Financial Mathematics

Basics of piecewise constant random variables

Definition:

A piecewise constant random variable is a piecewise constant function $[0,1] \to \mathbb{R}$.

PCRV: Finitely many pieces.

e.g.: Let
$$X:[0,1]\to\mathbb{R}$$
 be defined by

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \longleftarrow \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \longleftarrow \\ -7, & \text{if } 0.54 < \omega \le 0.65 \longleftarrow \\ 8, & \text{if } 0.65 < \omega < 0.99 \longleftarrow \\ 0, & \text{if } 0.99 \le \omega \le 1.00 \longleftarrow \end{cases}$$

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \\ -7, & \text{if } 0.54 < \omega \le 0.65 \\ 8, & \text{if } 0.65 < \omega < 0.99 \\ 0, & \text{if } 0.99 \le \omega \le 1.00 \end{cases}$$

e.g.: Let
$$X:[0,1] \to \mathbb{R}$$
 be defined by

Intuition: 0.00 $\leq \omega < 0.22$ picks a point $\omega = 2$, if $0.22 \leq \omega \leq 0.54$ m, and

$$X(\omega) \Longrightarrow -7$$
, if $0.54 < \omega \le 0.65$.
8, if $0.65 < \omega < 0.99$
0, if $0.99 \le \omega \le 1.00$

J

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 & 0.22 - 0.00 = 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 & 0.54 - 0.22 = 0.32 \\ -7, & \text{if } 0.54 < \omega \le 0.65 & 0.65 - 0.54 = 0.11 \\ 8, & \text{if } 0.65 < \omega < 0.99 & 0.99 - 0.65 = 0.34 \\ 0, & \text{if } 0.99 \le \omega \le 1.00 & 1.00 - 0.99 = 0.01 \end{cases}$$

Intuition:

On each "trial", Tyche picks a point $\omega \in \Omega := [0,1]$ at random, and reports back $X(\omega)$ to us.

Question: What is the probability that 1 < X < 2?

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 & \text{o.52} \\ 2, & \text{if } 0.22 \le \omega \le 0.54 & \text{o.54} - 0.22 = 0.32 \\ -7, & \text{if } 0.54 < \omega \le 0.65 & \text{o.65} - 0.54 = 0.11 \\ 8, & \text{if } 0.65 < \omega < 0.99 & \text{o.65} = 0.34 \\ 0, & \text{if } 0.99 \le \omega \le 1.00 & 1.00 - 0.99 = 0.01 \end{cases}$$

$$Pr[1 \le X < 2] = 0.22 \ne 22\%$$
 $Pr[1 < X \le 2] = 0.32 \ne 32\%$
 $Pr[1 \le X \le 2] = 0.22 + 0.32 = 54\%$
 $Pr[X = 0] = 0.01 = 1\%$

Pr[1 < X < 2] = 0

Question: What is the probability that 1 < X < 2? Ans: 0

Definition:

A PCRV is **deterministic** if it's constant, except (possibly) at finitely many points.

e.g.:

Let $U: \Omega \to \mathbb{R}$ be defined by $U(\omega) = 27$.

e.g.:

Let $V: \Omega \to \mathbb{R}$ be defined by $V(\omega) = 12$, except V(0.75) = 6 and V(1) = 3.

Note: "Pieces" can have zero length.

$$Y(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 & 0.22 \\ 2, & \text{if } 0.22 \le \omega < 0.54 & 0.32 \\ \hline -7, & \text{if } \omega = 0.54 & 0 \\ 8, & \text{if } 0.54 < \omega < 1 & 0.46 \\ \hline 0, & \text{if } \omega = 1.00 & 0 \end{cases}$$

$$Pr[Y > 0] = 1$$
, so we say:
 $Y > 0$ almost surely

It's not true that Y > 0 surely.

It's true that $Y \ge -7$ surely.

