Financial Mathematics

Testing the Black-Scholes formula

inputs: inputs: T, σ_* , r_* , S_0 , KPRESENT σ , r, S_0 , K**FORMULA** Let $K' := \frac{K}{c^r}$. Let $K' := \frac{K}{e^{r_*T}}$. Let $d_{\pm} := \frac{\ln(S_0/K')}{\sigma_* \sqrt{T}} \pm \frac{\sigma_* \sqrt{T}}{2}$. Let $d_{\pm} := \frac{\ln(S_0/K')}{\sigma} \pm \frac{\sigma}{2}$. output: $S_0[\Phi(d_+)] - K'[\Phi(d_-)]$ output: $S_0[\Phi(d_+)] - K'[\Phi(d_-)]$ version zero of Black-Scholes first version of Black-Scholes PRESENT FORMULA Let $d_{\pm} := \frac{[\ln(S_0/K)] + r_*T}{\sigma_*\sqrt{T}} \pm \frac{\sigma_*\sqrt{T}}{2}$. TIME NORMALIZED NEUTRAL **FORMULA** output: $S_0[\Phi(d_+)] - [Ke^{-r_*T}][\Phi(d_-)]$ second version of Black-Scholes Do these formulas really approximate forward price on stock Let $F := Se^{r_*T}$ the CRR price? Let $d_{\pm} := \frac{[\ln(F/K)]}{\sigma_* \sqrt{T}} \pm \frac{\sigma_* \sqrt{T}}{2}$ FORWARD FORMULA output: e^{-r_*T} $(F[\Phi(d_+)] - K[\Phi(d_-)]$ third version of Black-Scholes

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

N := number of seconds in 30 days

Gail selects:

N-subperiod 50.001-49.999 CRR model N-subperiod N-subperiod 50.001-49.999 CRR model N-subperiod N-subpe

PRESENT FORMULA TIME NORMALIZED

PRESENT FORMULA 5000
$$(S_0[\Phi(d_+)] - K'[\Phi(d_-)])$$

Do these formulas really approximate the CRR price?

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now.

N:= number of seconds in 30 days

Gail selects:

N-subperiod 50.001-49.999 CRR model

$$V = e^{-rN}E = 120.7994402$$
 close?

PRESENT FORMULA 5000 $(S_0[\Phi(d_+)] - K'[\Phi(d_-)])$

Do these formulas really approximate the CRR price?

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. N := number of seconds in 30 days

Gail selects:

N-subperiod 50.001-49.999 CRR model Market analyst: (ann) vol = 0.200002881086Banker:

(annual) continuous compounding non rate $= 0.05000(\bar{S}_0[\Phi(\bar{d}_+)] - K'[\Phi(d_-)])$

$$V = 120.7994402$$

Kyle wants right, but not obligation, to buy 5000 shares of ABC for \$5000, Gail, seller 30 days from now. K=1 T=30/365 N:= number of seconds in 30 days Gail selects: N-subperiod 50.001-49.999 CRR model

N-subperiod 50.001-49.999 CRR model Market analyst: (ann) vol = 0.200002881086 Banker:

Sanker:
(annual) continuous compounding nominal rate
= 0.0315359998802

 $5000(S_0[\Phi(d_+)] - K'[\Phi(d_-)])$

$$V = 120.7994402$$

T = 30/365 Assume: Initial price = \$1/share. $S_0 = 1$ K = 1 T = 30/365 $r = r_*T$ $\sigma = \sigma_* \sqrt{T}$ K = 1 $d_{+} = \frac{\ln(S_{0}/K')}{\sigma} + \frac{\sigma \text{nn}) \text{ vol} = 0.200002881086}{2 \ln(S_{0}/K')} - \frac{\sigma \text{s compounding nominal rate}}{2}$ $d_{-} = \frac{\ln(S_{0}/K')}{2} - \frac{\sigma \text{s compounding nominal rate}}{2}$ Market analyst: (ann) vol = 0.200002881086Banker: (annual) continuous compounding nominal rate = 0.0315359998802V = 120.7994402close? $5000(S_0[\Phi(d_+)] - K'[\Phi(d_-)])$

