Financial Mathematics

Risk-neutrality and Delta-hedging

1.05
$$x - 1.01 y = 5$$

0.95 $x - 1.01 y = 0$
 $x - y = ?$

Next goal:

Describe a method to compute? without solving a system of equations.

Key point to remember:

? does not depend on the probability of an uptick or downtick.

Is probability theory then useless? NO

The trick is to imagine another universe in which the probabilities somehow make the computation of ? easy.

More on this in a moment . . .

According to the selected model, probability uptick = 70%, probability downtick = 30%

Problem:

Find the expected value and return, in our world, after one month, of

(a) \$1 invested in the bank; and

(b) \$1 invested in Euros.

Assume that the bank pays 1% per month on savings accounts. (Same as on loans.)

Acc(a) ling to the selected model, probability uptick = 70%, Bank: 1 bility downtick = 30%

According to the selected model,

probability uptick = 70%,

probability downtick = 30%

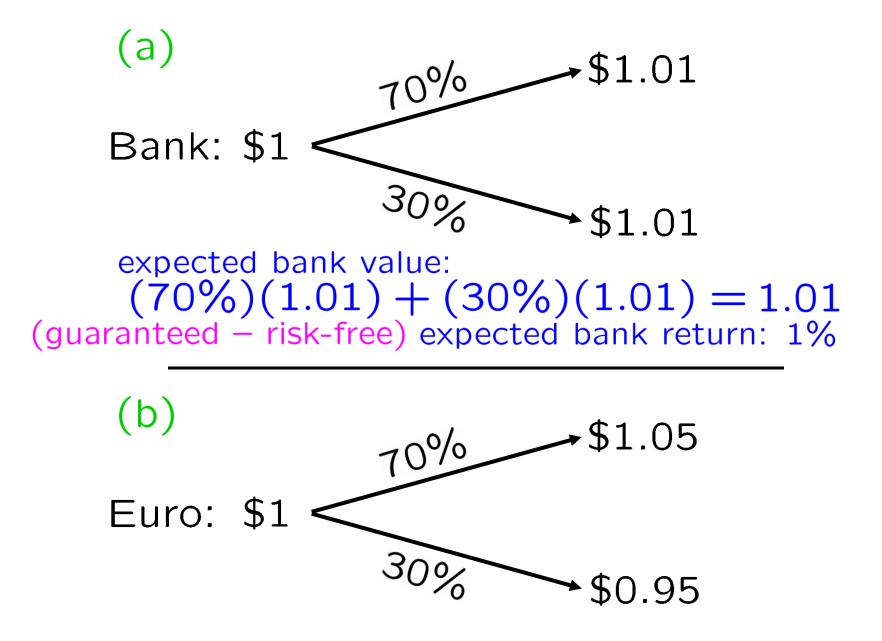
Assume that the bank pays

1% per month on savings accounts.

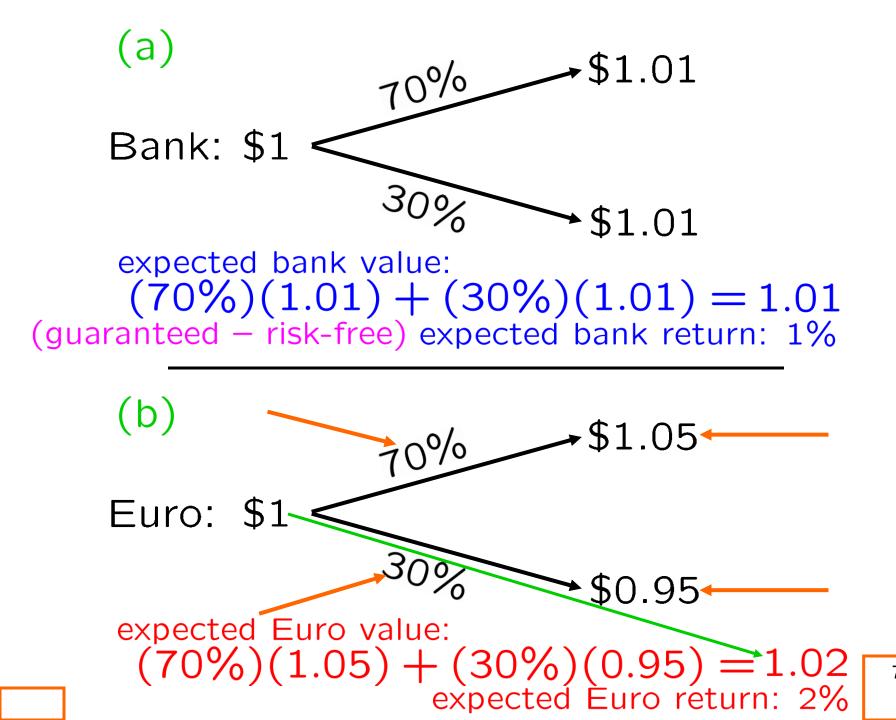
(Same as on loans.)