Modeling two coin flips

$$C_1 := \begin{cases} 1, & \text{if first flip is heads} \\ -1, & \text{if first flip is tails} \end{cases}$$

$$C_1 := \frac{1}{-1}$$

$$C_2 := \begin{cases} 1, & \text{if second flip is heads} \\ -1, & \text{if second flip is tails} \end{cases}$$

Modeling two coin flips

$$C_1 := \begin{cases} 1, & \text{if first flip is heads} \\ -1, & \text{if first flip is tails} \end{cases}$$

$$C_1 := \frac{1}{-1}$$

$$C_2 := \begin{cases} 1, & \text{if second flip is heads} \\ -1, & \text{if second flip is tails} \end{cases}$$

The distribution of a PCRV

Definition:

```
Let S:[0,1] \to \mathbb{R} be a PCRV.

Let F:=\{a \in \mathbb{R} \mid \Pr[S=a] > 0\}

The distribution of S associates to any a \in F,

the value \Pr[S=a].
```

Note:

Can be thought of as a function $F \to (0,1]$, or as a "measure" on \mathbb{R} , which is "supported" on F.

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \end{cases} \begin{cases} 0.32 \\ 7, & \text{if } 0.54 < \omega \le 0.65 \end{cases} \begin{cases} 0.11 \\ 8, & \text{if } 0.65 < \omega < 0.99 \end{cases} \begin{cases} 0.34 \\ 0, & \text{if } 0.99 \le \omega \le 1.00 \end{cases} \begin{cases} 0.01 \end{cases}$$

0.22

0.32

0.11

 $0.34^{'}$

The distribution of X is:

11

The distribution of Y is:

1 0.22 2 0.32

Def'n: Let S and T be PCRVs. Let $F := \{(a, b) \in \mathbb{R}^2 \mid \Pr[(S = a) \& (T = b)] > 0\}.$

The joint distribution of (S,T)associates, to each element $(a,b) \in F$, the value Pr[(S = a) & (T = b)].

Note: Can be thought of as a function $F \to (0, \infty)$, or as a "measure" on \mathbb{R}^2 . which is "supported" on F.

you need to know the JOINT distr. of (S,T). Knowing both the distribution of Sand the distribution of T14 is insufficient. Same for ST.

Remark: To compute the distribution of S + T,

Def'n: Let S and T be PCRVs. Let $F := \{(a, b) \in \mathbb{R}^2 \mid \Pr[(S = a) \& (T = b)] > 0\}.$ The joint distribution of (S,T)associates, to each element $(a,b) \in F$, the value Pr[(S = a) & (T = b)].e.g.: Let $A := C_1$, $B := C_2$, $A' := C_1$, $B' := C_1$. Then A and A' have the same distribution. and B' and B' have the same distribution, but A + B and A' + B' do not have

the same distribution. Note: (A, B) and (A', B') do not have the same joint distribution.

Remark: To compute the distribution of S+T,

you need to know the JOINT distr. of (S,T). Knowing both the distribution of Sand the distribution of T15 is insufficient. Same for ST.

Let A be a PCRV,

so $A:[0,1] \to \mathbb{R}$ is piecewise constant.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

Definition: $f(A) := f \circ A : [0,1] \to \mathbb{R}$

Note: f(A) is a PCRV as well.

e.g.:
$$A(\omega) = \begin{cases} 4, & \text{if } 0.00 \le \omega < 0.45 \\ 2, & \text{if } 0.45 \le \omega \le 0.75 \\ -8, & \text{if } 0.75 < \omega \le 1 \end{cases}$$

$$f(x) = x^2 \qquad B := f(A)$$

Then $B(\omega) = \begin{cases} 16, & \text{if } 0.00 \le \omega < 0.45 \\ 4, & \text{if } 0.45 \le \omega \le 0.75 \\ 64, & \text{if } 0.75 < \omega \le 1 \end{cases}$

the mean of T is $\mathsf{E}[T] := \int_0^1 T(\omega) \, d\omega$. Note: $\mathsf{E}[\bullet]$ is linear, i.e., $\mathsf{E}[S+T] = (\mathsf{E}[S]) + (\mathsf{E}[T])$ and $\mathsf{E}[cS] = c(\mathsf{E}[S])$.

