Financial Mathematics One period pricing and hedging

He'll receive \$100 one month from now

from some source, but only has \$3 right now. Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month! Dan has poor credit . . . No loans for Dan!

Dollar price of a Euro a month from now is unknown. Call it S. Dan wants a contract that will pay him 100(S-1), if S > 1.

Alice agrees to sell Dan a contract of this form. What if S < 1?

(Money burns a hole in Dan's pocket, and he knows he'll spend the \$3 by the end of the month. if he doesn't spend it now.

(So he can't count on having more than \$100 at the end of the month.)

He'll receive \$100 one month from now

from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1. Take out a loan? Loan rate: 1% per month!

Dan has poor credit . . . No loans for Dan! Dollar price of a Euro a month from now is unknown. Call it S. Dan wants a contract that will pay him 100(S-1), if S > 1.

Alice agrees to sell Dan a contract of this form.

What if S < 1?

Futures or forward: 100(S-1), if $S \le 1$. i.e., Dan pays Alice 100(1-S), if S < 1.

Knowing Dan is irresponsible, Alice refuses to agree to this.

Option:

0, if S < 1.

He'll receive \$100 one month from now from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month! Dan has poor credit . . . No loans for Dan!

Dollar price of a Euro a month from now is unknown. Call it S. Dan and Alice agree on an option that will $\text{pay him} \left\{ \begin{array}{ll} 100(S-1), \text{ if } S > 100(S-1), \text{ if } S > 1 \\ 0, \text{ if } S \leq 1 \end{array} \right\} \text{one month from now.}$

O, if
$$S \leq 1$$

He'll receive \$100 one month from now from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month!

Dan has poor credit . . . No loans for Dan!

Dollar price of a Euro a month from now is unknown.

Call it S Dan and Alice agree on an option that will

Call it
$$S$$
. Dan and Alice agree on an option that will pay $\min \left\{ \begin{array}{c} 100(S-1), \text{ if } S>1 \\ 0, \text{ if } S<1 \end{array} \right\}$ one month from now.

This is the payoff or claim.

The claim is contingent!

He'll receive \$100 one month from now

from some source, but only has \$3 right now. Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month!

Dan has poor credit . . . No loans for Dan!

Dollar price of a Euro a month from now is unknown.

Call it S. Dan and Alice agree on an option that will

pay him $\left\{ \begin{array}{c} 100(S-1), \text{ if } S \geq 1 \\ 0, \text{ if } S \leq 1 \end{array} \right\}$ one month from now. $\left\{ \begin{array}{c} 100(S-1), \text{ if } S-1>0 \\ 0, \text{ if } S-1\leq 0 \end{array} \right\}$

 $100 \begin{cases} S - 1, & \text{if } S - 1 > 0 \\ 0, & \text{if } S - 1 \le 0 \end{cases}$

He'll receive \$100 one month from now

from some source, but only has \$3 right now. Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month!

Dan has poor credit ... No loans for Dan!

Dollar price of a Euro a month from now is unknown.

Call it S. Dan and Alice agree on an option that will $\int 100(S-1)$ if S > 1

pay him $\left\{ egin{array}{ll} 100(S-1), & \mbox{if } S>1 \\ 0, & \mbox{if } S\leq 1 \end{array} \right\}$ one month from now. $\| \| \\ 100 \left\{ S-1, & \mbox{if } S-1>0 \\ 0, & \mbox{if } S-1<0 \right\}$

 $\begin{array}{c}
100 \left\{ \begin{array}{c}
0, \text{ if } S - 1 \leq 0 \right\} \\
0, \text{ if } S - 1 \leq 0 \\
\end{array} \right\}$ $\begin{array}{c}
100 \left\{ S - 1, \text{ if } S - 1 \\
0, \text{ if } S - 1 \\
\end{array} \right\} = \left\{ \begin{array}{c}
x, \text{ if } x > 0 \\
0, \text{ if } x \leq 0 \\
\end{array} \right\}$ $\begin{array}{c}
7
\end{array}$

He'll receive \$100 one month from now from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month! Dan has poor credit . . . No loans for Dan!

Dollar price of a Euro a month from now is unknown.

Call it S. Dan and Alice agree on an option that will

pay $\lim \left\{ \begin{array}{c} 100(S-1), \text{ if } S>1 \\ 0, \text{ if } S<1 \end{array} \right\}$ one month from now.

 $100 \begin{cases} S-1, & \text{if } S-1>0 \\ 0, & \text{if } S-1\leq 0 \end{cases}$ $100(S-1)+ \qquad x+ := \begin{cases} x, & \text{if } x>0 \\ 0, & \text{if } x\leq 0 \end{cases}$

He'll receive \$100 one month from now from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month!

Dan has poor credit ... No loans for Dan! Dollar price of a Euro a month from now is unknown.

