Financial Mathematics

Pricing/hedging in many subperiods Part 1 Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

```
N:= number of seconds in 30 days
= 30 \times 24 \times 60 \times 60
```

Gail selects:

N-subperiod 50.001-49.999 CRR model

```
stock price: S \stackrel{50.001\%}{\cancel{4}9.999\%} Se^d (each second, independently)
```

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option $\overline{N} := \text{number of seconds in 30 days}$

$$N := \text{number of seconds in 30 days}$$

= $30 \times 24 \times 60 \times 60$
Gail selects:

Market analyst: annual vol = 0.200002881086 annual drift = $0.03399864624/N_0$ (one second) drift = $0.03399864624/N_0$

(one second) volatility = 0.200002881086/ $\sqrt{N_0}$ = number of seconds in one year

 $= 365 \times 24 \times 60 \times 60$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

Call option

$$N := \text{number of seconds in } 30 \text{ days}$$

$$= 30 \times 24 \times 60 \times 60$$
Gail selects:

Gail selects: N-subperiod 50.001-49.999 CRR model stock price: $S \stackrel{50.001\%}{\cancel{\sim}} Se^u$ change in In(stock pr): $Se^{50.001\%} Se^d$ ln(stock pr): $Se^{50.001\%} Se^d$

Market analyst: annual vol = 0.200002881086 annual drift = 0.03399864624

 $(0.50001)u + (0.49999)d = 0.03399864624/N_0$ (one second) volatility = $0.200002881086/\sqrt{N_0}$

 N_0 := number of seconds in one year = $365 \times 24 \times 60 \times 60$ Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option

$$N := \text{number of seconds in 30 days}$$

= $30 \times 24 \times 60 \times 60$

Gail selects: N-subperiod 50.001-49.999 CRR model Se^u change in Se^u shows Se^u

annual drift = 0.200002881080annual drift = 0.03399864624 $(0.50001)u + (0.49999)d = <math>0.03399864624/N_0$

$$(0.50001)u + (0.49999)d = 0.03399864624/N_0$$

$$\sqrt{(0.50001)(0.49999)(u-d)} = 0.200002881086/\sqrt{N_0}$$

 N_0 := number of seconds in one year = $365 \times 24 \times 60 \times 60$ Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option $\overline{N} := \text{number of seconds in 30 days}$

 $= 30 \times 24 \times 60 \times 60$ Gail selects:

N-subperiod 50.001-49.999 CRR model stock price: $S \stackrel{50.001\%}{\leftarrow} Se^u$ change in In(stock pr): $Se^{\frac{50.001\%}{49.999\%}} Se^d$ ln(stock pr): $Se^{\frac{50.001\%}{49.999\%}} Se^{\frac{50.001\%}{49.999\%}} Se^{\frac{50.001\%}{49.99\%}} Se^$

 $N_0 := \text{number of seconds in one year}$ $= 365 \times 24 \times 60 \times 60$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option

30 days from now. Call option
$$N := \text{number of seconds in } 30 \text{ days}$$

$$= 30 \times 24 \times 60 \times 60$$

Gail selects: N-subperiod 50.001-49.999 CRR model

stock price:
$$S^{50.001\%}Se^u$$
 $e^u=1.0000356160000$ $e^d=0.9999643860000$ Calibration: $u=0.00003561536577$ $d=-0.00003561463419$

d = -0.00003561463419 $(0.50001)u + (0.49999)d = 0.03399864624/N_0$ $\sqrt{(0.50001)(0.49999)(u - d)} = 0.200002881086/\sqrt{N_0}$

 N_0 := number of seconds in one year = $365 \times 24 \times 60 \times 60$ Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option \overline{N} := number of seconds in 30 days

N := number of seconds in 30 days $= 30 \times 24 \times 60 \times 60$ Gail selects:

N-subperiod 50.001-49.999 CRR model

stock price: $S = 0.001\% Se^u$ $e^u = 1.0000356160000$ Se^u $e^u = 0.9999643860000$ Se^d $e^d = 0.9999643860000$ Se^u $e^u = 0.9999643860000$ Se^u $e^u = 0.9999643860000$ Se^u $e^u = 0.9999643860000$

Banker: (annual) continuous compounding nominal rate = 0.0315359998802

 N_0 := number of seconds in one year = $365 \times 24 \times 60 \times 60$ Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option $\overline{N} := \text{number of seconds in 30 days}$

 $= 30 \times 24 \times 60 \times 60$ Gail selects:
N-subperiod 50.001-49.999 CRR model

stock price: $S = 0.001\% Se^u$ $e^u = 1.0000356160000$ Se^u $e^u = 0.9999643860000$ Se^d $e^d = 0.9999643860000$ Se^u $e^u = 0.9999643860000$ Se^u $e^u = 0.9999643860000$ Se^u $e^u = 0.9999643860000$

Banker: (or logarithmic risk-free factor)
(annual) continuous compounding nominal rate
= 0.0315359998802

 Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option $\overline{N} := \text{number of seconds in 30 days}$

$$N := \text{number of seconds in 30 days}$$

= $30 \times 24 \times 60 \times 60$

Gail selects: N-subperiod 50.001-49.999 CRR model stock price: $S^{50.001\%} Se^u$ $e^u = 1.0000356160000$ $e^d = 0.9999643860000$

$$N_0$$
:= number of seconds in one year $= 0.9999643860$ $= 0.9999643860$ $= 0.9999643860$ $= 0.9999643860$