For any PCRV T, let $T^{\circ} := T - (E[T])$.

For any PRCV T, the variance of T is

Definition: For any PCRV $T: \Omega \to \mathbb{R}$,

Remark: For any PCRV T, $Var[T] \ge 0$. T is deterministic iff Var[T] = 0.

[0, 1]

Fact: $Var[T] = (E[T^2]) - (E[T])^2$

 $Var[T] := E[(T^{\circ})^{2}].$

Pf of fact:
$$\mu := \mathbb{E}[T]$$
 $T^{\circ} = T - \mu$
$$\operatorname{Var}[T] = \mathbb{E}[(T^{\circ})^{2}] = \mathbb{E}[(T - \mu)^{2}]$$

$$= \mathbb{E}[T^{2} - 2\mu T + \mu^{2}]$$
 Note: $\mathbb{E}[\bullet]$ is linear,
$$i.e., \ \mathbb{E}[S + T] = (\mathbb{E}[S]) + (\mathbb{E}[T])$$
 and $\mathbb{E}[cS] = c(\mathbb{E}[S])$.

 $Var[T] := E[(T^{\circ})^2].$ Remark: For any PCRV T, Var[T] > 0. T is deterministic iff Var[T] = 0.

For any PRCV T, the variance of T is

Fact: $Var[T] = (E[T^2]) - (E[T])^2$

18

Note:
$$E[\bullet]$$
 is linear,
i.e., $E[S+T]=(E[S])+(E[T])$
and $E[cS]=c(E[S])$.

For any PCRV T, let $T^{\circ} := T - (E[T])$. For any PRCV T, the variance of T is $Var[T] := E[(T^{\circ})^2]$.

Remark: For any PCRV T, $Var[T] \ge 0$. T is deterministic iff Var[T] = 0.

)2

Pf of fact: $\mu := E[T]$ $T^{\circ} = T - \mu$ $Var[T] = E[T^{2} - 2\mu T + \mu^{2}]$ $= (E[T^{2}]) - 2\mu(E[T]) + \mu^{2}$

$$= (\mathsf{E}[T^2]) - 2\mu^2 + \mu^2 = (\mathsf{E}[T^2]) - \mu^2$$
 Note: $\mathsf{E}[\bullet]$ is linear, i.e., $\mathsf{E}[S + T] = (\mathsf{E}[S]) + (\mathsf{E}[T])$ and $\mathsf{E}[cS] = c(\mathsf{E}[S])$.

For any PCRV
$$T$$
, let $T^{\circ} := T - (E[T])$.
For any PRCV T , the variance of T is $Var[T] := E[(T^{\circ})^2]$.

Remark: For any PCRV T, $Var[T] \ge 0$. T is deterministic iff Var[T] = 0.

Fact: $Var[T] = (E[T^2]) - (E[T])^2$

Pf of fact:
$$\mu := E[T]$$
 $T^{\circ} = T - \mu$

$$Var[T] = (E[T^{2}]) - \mu^{2}$$

Note:
$$E[\bullet]$$
 is linear,
$$i.e., \ E[S+T]=(E[S])+(E[T])$$
 and $E[cS]=c(E[S]).$

For any PCRV
$$T$$
, let $T^{\circ} := T - (E[T])$.
For any PRCV T , the variance of T is $Var[T] := E[(T^{\circ})^2]$.

Fact: $Var[T] = (E[T^2]) - (E[T])^2$

Remark: For any PCRV T, Var[T] > 0. T is deterministic iff Var[T] = 0.

