (z,y)=(1,0)
1[0 ]
= - 8—(332 + 92)
v Loy 1 (z,y)=(1,0)

56




Complex Green’'s Theorem on rectangles,

ve,y € R, f(z + iy) = z2 + y°.

[(14+h)?+0%] - [12407] _

SETUP

TP
_ax(:v +y)_
e

(z,y)=(1,0)

L = lim
h—0 h
1 12 h2 o 12 2
7 h—0 h

g ]
= — 8—(3’:2 + 42)
7Y 1 (z,y)=(1,0)

For f to be cx-diff

at a + b1, we need

complex differentia

ble

1

1| 0
Oy

O (fat i)

Ga)=(ab)]

57

(f(x+ iy))]

(z,y)=(a,b)




Complex Green’'s Theorem on rectangles,

analytic SETUP
For f to be rcx—diﬂ?, we need
%,
8—x(f(sc+iy)) =
complex differentiable Lo
! [(f(:c + ,,;y))]
1 | Oy
analytic
For f to be cx-diff @t a + b1, we need
3,
—(f(z +iy)) =
complex differentiable [35” ](ﬂ%y)=(a»b)|

1

o .
n lay(f(x + ’L?J))]

58

(z.y)=(a,b)




Complex Green’'s Theorem on rectangles,

analytic SETUP
For f to be rcx—TdifF, we need
TG+ =
complex differentiable Haay(f(w"'iy))]

say f(z +wy) = [u(z,y)] + ilv(z,y)].

59




Complex Green’'s Theorem on rectangles,

analytic SETUP
For f to be cx-diff, we negle_W
—(f(sc+zy))
complex differentiable 1 [(f(;p+zy))]
¢ 19y U+ iV
Say f(z + iy) = , ilv(z, y)].

U:=u(x,y) a:,yy

?&EV)z[m][Q U+ V)]
LU+ (0 V)| = +i(0,U)| + 10,V

0U = 8yV & 0,V = _834[] Cauchy-Riemann[ gg

equations




Problem:
Define f:C — C by f(z) = /2
Define u,v : R2 — R by
flx +iy) = [u(z,y)] + [v(z,y)]i.
Let U ;= wu(x,y) and V = v(x,y).

o FmdUand V. L ___
Fle 4 iy) = e@+ti)?/2 = (2%—y*+2izy)/2
_ @) 2l — [(22—y?)/2] il

= (=" ~¥)/2 [(cos (zy)) + i (sin (zy))]

= [ =¥)/2] [(cos (zy))]+i[el= /2] [(sin (zy))]

N— - N\ —
Y Y

U V
Exercise: Check 0,U = 0yV & 0,V = —0yU
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Complex Green’s Theorem on rectangles

T heorem:
Let R be an open rectangle in C.

et R be the union of R and
the boundary of R.

Let ¢ : R — C be continuous, and
smooth on R.

Let w = ¢(2) dz.

T hen:

/ w=/ dw.
OR R o




Complex Green’s Theorem on rectangles

T heorem:
Let R be an open rectangle in C.

et R be the union of R and
the boundary of R.

Let ¢ : R — C be continuous, and
analytic on R.

Let w = ¢(2) dz.

T hen:

/ / —~
W = dw.
OR R 03




CCauchy’'s Theorem on rectanglesangles

T heorem:
Let R be an open rectangle in C.

et R be the union of R and
the boundary of R.

Let ¢ : R — C be continuous, and
analytic on R.

Let w = ¢(2) dz.

Next: Proof of Green’'s Th'm
for rectangles in R2

T hen:

] w = 0.
8R 64




Green’s Theorem on rectangles

T heorem:
Let R be an open rectangle in R?.
Let R be the union of R and
the boundary of R.

Let p,qg: R — R be continuous, and
smooth on R.

Let P:=p(x,y) and Q = q(x,y).
then: | Pde+Qdy= | [ [(8:Q) — (8yP))de dy.

Proof
Want Pd:c:—// 9y P
>
<o d =// 5.0 d d O
Exercise /{mQ Y . +Q dx dy

J




Want: Pd:c_ —// Oy P dx dy
Write R = (a,b) X (¢, d).
Want: Pda: = —// Oy Pdx dy
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Want:

Pdac——// Oy P dx dy

Write R = (a,b) x (¢,d).

b rd
// 8deajdy=// Oy P dy dx
R a Jc

d b /
/ / Oy P dx dy
C a

Fubini’'s T heorem
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Want:

Pdac——// Oy P dx dy

Write R =

(a,b) x (c,d). cund.