Call it S. Dan and Alice agree on an option that will

pay him $100(S-1)_+$ one month from now. pay him one month from now. What price does she charge?

$$100(S-1)_{+} \qquad \boxed{x_{+}} := \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$$

He'll receive \$100 one month from now from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1.

Take out a loan? Loan rate: 1% per month! Dan has poor credit . . . No loans for Dan!

Dollar price of a Euro a month from now is unknown. Call it S. Dan and Alice agree on an option that will pay him $100(S-1)_+$ one month from now.

What price does she charge? More or less than \$3? Step 1: Model "the underlying", i.e., the Euro, i.e., S.

Alice selects: A 1-subperiod 70 - 30 CRR model,

$$\overline{x}_{+} := \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$$

Dan wants 100 Euros one month from now. He'll receive \$100 one month from now

Take out a loan? Loan rate: 1% per month!

from some source, but only has \$3 right now.

Current price is \$1/Euro. Worry: Rises to > \$1.

Dan has poor credit ... No loans for Dan! Dollar price of a Euro a month from now is unknown. Call it S. Dan and Alice agree on an option that will

pay him $100(S-1)_+$ one month from now.

What price does she charge? More or less than \$3? Step 1: Model "the underlying", i.e., the Euro, i.e., S. Alice selects: A 1-subperiod 70-30 CRR model, in which one ASSUMES that $\exists d,u\in\mathbb{R}$ s.t. d< u and s.t. the dollar price of one Euro has a 70% chance of changing from 1 to $1\times e^u$

and a 30% chance of changing from 1 to $1 \times e^d$.

Dollar price of a Euro a month from now is S.

Step 1: Model "the underlying", i.e., the Euro, i.e., S. Alice selects: A 1-subperiod 70 - 30 CRR model, in which one ASSUMES that $\exists d, u \in \mathbb{R}$ s.t. d < u and s.t. the dollar price of one Euro has a 70% chance of changing from 1 to $1 \times e^u$ Dollar price of a Euro a month from now is $\times e^d$. NOTE: S is a binary random variable, whose distribution is described by: $Pr[S = e^u] = 0.7$ and $Pr[S = e^d] = 0.3$. Step 1: Model "the underlying", i.e., the Euro, i.e., S. Alice selects: A 1-subperiod 70 - 30 CRR model, in which one ASSUMES that $\exists d, u \in \mathbb{R}$ s.t. d < u and

s.t. the dollar price of one Euro has a 70% chance of changing from 1 to $1 \times e^u$ and a 30% chance of changing from 1 to $1 \times e^d$. Dollar price of a Euro a month from now is S.

Step 1: Model "the underlying", *i.e.*, the Euro, *i.e.*, S.

Alice selects: A 1-subperiod 70-30 CRR model, in which one ASSUMES that $\exists d,u\in\mathbb{R}$ s.t. d< u and s.t. the dollar price of one Euro has a 70% chance of changing from 1 to $1\times e^u$ and a 30% chance of changing from 1 to $1\times e^d$.

NOTE: S is a binary random variable,

whose distribution is described by:

 $\Pr[S=e^u]=0.7$ and $\Pr[S=e^d]=0.3$. Step 2: Calibrate the model. Alice asks her market analyst for the (one-month) drift := $\mathbb{E}[\ln S]$ and volatility := $\mathbb{SD}[\ln S]$.

She gets this answer: vol is a std dev, NOT a var drift = 0.018765126 and vol = 0.045864002 unrealistically high // CRR assumes independence // 0.225181512/12 low $0.158877565/\sqrt{12}$

Alice asks her market analyst for the one-year drift := $E[\ln S]$ and volatility := $SD[\ln S]$.

She gets this answer:

drift = 0.018765126 and vol = 0.045864002

NOTE: S is a binary random variable, whose distribution is described by:

NOTE: $\Pr[S = e^u] = 0.7 \text{ and } \Pr[S = e^d] = 0.3.$

Notwhose distribution is described by lewhore $[S=e^u]=0.7~{\rm dand}$ rib $\Pr[S=e^d]=0.3.$

Step 2: Calibrate the model and $Pr[\ln S = d] = 0.3$.

Alice asks her market analyst for the one-year drift := $E[\ln S]$ and volatility := $SD[\ln S]$.

She gets this answer:

drift = 0.018765126 and vol = 0.045864002

Alice asks her market analyst for the one-year drift := $E[\ln S]$ and volatility := $SD[\ln S]$.

She gets this answer:

drift = 0.018765126 and vol = 0.045864002

NOTE: S is a binary random variable, whose distribution is described by: $\Pr[S=e^u] = 0.7 \text{ and } \Pr[S=e^d] = 0.3.$

NOTE: In S is a binary random variable, whose distribution is described by: $\Pr[\ln S = u] = 0.7 \text{ and } \Pr[\ln S = d] = 0.3.$

$$E[\ln 8] = (0.7)u + (0.3)d$$

$$SD[\ln S] = \sqrt{(0.7)(0.3)(u-d)}$$

Alice asks her market analyst for the one-year drift := $E[\ln S]$ and volatility := $SD[\ln S]$.