21

Pf of fact: $\mu := E[T]$ $T^{\circ} = T - \mu$ $Var[T] = (E[T^2]) - \mu^2$ $= (E[T^2]) - (E[T])^2$ QED Note; E[•] is linear, i.e., E[S + T] = (E[S]) + (E[T])

For any PCRV
$$T$$
, let T° := $T - (E[S]) + (E[T])$.

For any PCRV T , let T° := $T - (E[T])$.

For any PRCV T , the variance of T is

 $\forall ar[T] := E[(T^{\circ})^{2}].$ Remark: For any PCRV T, Var[T] > 0. T is deterministic iff Var[T] = 0.

Fact: $Var[T] = (E[T^2]) - (E[T])^2$

22

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \\ 7, & \text{if } 0.54 < \omega \le 0.65 \end{cases} \begin{cases} 0.11 \\ 8, & \text{if } 0.65 < \omega < 0.99 \\ 0.34 \\ 0, & \text{if } 0.99 < \omega \le 1.00 \end{cases} \begin{cases} 0.01 \\ 0.01 \end{cases}$$
 The expectation or mean of X is
$$E[X] := \int_0^1 X(\omega) \, d\omega$$
$$= 1(0.22) + 2(0.32) - 7(0.11) + 10(0.01)$$

= 2.81

Intuition: Measure of (average) size.

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \\ -7, & \text{if } 0.54 < \omega \le 0.65 \\ 8, & \text{if } 0.65 < \omega < 0.99 \\ 0.34 \\ 0, & \text{if } 0.99 < \omega \le 1.00 \end{cases} 0.01$$

 $\mathsf{E}[X]$

$$Var[U] := E[(U^{\circ})^2]$$

= 2.81

Intuition: Measure of (average) size.

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \end{cases} & 0.32 \\ X(\omega) = \begin{cases} -7, & \text{if } 0.54 < \omega \le 0.65 \\ 0.54 < \omega \le 0.99 \end{cases} & 0.34 \\ 0, & \text{if } 0.65 < \omega < 0.99 \end{cases} & 0.34 \\ E[X] = 2.81 & 0, & \text{if } 0.99 < \omega \le 1.00 \end{cases} & 0.01 \\ \text{The variance of } X \text{ is } & \text{volume} = \text{U} - (\text{E[U]}) \\ Var[X] := \text{E[}(X^{\circ})^{2}] \neq \text{E[}(X - (\text{E[X]}))^{2}]^{\circ})^{2}] \\ = (1 - 2.81)^{2}(0.22) + (2 - 2.81)^{2}(0.32) + (-7 - 2.81)^{2}(0.11) + (8 - 2.81)^{2}(0.34) + (0 - 2.81)^{2}(0.01) = \text{Exercise} \end{cases}$$

Intuition: Measure of risk.

$$X(\omega) = \begin{cases} 1, & \text{if } 0.00 \le \omega < 0.22 \\ 2, & \text{if } 0.22 \le \omega \le 0.54 \\ -7, & \text{if } 0.54 < \omega \le 0.65 \\ 8, & \text{if } 0.65 < \omega < 0.99 \\ 0.34 \\ 0, & \text{if } 0.99 < \omega \le 1.00 \end{cases} 0.01$$

Key idea: "Most investors are return-loving, but risk-averse.

If X is the price, one month from now, of some financial asset, then investors typically hope for X to have large mean and small variance. 26

Fact:
$$E[\bullet]$$
 is linear,
i.e., $E[S+T]=(E[S])+(E[T])$
and $E[cS]=c(E[S])$.

WARNING: Var[•] is NOT linear, but rather quadratic.

$$(2S)^{\circ} = 2S - (E[2S]) = 2S - 2(E[S])$$

$$= 2(S - (E[S])) = 2(S^{\circ})$$

$$= 2(S - 2(E[S]))$$

$$= 2(S - 2$$

 $Var[U] := E[(U^{\circ})^2]$

Fact: E[•] is linear, i.e., E[S + T] = (E[S]) + (E[T])and E[cS] = c(E[S]). WARNING: Var[•] is NOT linear, but rather quadratic.