// adeazdy—// adey

_/ [P1Y=4 da
= [ e =

thm of calc.

dx

= p(x,y)

dd.cc

= [ ot d)] - [, 0)) do

Want:

OR

7 O\

Pdx = - ab [p(x,d)] — [p(x, c)] dr[ e




Want: Pdac——// Oy P dx dy

Write R = (a,b) x (¢, d).

b rd
//Radeazdysz Oy P dy dx

=
= / [p(a, ]I=2 da
= [ oG, )] ~ (e, o)) da

b
Want: Pdx = /a p(z, ¢)] — [p(z, d)] dz &

OR




| R=(a,b) x (¢,d)

want: [ Pda —/ (p(z, )] — [p(z, d)] dz

OR
= (a,b) X (c,d)

qg .= (b,c), r:=(b,d), s.= (a,d), t:= (a,c)

b
Want: Pdx = /a (p(z, ¢)] — [p(z, d)] dz

OR




| R=(a,b) x (¢,d)

b
want: [ Pdz= | [p(e,0)] - [p(z, d)] da

8R| a /\

\ IR\ e Iy Ip
q .= (b,c), r:=(b,d), s : = (a,d), t := (a,c)
implies \ OR = {(q,7),Xr,5), (s,t) (t,9)}

right left down

‘ \ b
Want: Ip=0 & Iy=— [ p(z/{d)de

b

71

Exercise: Ip =0 & ID=/ p(x,c) dx

a




Want: ,
f(qﬂa) Pdx =20 & /(T’S) Pd:cz—/a p(z,d) dz

[/(W) Jida:}qt{/(m) P\dxh{/(&t) Pda:}—l—[/(t,q) Pda:}

- - - - A - - A - -

—

I \ Iy \ I Ip

g .= (b,c), r:=(b,d), s.=(a,d),t:= (a,c)

implies \ OR = {(q,7), (7, ), (s,t) (t,q)}
right up left down

\ \ b
Want: Ip=0 & IU=—/ p(z,d) dx
a

b
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Exercise: Ip =0 & ID=/ p(x,c) dx

a




Want:

f(qr) Pdr =0 & f(rs) Pd.ﬁcz—/abp(m’d)dx

| - — | - -

ap(t) =0 CVUE;) = (1 —-t)b+ta
Br(t) = (1 —t)c+td By(t) =d

¢R — (CMR,/@R) : [09 1] _>R2 ¢U — (OﬁU,/BU) , [031] — RQ

qg .= (b,c), r:=(b,d), s.= (a,d), t:= (a,c)

implies  OR = {(q,7), (r,s), (s,%) (¢,9)}
right up left down

b
Want: Ip=0 & IU=—/ p(z,d) dx
a

b
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Exercise: Ip =0 & ID=/ p(x,c) dx

a




Want:

f(m PdzX0 & /(m)

aR it)v: b
Br(t) = (1 —t)c+td
~ ¢r = (ar,BR) : [0,1] — R

= (1 —t)b+ta
U(t) +=d
oy = kaUaﬁU) [0, 1h — R?

P = p(z,y) P =p(z,y)
Repl. x by ap(t) Repl.|x by ag(t)
Repl. y by Br(t) Repl| y by By (t)
Repl. dx by o/p(t)dt=0dt  Repl. dz by of;(t) dt
~ Repl. dy by BR(t) dt Rep|. dy by 87,(t) dt
/ )

v 1 b ‘
want: | " [play®. BuONap (O] di= - | p(z.d) da
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want: [* ey 0.9 01t ¥ .
N O
- /1 p(ag(t), d)][a, ()] dt

ar(\= (1 — t)b+ ta ‘
Bu(t) = d
/bU=( v, Bu) : [0,1] — R? \

Change
variables
= ay(t)
dx = aj; (t) dt
a=ay(l)
b= ay(0)

' a8 N

1 b
want: | " [p(ay (t), By (D)) [y (D) dt = — |~ p(z.d) da

a
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