$$T = 30/365 \qquad S_0 = 1$$

$$r = r_*T = 0.00259199999014 \qquad S_0 = 1$$

$$\sigma = \sigma_* \sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r}$$

$$d_+ = \frac{\ln(S_0/K')}{\sigma} + \frac{\sigma}{2}$$

$$d_- = \frac{\ln(S_0/K')}{\sigma} - \frac{\sigma}{2}$$
Market analyst: (ann) vol = 0.200002881086
Banker: (annual) continuous compounding nominal rate = 0.0315359998802
$$V = 120.7994402$$

$$V = 120.7994402$$

$$V = 120.7994402$$

$$T = 30/365 \qquad S_0 = 1$$

$$r = r_*T = 0.00259199999014$$

$$\sigma = \sigma_*\sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r} = 0.997411356345$$

$$d_+ = \frac{\ln(S_0/K')}{\sigma} + \frac{\sigma}{2}$$

$$d_- = \frac{\ln(S_0/K')}{\sigma} - \frac{\sigma}{2}$$
Market analyst: (ann) vol = 0.200002881086
Banker: (annual) continuous compounding nominal rate = 0.0315359998802
$$V = 120.7994402$$

$$V = 120.7994402$$

$$V = 120.7994402$$

$$T = 30/365 \qquad S_0 = 1$$

$$r = r_*T = 0.00259199999014$$

$$\sigma = \sigma_*\sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r} = 0.997411356345$$

$$d_+ = \frac{\ln(S_0/K')}{\sigma} - \frac{\sigma}{2}$$

$$d_- = \frac{\ln(S_0/K')}{\sigma} - \frac{\sigma}{2}$$

$$\ln(S_0/K') = 0.00259199999014$$

$$V = 120.7994402$$

$$T = 30/365 \qquad S_0 = 1$$

$$r = r_*T = 0.00259199999014$$

$$\sigma = \sigma_*\sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r} = 0.997411356345$$

$$d_+ = \frac{\ln(S_0/K')}{\sigma} + \frac{\sigma}{2} = \begin{pmatrix} 0.0452047996532 \\ +0.0286695219325 \end{pmatrix}$$

$$d_- = \frac{\ln(S_0/K')}{\sigma} + \frac{\sigma}{2} = \begin{pmatrix} 0.0452047996532 \\ -0.0286695219325 \end{pmatrix}$$

$$\ln(S_0/K') = 0.00259199999014$$

$$V = 120.7994402$$

$$V = 120.7994402$$

$$5000(S_0[\Phi(d_+)] - K'[\Phi(d_-)])$$

$$T = 30/365 \qquad S_0 = 1$$

$$r = r_*T = 0.00259199999914$$

$$\sigma = \sigma_*\sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r} = 0.997411356345$$

$$d_+ = \begin{pmatrix} 0.04520479965320.04520479965322\\ +0.02866952\overline{19}3.+0.02669321932323 \end{pmatrix} 57$$

$$d_- = \begin{pmatrix} 0.04520479965320.04520479965322\\ -0.02866952\overline{19}3.-0.0266952\overline{19}3.2 \end{pmatrix} 07$$

$$V = 120.7994402$$

$$T = 30/365 \qquad S_0 = 1$$

$$r = r_*T = 0.002591999999014$$

$$\sigma = \sigma_*\sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r} = 0.997411356345$$

$$d_+ = \begin{pmatrix} 0.0452047996532 \\ +0.0286695219325 \end{pmatrix} = 0.0738743215857$$

$$d_- = \begin{pmatrix} 0.0452047996532 \\ -0.0286695219325 \end{pmatrix} = 0.0165352777207$$