Cov[S,T] is defined by: Var[S + T] = (Var[S]) + (Var[T])+2(Cov[S,T])Cauchy-Schwarz:-1 <

WARNING: Corr[S, T] is not defined if S or TDef'n: Corr[S, T]is deterministic Definition: S and T are uncorrelated 28

if Cov[S,T]=0.

Fact: $E[\bullet]$ is linear, i.e., E[S+T]=(E[S])+(E[T]) and E[cS]=c(E[S]).

WARNING: $Var[\bullet]$ is NOT linear,

but rather quadratic. Cov[S,T] is defined by:

$$Var[S + T] = (Var[S]) + (Var[T]) + 2(Cov[S, T])$$

$$Definition:$$

Solution: S and T are uncorrelated if Cov[S,T]=0, i.e., if Var[S+T]=(Var[S])+(Var[T]),

Definition: S and T are uncorrelated if Cov[S, T] = 0.

Fact: E[•] is linear, i.e., E[S + T] = (E[S]) + (E[T])and E[cS] = c(E[S]). WARNING: Var[•] is NOT linear,

but rather quadratic. Cov[S,T] is defined by: Var[S + T] = (Var[S]) + (Var[T])

$$+2(Cov[S,T])$$

Definition:

 S and T are uncorrelated if $Cov[S,T] = 0$,

 $i.e.$ if $Var[S + T] = (Var[S]) + (Var[T])$

i.e., if Var[S + T] = (Var[S]) + (Var[T]), i.e., if E[ST] = (E[S])(E[T]). Fact: $Var[T] = (E[T^2]) - (E[T])^2$

Fact: Cov[S, T] = (E[ST]) - (E[S])(E[T])30

```
Fact: If T = S + 3, then Var[T] = Var[S].
Proof: E[T] \leftarrow (E[S]) + 3
                                         U^{\circ} := U - (\mathsf{E}[U])
             T^{\circ} = T - (\mathsf{E}[T])
                  = (S + 3) - ((E[S]) + 3)
                  = S - (\mathsf{E}[S])
                                             Var[U] := E[(U^{\circ})^2]
                 =S^{\circ}
```

Definition:

S and T are uncorrelated if Cov[S,T]=0, i.e., if Var[S+T]=(Var[S])+(Var[T]), i.e., if E[ST]=(E[S])(E[T]).

Fact:
$$Var[T] = (E[T^2]) - (E[T])^2$$

Fact: $Cov[S, T] = (E[ST]) - (E[S])(E[T])$

Fact: If T = S + 3, then Var[T] = Var[S].

Proof:
$$E[T] = (E[S]) + 3$$

$$U^{\circ} := U - (E[U])$$

$$T^{\circ} = T - (E[T])$$

$$= (S + 3) - ((E[S]) + 3)$$

$$= S - (E[S])$$

$$Var[T] = E[(T^{\circ})^{2}] = E[(S^{\circ})^{2}] = Var[S] \quad QED$$

Fact: If T - S is constant,

then Var[T] = Var[S].

Fact: If T-S is deterministic, then Var[T] = Var[S].

 $Var[U] := E[(U^{\circ})^2]$

Problem: Suppose $0 \le p \le 1$ and $a, b \in \mathbb{R}$.

Suppose
$$\Pr[S=b]=q:=1-p$$
 and $\Pr[S=a]=p$. binary

Find Var[S].

Solution: Let
$$T := S - a$$
.

Then
$$Var[S] = Var[T]$$
,

$$\Pr[T = b - a] = q$$

and
$$Pr[T = 0] = p$$
.