She gets this answer:

drift = 0.018765126 and vol = 0.045864002

NOTE: S is a binary random variable, whose distribution is described by: $\Pr[S=e^u]=0.7$ and $\Pr[S=e^d]=0.3$.

NOTE: $\ln S$ is a binary random variable, whose distribution is described by: $\Pr[\ln S = u] = 0.7$ and $\Pr[\ln S = d] = 0.3$.

$$0.018765126 = (0.7)u + (0.3)d$$

$$0.045864002 = \sqrt{(0.7)(0.3)}(u-d) d = -0.0512933$$

u = 0.0487902

Alice asks her market analyst for the one-year drift := $E[\ln S]$ and volatility := $SD[\ln S]$.

She gets this answer:

drift = 0.018765126 and vol = 0.045864002

NOTE: S is a binary random variable, whose distribution is described by: $\Pr[S=e^u]=0.7$ and $\Pr[S=e^d]=0.3$.

$$u = 0.0487902$$
 $\Rightarrow \begin{cases} e^u = 1.0500000 \\ e^d = 0.9500000 \end{cases}$ $u = 0.0487902$

d = -0.0512933

Alice asks her market analyst for the one-year drift := $E[\ln S]$ and volatility := $SD[\ln S]$.

She gets this answer:

drift = 0.018765126 and vol = 0.045864002

NOTE: S is a binary random variable, whose distribution is described by: $\Pr[S=e^u]=0.7$ and $\Pr[S=e^d]=0.3$.

$$u = 0.0487902$$
 $\Rightarrow \begin{cases} e^u = 1.0500000 \\ e^d = 0.9500000 \end{cases}$

According to this model, $S \in \{1.05, 0.95\}$ a.s.

Recall: Dollar price of a Euro a month from now is \mathcal{S} .

Step 3: Find a perfect hedging strategy.

According to this model, $S \in \{1.05, 0.95\}$ a.s.

Recall: Dollar price of a Euro a month from now is S.

Step 3: Find a perfect hedging strategy.

Alice sets up a hedging portfolio:

x Euros and a y dollar bank loan.

$$x \times \left(\begin{array}{c} 1 \\ \end{array} \right)$$
 \$ 1.05 \ \$ 0.95

NOTE: Alice does not have access to a bank that holds Euros.

Her Euros all go "under the matress". According to this model, $S \in \{1.05, 0.95\}$ a.s.

Recall: Dollar price of a Euro a month from now is S.

Step 3: Find a perfect hedging strategy.

According to this model, $S \in \{1.05, 0.95\}$ a.s.

Recall: Dollar price of a Euro a month from now is ${\cal S}.$

Step 3: Find a perfect hedging strategy.

Alice sets up a hedging portfolio:

x Euros and a y dollar bank loan.

$$x \times \left(\begin{array}{c} 1.05 \\ 0.95 \end{array} \right)$$
 $-y \times \left(\begin{array}{c} 1.01 \\ 1.01 \end{array} \right)$

According to this model, $S \in \{1.05, 0.95\}$ a.s.

Recall: Dollar price of a Euro a month from now is S.

Step 3: Find a perfect hedging strategy.

Alice sets up a hedging portfolio: x Euros and a y dollar bank loan.

 $0 = 100(0.95 - 1)_{+}$ Dan and Alice/agree on an option that will pay him $100(S-1)_{+}$ one month from now.

21

$1.05 \ x - 1.01 \ y = 5$

Alice sets up a hedging portfolio: x Euros and a y dollar bank loan.

Alice sets up a hedging portfolio:

 $oldsymbol{x}$ Euros and a $oldsymbol{y}$ dollar bank loan.

$$1.05 \ \frac{x}{x} - 1.01 \ \frac{y}{y} = 5$$

$$0.95 \ \frac{x}{x} - 1.01 \ \frac{y}{y} = 0$$

Alice sets up a hedging portfolio: x Euros and a y dollar bank loan.

1.05
$$x - 1.01 y = 5$$

0.95 $x - 1.01 y = 0$
 $x - y = ?$

Alice sets up a hedging portfolio: x Euros and a y dollar bank loan.

1.05
$$x - 1.01$$
 $y = 5$
0.95 $x - 1.01$ $y = 0$
 $x - y = ?$

$$x = 50$$
 $y = 47.03$
 $? = 2.97$

Step 3: Find a perfect hedging strategy.

Ans: Alice charges Dan \$2.97
borrows 47.03 from the bank and buys 50 Euros.

What price does she charge? More or less than \$3?

Ans: \$2.97

Ans: less

Alice sets up a hedging portfolio:

 $oxed{x}$ Euros and a $oxed{y}$ dollar bank loan.

STOP