$$\Phi(d_+) = 0.52944$$

$$\Phi(d_-) = 0.50660$$

$$V = 120.7994402$$

$$5000(S_0[\Phi(d_+)] - K'[\Phi(d_-)])$$

$$T = 30/365$$

$$r = r_*T = 0.002591999999014$$

$$\sigma = \sigma_*\sqrt{T} = 0.057339043865$$

$$K = 1$$

$$K' = \frac{K}{e^r} = 0.997411356345$$

$$\Phi(d_+) = 0.52944$$

$$\Phi(d_-) = 0.50660$$

$$S_0[\Phi(d_+)] - K'[\Phi(d_-)] = 0.024151406898$$

$$\Phi(d_+) = 0.52944$$

$$\Phi(d_-) = 0.50660$$

$$V = 120.7994402$$

$$5000[S_0[\Phi(d_+)] - K'[\Phi(d_-)])$$

$$T = 30/365$$
 $S_0 = 1$ $r = r_*T = 0.00259199999014$ $\sigma = \sigma_*\sqrt{T} = 0.057339043865$ $K = 1$ $K' = \frac{K}{e^r} = 0.997411356345$ $\Phi(d_+) = 0.52944$ $\Phi(d_-) = 0.50660$ $S_0[\Phi(d_+)] - K'[\Phi(d_-)] = 0.024151406898$ $5000\left(S_0[\Phi(d_+)] - K'[\Phi(d_-)]\right)$ $= 120.7570345$ $V = 120.7994402$ $V \in S_0$ $V \in S_0$

FORMULA Let $K' := \frac{K}{e^{r_*T}}$. Let $K' := \frac{K}{n^r}$. Let $d_{\pm} := \frac{\ln(S_0/K')}{\sigma_{\pm}\sqrt{T}} \pm \frac{\sigma_*\sqrt{T}}{2}$. Let $d_{\pm} := \frac{\ln(S_0/K')}{\sigma} \pm \frac{\sigma}{2}$. output: $S_0[\Phi(d_+)] - K'[\Phi(d_-)]$ first version of Black-Scholes Let $d_{\pm} := \frac{[\ln(S_0/K)] + r_*T}{\sigma_*\sqrt{T}} \pm \frac{\sigma_*\sqrt{T}}{2}$. output: $S_0[\Phi(d_+)] - [Ke^{-r_*T}][\Phi(d_-)]$ second version of Black-Scholes forward price on stock Let $F := Se^{r_*T}$ Let $d_{\pm} := \frac{[\ln(F/K)]}{\sigma_* \sqrt{T}} \pm \frac{\sigma_* \sqrt{T}}{2}$ output: $e^{-r_*T} \left(F[\Phi(d_+)] - K[\Phi(d_-)] \right)$ third version of Black-Scholes

inputs:

T, σ_* , r_* , S_0 , K

output: $S_0[\Phi(d_+)] - K'[\Phi(d_-)]$ version zero of Black-Scholes PRESENT FORMULA TIME NORMALIZED **FORMULA** Do these formulas really approximate the CRR price?

16

FORWARD FORMULA

inputs:

PRESENT

 σ , r, S_0 , K

inputs:
$$T$$
, σ_* , r inputs: T , σ_* , r_* , S_0 , K

Let
$$d_{\pm} := \frac{\left[\ln(S_0/K)\right] + r_*T}{\sigma_*\sqrt{T}} \pm \frac{\sigma_*\sqrt{T}}{2}$$
.

 $\sigma_* \sqrt{T}$ 2 output: $S_0[\Phi(d_+)] - [Ke^{-r_*T}][\Phi(d_-)]$

second version of Black-Scholes

Let
$$d_{\pm} := \frac{\left[\ln(S_0/K)\right] + r_*T}{\sigma_*\sqrt{T}} \pm \frac{\sigma_*\sqrt{T}}{2}$$
.

output: $S_0[\Phi(d_+)] - [Ke^{-r_*T}][\Phi(d_-)]$

second version of Black-Scholes

NEUTRAL FORMULA

NEUTRAL FORMULA

inputs:
$$T$$
, σ_* , r_* , S_0 , K

Let
$$d_{\pm} := \frac{[\ln(S_0/K)] + r_*T}{\sigma_*\sqrt{T}} \pm \frac{\sigma_*\sqrt{T}}{2}$$
.

output: $S_0[\Phi(d_+)] - [Ke^{-r_*T}][\Phi(d_-)]$

second version of Black-Scholes

BISch
$$(T, \sigma_*, r_*, S_0, K) :=$$

$$S_{0}\left[\Phi\left(\frac{\left[\ln(S_{0}/K)\right]+r_{*}T}{\sigma_{*}\sqrt{T}}+\frac{\sigma_{*}\sqrt{T}}{2}\right)\right]$$

$$-\left[Ke^{-r_{*}T}\right]\left[\Phi\left(\frac{\left[\ln(S_{0}/K)\right]+r_{*}T}{\sigma_{*}\sqrt{T}}-\frac{\sigma_{*}\sqrt{T}}{2}\right)\right]$$

Fact: For all T > 0, $r_* > 0$, $S_0 > 0$ and K > 0, $\sigma_* \mapsto \mathsf{BISch}(T, \sigma_*, r_*, S_0, K) : (0, \infty) \to (0, \infty)$ Exercise: Prove this. is increasing.