Then
$$E[T] = q(b-a)$$

Problem: Suppose $0 and <math>a, b \in \mathbb{R}$. Suppose Pr[S = b] = q := 1 - pand Pr[S = a] = p. binary Find Var[S]. **PCRV** Solution: Let T := S - a. Then Var[S] = Var[T], Pr[T = b - a] = qand Pr[T = 0] = p. Then $\mathsf{E}[T] = q(b-a)$ $E[T^2] = q(b-a)^2.$ Then $Var[S] \stackrel{\checkmark}{=} Var[T]$ $= (E[T^2]) - (E[T])^2$ $pq(b-a)^2$ $= q(b-a)^2 - q^2(b-a)^2$ $= (q - q^2)(b - a)^2 = (1 - q)q$

Problem: Suppose $0 \le p \le 1$ and $a, b \in \mathbb{R}$.

Suppose
$$\Pr[S=b]=q:=1-p$$
 and $\Pr[S=a]=p$. binary

Find Var[S].

Solution: $Var[S] = pq(b-a)^2$

e.g., coin-flipping:

$$Var[S] =$$

PCRV

$$pq(b-a)^2$$

Problem: Suppose $0 \le p \le 1$ and $a, b \in \mathbb{R}$.

Suppose
$$0 \le p \le 1$$
 and $a, b \in \mathbb{R}$.
Suppose $Pr[S = b] = q := 1 - p$

and Pr[S = a] = p.

binary Find Var[S]. **PCRV**

Solution: $Var[S] = pq(b-a)^2$

e.g., coin-flipping:

$$\mathsf{E}[C] = 0$$
 and $\mathsf{Var}[C] = 1$, i.e., C is standard.

Definition: S is standard means:

 $\mathsf{E}[S] = 0$ and $\mathsf{Var}[S] = 1$.

Definition: Standard deviation := $\sqrt{\text{Variance}}$ $\text{SD}[S] := \sqrt{\text{Var}[S]}$ Pf: exercise Fact: $\forall U$, U_0 := U - (E[U]) is standard.

Fact:
$$\forall U$$
, U_0 := $\begin{bmatrix} U & (U_0) \\ SD[U] \end{bmatrix}$ is standard. A renormalization of U

Definition: S is **standard** means:

Definition: S is **standard** means: $\Box = 0 \quad \text{and} \quad \text{Var}[S] = 1.$

37

Definition: Standard deviation := $\sqrt{\text{Variance}}$ $\text{SD}[S] := \sqrt{\text{Var}[S]}$ Fact: $\forall U$. $U_0 := U - (\mathsf{E}[U])$ is standard.

non-deterministic

 $\mu = \mathsf{E}[U]$

A renormalization

$$\sigma = SD[U]$$

$$U_{\circ} = \frac{U - \mu}{\sigma} \quad \Rightarrow \quad U = \sigma U_{\circ} + \mu$$

Any (non-deterministic) U is "almost" standard.

E[S] = 0 and Var[S] = 1.

Definition: S is standard means:

Definition: Standard deviation := $\sqrt{\text{Variance}}$ $SD[S] := \sqrt{\text{Var}[S]}$

$$(2S)^{\circ} = 2S - (E[2S]) = 2S - 2(E[S])$$

= $2(S - (E[S])) = 2(S^{\circ})$
 $U^{\circ} := U - (E[U])$

TAKE SQUARE ROOT

$$= \mathsf{E}[4(S^\circ)^2] = 4(\mathsf{E}[(S^\circ)^2]) = 4(\mathsf{Var}[S])$$

$$\mathsf{SD}[2S] = 2(\mathsf{SD}[S])$$

$$\mathsf{Var}[U] := \mathsf{E}[(U^\circ)^2]$$
 Intuition: Variance measures risk, but standard deviation measures risk better, because doubling the position really ought

only to double the risk, not quadruple it.

 $Var[2S] = E[((2S)^{\circ})^{2}] = E[(2(S^{\circ}))^{2}]$

Definition: Standard deviation := $\sqrt{\text{Variance}}$ $SD[S] := \sqrt{\text{Var}[S]}$

Remark: identically distributed ⇒ same mean, same variance, same standard deviation.

