Financial Mathematics Central Limit Theorem

Coin-flipping game: Flip a fair coin N times. N=2,592,000 If H heads and T tails, $f(S)=(5000S-5000)_+$ pay $f(e^{Hu+Td})$, 30 days from now. expected payout =: E=???

Easier problem: then expected value problems, Compute the probability that $-\sqrt{N} < H - T < \sqrt{N}.$

Easier problem:

probability problems, then expected value problems

Compute the probability that

$$-\sqrt{N} < H - T < \sqrt{N}$$

DIVIDE BY \sqrt{N}

$$X := (H - T)/\sqrt{N}$$
 standardization of $H - T$

mean = 0 variance = 1 (standard)

Easier problem:

probability problems, then expected value problems

Compute the probability that

$$-\sqrt{N} < H - T < \sqrt{N}.$$

Easier problem:

Compute the probability that

$$-\sqrt{N} < H - T < \sqrt{N}$$
. DIVIDE BY \sqrt{N}

$$X := (H - T)/\sqrt{N}$$

Easier problem after standardization:

Compute the probability that

$$-1 < X < 1$$
.

$$H_1 :=$$
 number of heads after first flip

$$H_2 :=$$
 number of heads after second flip

•

$$H_N :=$$
 number of heads after Nth flip = H

Easier problem:

Compute the probability that $-\sqrt{N} < H - T < \sqrt{N}$.

$$X := (H - T)/\sqrt{N}$$

Easier problem after standardization: Compute the probability that

$$-1 < X < 1$$
. X is hard ...

For all integers
$$j \in [1, N]$$
, $H_j :=$ number of heads after j th flip $T_i :=$ number of tails after j th flip

$$T_j :=$$
 number of talls after j th flip $D_j := H_j - T_j$ Easier: $D_1, D_1/7, D_2, D_N$

$$H = H_N$$
, $T = T_N$, $X = (H_N - T_N)/\sqrt{N}$

distribution of D_1

keep the distribution forget its origin

distribution of T_1-H_1 is exactly the same

keep the distribution forget its origin

$$D_1 = H_1 - T_1 :$$

$$0.5 - 1 \qquad z^1 = z$$

$$0.5 - 1 \qquad z^{-1}$$

$$-0.5 - 1$$
 z^{-1}

$$\left(\begin{array}{c} \mathsf{expression} \\ \mathsf{of} \quad z \end{array} \right)$$

$$\xi t$$
 not time

$$i = \sqrt{-1}$$

Generating function: Replace
$$z$$
 by e^{-it} $(0.5)z + (0.5)z^{-1}$

Fourier transform:
$$\underbrace{ (\text{0.5})e^{-it} + (\text{0.5})e^{it} }_{\text{not time}}$$

 $\cos t$

Fourier transform:
$$\frac{(0.5)z + (0.5)z}{(0.5)e^{-it} + (0.5)e^{it}}$$

ourier transform: $(0.5)e^{-it} + (0.5)e^{it}$

What about $D_1/7$?

Generating function:

Fourier transform:

$$(0.5)z + (0.5)z^{-1}$$

 $(0.5)e^{-it} + (0.5)e^{it}$
 $||$
 $\cos t$

Repl. t by t/7

$$\begin{array}{l} e^{it} = \cos t + i \sin t \\ e^{-it} = \cos t - i \sin t \end{array}$$

$$D_1/7$$
:

 $0.5 - 1/7$
 $z^{1/7}$
 $0.5 - 1/7$
 $z^{-1/7}$

What about $D_1/7$? Replace t by t/7.

$$i = \sqrt{-1}$$

Replace z by e^{-it}

$$(0.5)z^{1/7} + (0.5)z^{-1/7}$$

Fourier transform:

Generating function:

$$(0.5)e^{-it/7} + (0.5)e^{it/7}$$
 \parallel
 $\cos(t/7)$

$$e^{it/7} = \cos(t/7) + i \sin(t/7)$$

 $e^{-it/7} = \cos(t/7) - i \sin(t/7)$

$$D_2 = \overset{0}{H_2} - \overset{2}{T_2} :$$

$$0.25$$

$$0.25 + 0.25 = 0.5$$

$$-2 \quad 0.25$$

forget its origin keep the distribution

$$D_2 = H_2 - T_2 :$$

$$\longrightarrow 0.25 - 2$$

$$\longrightarrow 0.5 - 0$$

$$z^0 = 1$$

$$\longrightarrow 0.25 - 2$$

$$z^{-2}$$

forget its origin keep the distribution

Generating function:

$$(0.25)z^2 + 0.5 + (0.25)z^{-2}$$

$$= ((0.5)z + (0.5)z^{-1})^2$$
the generating function of the distribution of D_1

$$= \sqrt{-1}$$
Replace z by e^{-it}
Fourier transform: $(\cos t)^2 = \cos^2 t$

$$D_N = H_N - T_N :$$

Goal: X_{\sim} What about $D_N/\sqrt{N?}$ Replace t by t/\sqrt{N} .