Banker: $(e^u + e^d)/2 = e^r = 1.0000000010000$ (annual) continuous compounding nominal rate = 0.0315359998802

$$r = 0.0315359996002$$

 $r = 0.0315359998802/N_0$
 $= 0.000000000999999999624$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

$$N := \text{number of seconds in 30 days}$$

= $30 \times 24 \times 60 \times 60$

Gail selects: N-subperiod 50.001-49.999 CRR model

stock price:
$$S = 0.001\% Se^u$$
 $e^u = 1.0000356160000$ Se^u $e^d = 0.9999643860000$ $N_0 := number of seconds in one year $= 365 \times 24 \times 60 \times 60$$

Banker: $(e^u + e^d)/2 = e^r = 1.0000000010000$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option

Assume: Initial price = \$1/share.

$$e^u = 1.0000356160000$$

 $e^d = 0.9999643860000$

$$e^r = 1.000000010000$$

$$e^u = 1.0000356160000$$

 $e^r = 1.000000010000$
 $e^d = 0.9999643860000$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

Assume: Initial price = \$1/share.

drift-vol assumption

either by a factor of 1.000035616 or by a factor of 0.999964386

The one-second risk-free factor e^a is 1.000000001

 $e^u = 1.0000356160000$ $e^r = 1.0000000010000$ $e^d = 0.9999643860000$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

30 days from now. Call option

Assume: Initial price = $1/\sinh$ Each second, price changes

drift-volus sumption Each second, price changes either by a factor of 1.000035616 or by a factor of 0.999964386The one-second risk-free factor e^d

Goal: Find the "right" price, i.e., the price that can be used to set up a "perfect hedge".

Difficulty: $30 \times 24 \times 60 \times 60$ adjustments

Salvation: The Central Limit Theorem!

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. Call option

Assume: Initial price = \$1/share.

drift-vol assumption

Each second, price changes either by a factor of 1.000035616 or by a factor of 0.999964386

The one-second risk-free factor $\stackrel{\triangleright}{e}^d$ is 1.000000001.

Goal: Find the "right" price, i.e., the price that can be used to set up a "perfect hedge".

Payoff function:

 $f(S) = (5000S - 5000)_{+}$ Exercise: Graph f.

ABC share price:

Ending ABC share price:

$$N := 30 \times 24 \times 60 \times 60$$

= 2,592,000

Ending ABC share price: Contingent claim:

$$e^{Nu}$$

$$e^{(N-1)u+d}$$

$$e^{(N-2)u+2d}$$

$$\vdots$$

$$e^{Nd}$$

$$f(e^{Nu})$$
 $f(e^{(N-1)u+d})$
 $f(e^{(N-2)u+2d})$
 \vdots
 $f(e^{Nd})$

V := price of option
= initial value of
hedging portfolio

Contingent claim:

$$f(e^{Nu})$$

$$f(e^{(N-1)u+d})$$

$$f(e^{(N-2)u+2d})$$

$$\vdots$$

$$f(e^{Nd})$$

Coin-flipping game: Flip a fair coin N times. If H heads and T tails, pay $f(e^{Hu+Td})$ 30 days from now. $e^{rN}V = \text{expected payout} =: ^{\bullet}E$ $V=e^{-rN_{\text{equal}}}$ $f(S) = (5000S - 5000)_{+}$ |V| :=price of bption Contingent claim: Goal = initial value of prob. $f(e^{Nu})$ N, 0 hedging portfolio $f(e^{(N-1)u+d})$ prob. N - 1, 1 $f(e^{(N-2)u+2d})$ prob. N - 2. expected final value of hedging portfolio = prob. $f(e^{Nd})$ 0, Nexpected contingent $= \binom{N}{i} (0.5)^{j} (0.5)^{N-j}$ 22

Coin-flipping game: Flip a fair coin N times.

 $e^r = 1.000000001$

If H heads and T tails,

pay $f(e^{Hu+Td})$, N = 2,592,00030 days from now.

$$e^{rN}V=$$
 expected payout $=:E=???$
 $V=e^{-rN}E$
Hard problem
 $=$ discounted expected payout

$$V := \text{price of option} \\ = \text{initial value of} \\ \text{hedging portfolio}$$

prob. $f(e^{Nu})$ N, 0 $f(e^{(N-1)u+d})$ prob. N - 1, 1 $f(e^{(N-2)u+2d})$ prob. N - 2.

 $f(e^{Nd})$

Contingent claim:

expected final value of

 $e^{rN}V =$

$$(0.5)^{j}(0.5)^{N-j}$$

prob.

0, N

Coin-flipping game: Flip a fair coin N times.

$$e^r = 1.000000001$$

 $N = 2,592,000$

If H heads and T tails, pay $f(e^{Hu+Td})$, 30 days from now.

$$e^{rN}V =$$
expected payout $=$: $E =$???

$$V = e^{-rN}E$$

= discounted expected payout

Easier problem:

probability problems, then expected value problems

Compute the probability that

$$-\sqrt{N} < H - T < \sqrt{N}.$$