18

For all V > 0, T > 0, $r_* > 0$, $S_0 > 0$ and K > 0, if $\exists \sigma_* > 0$ such that

if
$$\exists \sigma_* > 0$$
 such that
$$V = \mathsf{BISch}(T, \sigma_*, r_*, S_0, K)$$
 then this solution σ_* is unique and is called the implied volatility associated to V , T , r_* , S_0 and K

$$V$$
, T , r_* , S_0 and K . BISch $(T,\sigma_*,r_*,S_0,K):=$

$$V$$
, T , r_* , S_0 and K BISch $(T, \sigma_*, r_*, S_0, K) :=
$$S_0 \left[\Phi \left(\frac{[\ln(S_0/K)] + r_*T}{\sigma_*\sqrt{T}} + \frac{\sigma_*\sqrt{T}}{2} \right) \right]$$$

$$-\left[Ke^{-r_*T}\right]\left[\Phi\left(\frac{\left[\ln(S_0/K)\right]+r_*T}{\sigma_*\sqrt{T}}-\frac{\sigma_*\sqrt{T}}{2}\right)\right]$$

Fact: For all T > 0, $r_* > 0$, $S_0 > 0$ and K > 0, $\sigma_* \mapsto \mathsf{BISch}(T, \sigma_*, r_*, S_0, K) : (0, \infty) \to (0, \infty)$ Exercise: Prove this. is increasing.

For all V > 0, T > 0, $r_* > 0$, $S_0 > 0$ and K > 0,

if $\exists \sigma_* > 0$ such that

 $V = \mathsf{BISch}(T, \sigma_*, r_*, S_0, K)$

then this solution σ_* is unique and is called the implied volatility associated to V, T, r_* , S_0 and K.

Fiction: Black-Scholes works, So why teach BS?? *i.e.*, volatility, drift and risk-free rates are constant.

constant over thirty year periods.

Nevertheless: They're useful, because . . .

they give a way of comparing mortgages.

Fiction: Home mortgage interest rates stay

they give a way of comparing mortgages.

dimensionless
Similar for Black-Scholes.

Next subtopic: Volatitility smiles and skews 20 and volatility surfaces

For all V > 0, T > 0, $r_* > 0$, $S_0 > 0$ and K > 0, if $\exists \sigma_* > 0$ such that

 $V = \mathsf{BISch}(T, \sigma_*, r_*, S_0, K)$ then this solution σ_* is unique and is called

the implied volatility associated to

V, T, r_* , S_0 and K. Fiction: Black-Scholes works,

i.e., volatility, drift and risk-free rates are constant. Pick a financial instrument (e.g., a stock). Look up S_0 . Look up r_* .

Fix T. For various choices of K, look up V, compute $\overset{\bullet}{\sigma}_*$ and plot (K, σ_*) . The result is called the volatility smile or the volatility skew, depending on whether it's concave up or concave down.

For all V > 0, T > 0, $r_* > 0$, $S_0 > 0$ and K > 0, if $\exists \sigma_* > 0$ such that

$$V = \mathsf{BISch}(T, \sigma_*, r_*, S_0, K)$$

then this solution σ_* is unique and is called

the implied volatility associated to V, T, r_* , S_0 and K.

Fiction: Black-Scholes works, *i.e.*, volatility, drift and risk-free rates are constant.

Pick a financial instrument (e.g., a stock).

Look up S_0 . Look up r_* .

For various choices of K and T, look up V, compute $\overset{\bullet}{\sigma}_*$ and plot (K, T, σ_*) .

The result is called the volatility surface.