If I hold a portfolio with variance 4, and if I give you half of each asset, then we both hold portfolios of variance 1.

Has our risk gone from 4 to 1 + 1? NO!

Intuition: Variance measures risk, but standard deviation measures risk better, because doubling the position really ought only to double the risk, not quadruple it.

Definition: Standard deviation := $\sqrt{\text{Variance}}$ $SD[S] := \sqrt{\text{Var}[S]}$

Remark: identically distributed ⇒ same mean, same variance, same standard deviation.

WARNING: identical JOINT distribution is needed for same covariance, same correlation.

Intuition: Variance measures risk, but standard deviation measures risk better, because doubling the position really ought only to double the risk, not quadruple it.

Definition: **Standard deviation** := $\sqrt{Variance}$ $SD[S] := \sqrt{Var[S]}$

$$|SD[S]| := \sqrt{\text{Var}[S]}$$
Problem: Suppose $0 \le p \le 1$ and $a \le b$.
Suppose $\Pr[S = b] = q := 1 - p$ and $\Pr[S = a] = p$.
Find $SD[S]$.

$$|SD[S]| := \sqrt{\text{Var}[S]}$$

$$|SD[S]| = \sqrt{\text{Var}[S]}$$

Solution:
$$Var[S] = pq(b-a)^2$$
, so $SD[S] = \sqrt{pq}(b-a)$.

arithmetic mean of
$$p$$
 and q the geometrisk mean of p and q p and q p and q

geometric mean of
$$p$$
 and q is \sqrt{pq} .

Probabilities are expectations!

Definition: Let $A \subseteq B$.

The indicator function of A (in B) is the function $\mathbf{1}_A^B:B\to\{0,1\}$ defined by

$$\mathbf{1}_A^B(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \in B \backslash A. \end{cases}$$

Fact:

If f is the indicator function of S in \mathbb{R} , then $\mathsf{E}[f(X)] = \mathsf{Pr}[X \in S]$.

Pf:

Probabilities are expectations!

- Definition: Let $A \subseteq B$.
- The indicator function of A (in B) is the function $\mathbf{1}_A^B: B \to \{0,1\}$ defined by

$$\mathbf{1}_A^B(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \in B \backslash A. \end{cases}$$

Fact:

If f is the indicator function of S in \mathbb{R} , then $E[f(X)] = Pr[X \in S]$.

 $f(X) \in \{0,1\}$ a.s.

$$f(X) = f \circ X : \Omega \to \{0, 1\}$$

Probabilities are expectations!

Definition: Let $A \subseteq B$.

The indicator function of A (in B) is the function $\mathbf{1}_A^B: B \to \{0,1\}$ defined by

$$\mathbf{1}_A^B(x) = egin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \in B \backslash A. \end{cases}$$

Fact:

If f is the indicator function of S in \mathbb{R} , then $E[f(X)] = Pr[X \in S].$

$$\begin{array}{ll} \Pr[(f(X))(g(Y)) = 1] &=& \Pr[(f(X) = 1) \& (g(Y) = 1)] \\ \text{Fact:} &=& \Pr[(X \in S) \& (Y \in T)] \text{ QED} \\ \text{If } f \text{ is the indicator function of } S \text{ in } \mathbb{R} \text{ and } \end{array}$$

If f is the indicator function of S in \mathbb{R} , and if g is the indicator function of T in \mathbb{R} , then $E[(f(X))(g(Y))] = Pr[(X \in S) \& (Y \in T)].$ 45

Applications to finance: Reduction of risk

Let X_1, \ldots, X_{100} be the dollar prices, one month from now, of 100 assets, all costing 1 dollar now.

Suppose, for all integers
$$j \in [1, 100]$$
, that $E[X_j] = 1.1$ and $SD[X_j] = 1$.

Let $S = X_1 + \dots + X_{100}$. Cost: 100 dollars.