Generating function:

NO WAY!!

$$= ((0.5)z + (0.5)z^{-1})^{N}$$

the generating function of the distribution of D_1

Replace
$$z$$
 by e^{-i}

Fourier transform: $(\cos t)^N = \cos^N t$

$$X = D_N/\sqrt{N}$$
:

Goal: $X_{\mbox{\colored}}$ What about D_N/\sqrt{N} ?

NO WAY!

Replace t by t/\sqrt{N} .

Fourier transform:

 $\cos^N(t/\sqrt{N})$

 $X = D_N/\sqrt{N}$:

II YAW ON

Generating functions Fourier transforms

Fourier transform:
$$\cos^N(t/\sqrt{N})$$

Fourier transform:

 $\cos^N(t/\sqrt{N})$

$$X = D_N / \sqrt{N} : O$$

Generating functions
Fourier transforms
Fourier analysis
Spectral theory
Useful?

Easier problem aft \ge standardization: Compute the probability that -1 < X < 1.

Exercise:
$$\lim_{n \to \infty} \cos^n (3/\sqrt{n}) = e^{-3^2/2}$$

Fourier transform:
$$\cos^N(t/\sqrt{N})$$
 $\approx \lim_{n \to \infty} \cos^n(t/\sqrt{n}) = e^{-t^2/2}$ Verify for $t = 3$.

17

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to X. in distribution

Fourier transform:
$$\cos^N(t/\sqrt{N})$$
 $\approx \lim_{n\to\infty} \cos^n(t/\sqrt{n}) = e^{-t^2/2}$

$$X = D_N/\sqrt{N}$$
:

Fourier transform: $\cos^N(t/\sqrt{N})$

$$pprox \lim_{n \to \infty} \cos^n(t/\sqrt{n}) = e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. How to find Z? Then Z is "close" to X. Inverse Fourier Transform

Its distribution . . .

Easier problem after standardization:

Compute the probability that

$$-1 < X < 1$$
.

Approximately equal to the probability that -1 < Z < 1.

$$e^{-x^2/2} \underline{dx}$$
 - x infinitesimal

Do this for all $x \in \mathbb{R}$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. How to find Z? Then Z is "close" to X. Inverse Fourier Transform Its distribution . . .

Easier problem after standardization:

Compute the probability that

$$-1 < X < 1$$
.

Approximately equal to the probability that -1 < Z < 1.

$$Z$$
:

$$e^{-x^2/2}\,dx$$
 — x Do this for all $x\in\mathbb{R}$

NOTES

 $D_2 \in \{2,0,-2\}$ distribution supported on three points

 $D_N \in \{-N, -N+2, \dots, N-2, N\}$ distribution supported on N+1 points

By contrast, the distribution of Z does not have finite support.

$$Z$$
:

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

Do this for Z wit ←this all $x \in \mathbb{R}$

NOTES There's a mistake:

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}$$

probability theory: should get 1, not $\sqrt{2\pi}$

$$Z$$
:

Z:
$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x$$

Do this for all $x \in \mathbb{R}$

Problem: Compute the probability that

$$Z = 7$$

Solution:
$$\int_{7}^{7} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0$$

$$Z$$
:

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - a$$

Do this for all $x \in \mathbb{R}$

= 2.14%

Problem: Compute the probability that

Solution:
$$\int_{2}^{3} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = [\Phi(x)]_{x=2}^{x=3}$$
$$= [\Phi(3)] - [\Phi(2)] = 0.0214$$

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \qquad z^x \qquad \text{Do this for } all \ x \in \mathbb{R}$$

Generating function:

$$\int_{-\infty}^{\infty} z^{x} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = \text{Exercise}$$

Fourier transform: Verify for
$$t = 3$$
.
$$\int_{-\infty}^{\infty} e^{-it} x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \stackrel{\downarrow}{=} e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$.

Then Z is "close" to X.

25

$$\int_{X}^{2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \qquad z^x$$

Do this for all $x \in \mathbb{R}$

Exercise:
$$\int_{-\infty}^{\infty} e^{-3ix} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = e^{-3^2/2}$$

Fourier transform:
$$\int_{-\infty}^{\infty} e^{-itx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \stackrel{\downarrow}{=} e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$.

Then Z is "close" to X.

$$\frac{Z}{\sqrt{2\pi}} = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

probability problems, then expected value problems x

áll $x \in \mathbb{R}$

Easier problem after standardization: Compute the probability that -1 < X < 1.

Approximately equal to the probability that -1 < Z < 1.

n: Berry-Esseen Theorem

$$\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = [\Phi(x)]_{x=-1}^{x=1}$$
= 68.27%

probability problems, then expected value problems othis for $\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x$ $AH \ x \in \mathbb{R}$

Easier problem after standardization: Compute the probability that -1 < X < 1.

Coin-flipping game: Flip a fair coin N times. If H heads and T tails, N = 2,592,000pay $f(u^H d^T)$, $f(S) = (5000S - 5000)_{+}$ 30 days from now. **STOP** expected payout =: E = ???

28