(Same as on loans.)

```
(a)
                         →$1.01
   Bank: $1
                            $1.01
    expected bank value:
    (70\%)(1.01) + (30\%)(1.01) = 1.01
(guaranteed - risk-free) expected bank return: 1%
According to the selected model,
        probability uptick = 70\%,
        probability downtick = 30\%
 Assume that the bank pays
  1% per month on savings accounts.
  (Same as on loans.)
```



According to this model, $S \in \{1.05, 0.95\}$ a.s.



1% < 2%

expected bank return < expected Euro return Bank is "risk-free". Euros are "risky".

expected bank return 1%

1% < 2%

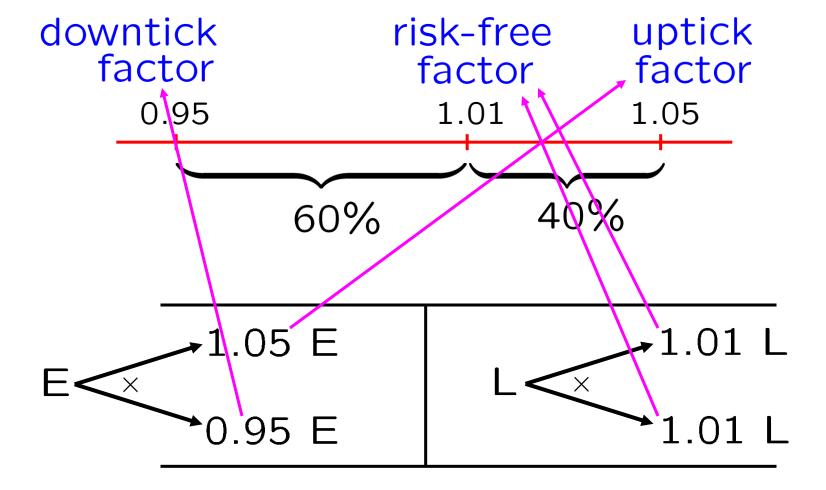
expected bank return < expected Euro return Bank is "risk-free". Euros are "risky".

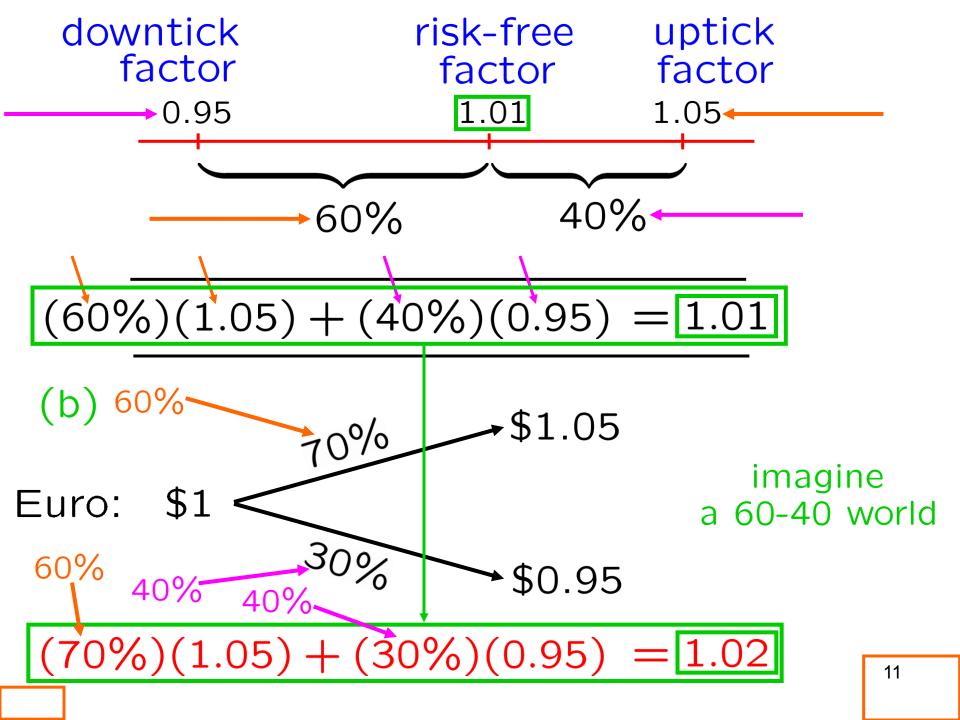
Economics: Investors are "risk-averse". So risky investments must have a higher expected rate of return than risk-free investments, or they won't sell.