Then E[S] = 110.

If, $\forall \text{integers } j, k \in [1, 100], \quad \operatorname{Corr}[X_j, X_k] = 0,$ then $\operatorname{SD}[S] = \sqrt{100} = 10.$

If, \forall integers $j,k \in [1,100]$, $Corr[X_j,X_k]=1$, then SD[S]=100.

Let X_1, \ldots, X_N be the dollar prices, one month from now, of N assets, all costing 1 dollar now.

Suppose we have 1 dollar to spend.

Suppose, \forall integers $j \in [1, N]$, $E[X_i]$ is known.

Suppose we want expected return to be ρ . Suppose, \forall integers $j,k \in [1,N]$, $\text{Cov}[X_j,X_k]$ is known.

Goal of "Modern Portfolio Theory": Choose c_1, \ldots, c_N such that $\text{Var}[c_1X_1 + \cdots + c_NX_N]$ is minimized, subject to $\text{E}[c_1X_1 + \cdots + c_NX_N] = 1 + \rho$ and $c_1 + \cdots + c_N = 1$.

Problem: We trade in two assets. A := return, one month from now, on the first asset B := return, one month from now, on the second asset

Assume
$$SD[A] = 0.5$$
, $SD[B] = 0.3$ and $Corr[A, B] = 0.8$.

We need to hold \$10 of the first asset. We want to short the second asset, so as to reduce our risk as much as possible.

Find x such that SD[10A-xB] is minimized.

Sol'n:Same as minimizing
$$(SD[10A - xB])^2$$
, i.e., $Var[10A - xB]$

$$= Var[10A] + Var[-xB]$$

+2(Cov[10A, -xB])

49

min: Var[10A] + Var[-xB] + 2(Cov[10A, -xB])

$$SD[B] = 0.3$$
 and $Corr[A, B] = 0.8$. We need to hold \$10 of the first asset. We want to short the second asset,

Assume SD[A] = 0.5,

so as to reduce our risk as much as possible. Find x such that SD[10A - xB] is minimized.

Sol'n:Same as minimizing $(SD[10A - xB])^2$, i.e., Var[10A - xB]

$$= Var[10A] + Var[-xB]$$
$$+ 2(Cov[10A, -xB])$$

50

min:
$$Var[10A] + Var[-xB] + 2(Cov[10A, -xB])$$

$$100(Var[A]) \begin{vmatrix} x^2(Var[B]) \end{vmatrix} - 20x(Cov[A, B])$$

$$(0.5)^2 \begin{vmatrix} (0.3)^2 \end{vmatrix} + (0.8)(0.5)(0.3)$$
Assume $SD[A] = 0.5$, $SD[B] = 0.3$ covariance is correlation and $Corr[A, B] = 0.8$. Prod. of std devs

We need to hold \$10 of the first asset.

We want to short the second asset, so as to reduce our risk as much as possible. Find x such that $SD[10A - xB]$ is minimized.

Sol'n: Same as minimizing $(SD[10A - xB])^2$, i.e., $Var[10A - xB]$

$$= Var[10A] + Var[-xB]$$

$$= Var[10A] + Var[-xB]$$

min:
$$Var[10A] + Var[-xB] + 2(Cov[10A, -xB])$$

 $100(Var[A]) | x^2(Var[B]) | -20x(Cov[A, B])$
 $(0.5)^2 | (0.3)^2 | (0.8)(0.5)(0.3)$
min: $25 + (0.09)x^2 - (2.4)x$
deriv.: $(0.18)x - (2.4) = 0$
 $x = \frac{2.4}{0.18} = \frac{40}{3} = 13.33$
Short \$13.33 of the second asset.
Find x such that $SD[10A - xB]$ is minimized.
Sol'n:Same as minimizing $(SD[10A - xB])^2$,
 $i.e.$, $Var[10A - xB]$
 $= Var[10A] + Var[-xB]$