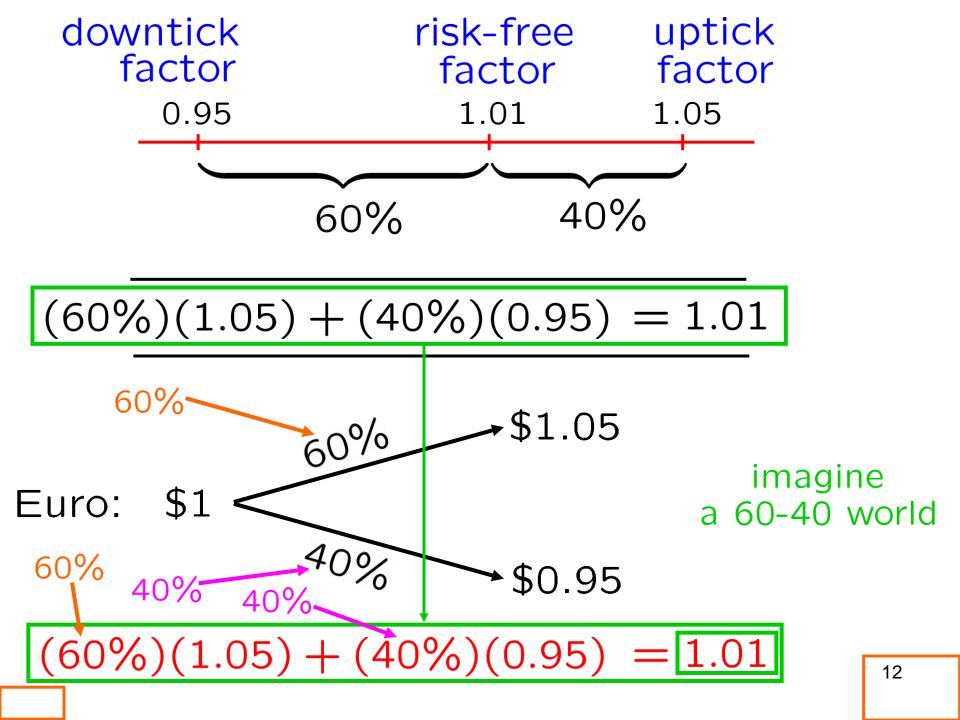
Imagine a world in which bank and Euros have the same expected return.

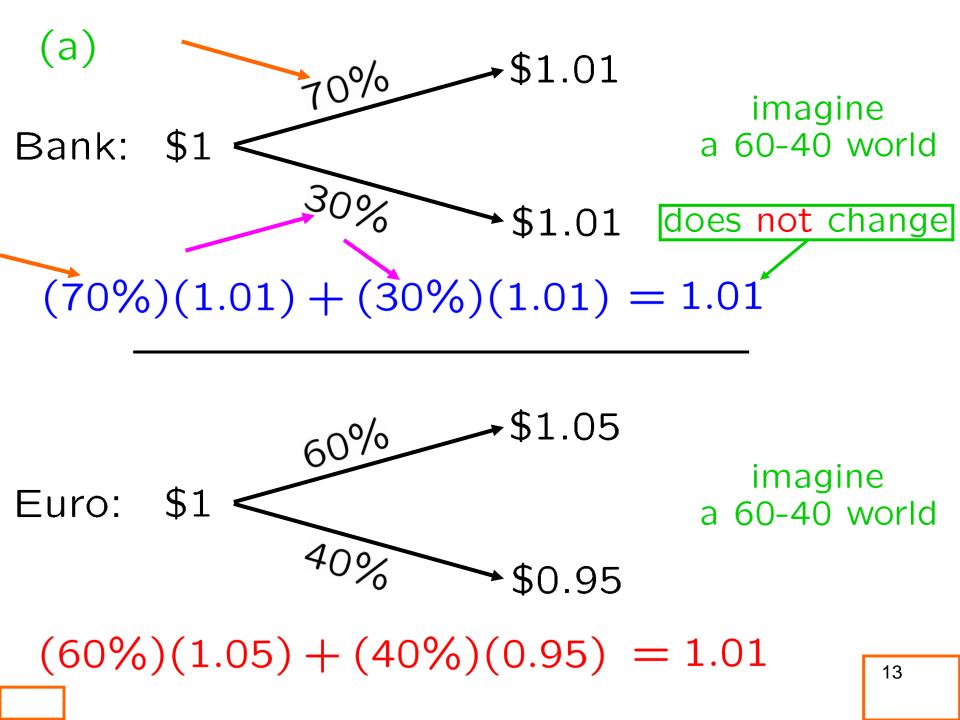
This is the "risk-neutral" world.

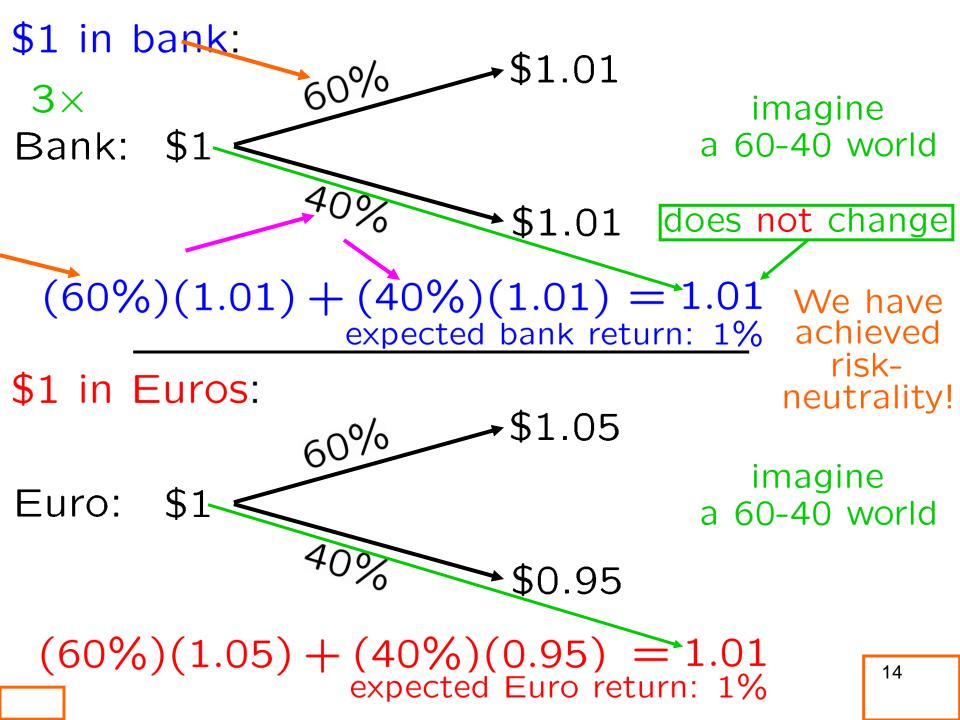
9

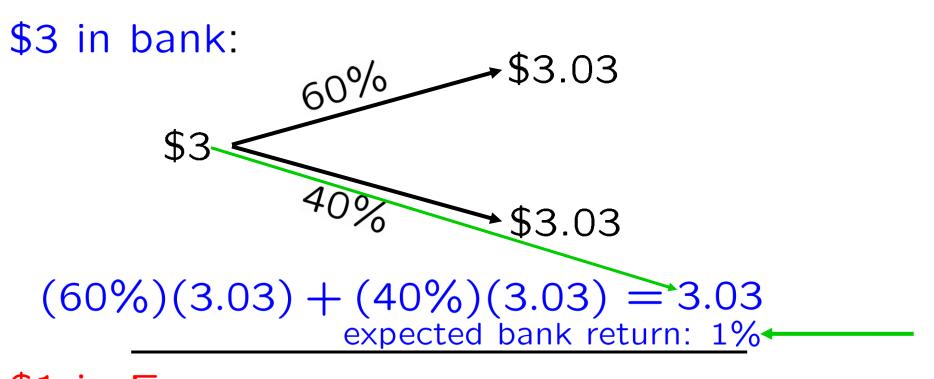






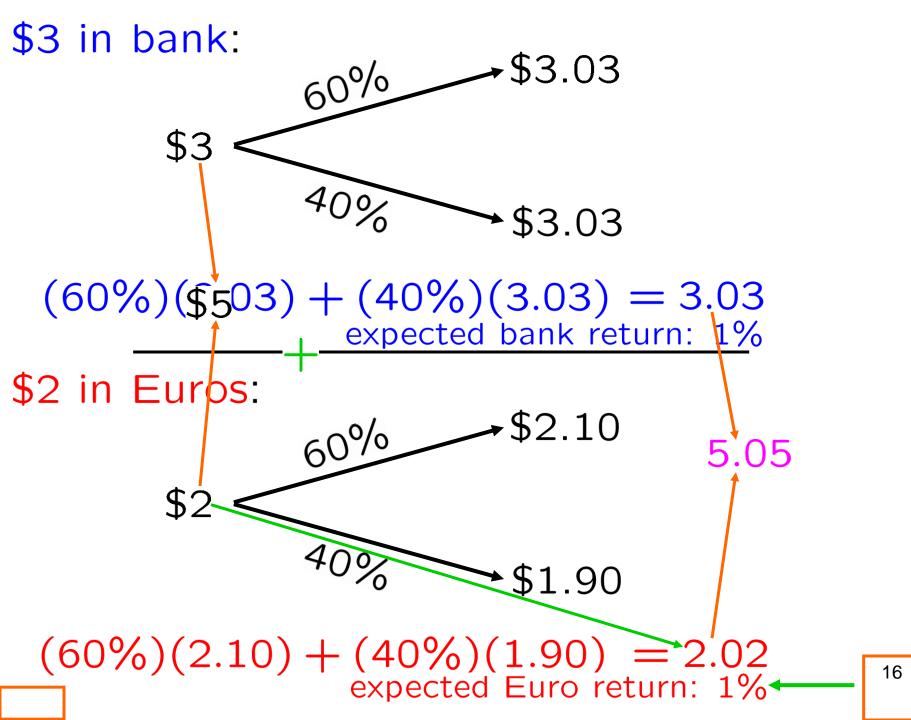






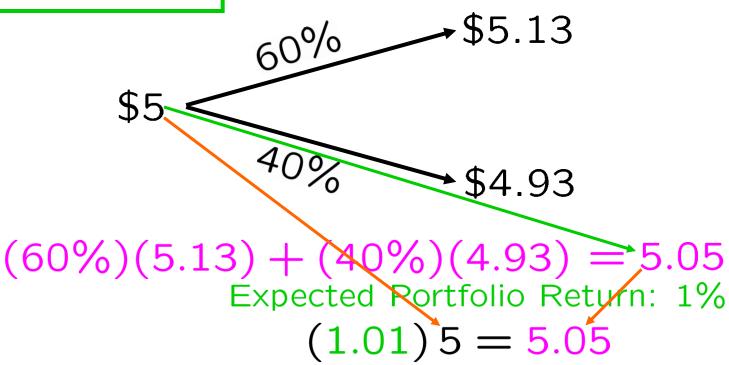
$$(60\%)(1.05) + (40\%)(0.95) = 1.01$$

expected Euro return: 1%



\$3 in bank and \$2 in Euros:

The same logic will work on any portfolio.



In this risk-neutral world, the expected return on any bank-Euro portfolio is 1% per month.

"Change of Measure" -\$y in bank Change from the "real" (70-30) (60-40) or "physical" world and to the "risk-neutral" world. x in Euros: 70% GOA (60%)(5) + (40%)(0) =Expected Portfolio Return: 1% (1.01)? = 3 ? = 3/1.01 = 2.97

Coin-flippers got price!

How can we figure out the hedging strategy, without solving a system of equations?

$$x - y = ? = 2.97$$
 (We're pricers.)

$$x - y = ? = 2.97$$
 (We're pricers.)

$$x - y = ? = 2.97$$
 (We're pricers.)

$$x - y = ? = 2.97$$
 (We're pricers.)
Pricers got hedge

$$x = 50 = \frac{5}{0.1} = \frac{\text{option na\"ive volatility}}{\text{Euro na\"ive volatility}}$$

Pricers got hedge!

