Financial Mathematics

Preliminaries to the Triangular Central Limit Theorem and a first proof of Black-Scholes

Fact (Second order Maclaurin approximations): f'' is continuous at $0 \Rightarrow \exists \varepsilon(x) \to 0$ s.t.

$$f(x) = [f(0)] + [f'(0)]x + \left[\frac{f'(0)}{2}\right]x^2 + [\varepsilon(x)]x^2.$$
error term
$$o(x^2)$$

Fact (First order Maclaurin approximations): f' is continuous at $0 \Rightarrow \exists \varepsilon(x) \to 0$ s.t. $f(x) = [f(0)] + [f'(0)]x + [\varepsilon(x)]x.$ error term o(x)

Fact (Second order Maclaurin approximations): f'' is continuous at 0 $\Rightarrow \exists \varepsilon(x) \to 0$ s.t. $f(x) = [f(0)] + [f'(0)]x + \left[\frac{f'(0)}{2}\right]x^2 + [\varepsilon(x)]x^2.$

$$f(x) = [f(0)] + [f'(0)]x + \left[\frac{x+y}{2}\right]x^2 + [\varepsilon(x)]x$$

Special case: $e^x = 1 + x + \frac{x^2}{2} + [\varepsilon(x)]x$

Special case: $e^x = 1 + x + \frac{x^2}{2} + [\varepsilon(x)]x^2$ Corollary: $x_n \to 0 \Rightarrow \begin{cases} x : \to x_n, \varepsilon_n := \varepsilon(x_n) & \to 0, \\ \exists \varepsilon_n \to 0 & \text{s.t.} \end{cases} e^{x_n} = 1 + x_n + \frac{x_n^2}{2} + \varepsilon_n x_n^2$ Corollary: $x_n \to 0 \Rightarrow \qquad 9\varepsilon_n : \to \delta_n$

Corollary:
$$x_n o 0 \Rightarrow 9\varepsilon_n : \to \delta_n$$

$$\exists \varepsilon_n \to 0 \quad \text{s.t.} \quad e^{3x_n} = 1 + 3x_n + \frac{9x_n^2}{2} + 9\varepsilon_n x_n^2$$
i.e.:
$$\exists \delta_n \to 0 \quad \text{s.t.} \quad e^{3x_n} = 1 + 3x_n + \frac{9x_n^2}{2} + \delta_n x_n^2$$

$$"9[o(x_n^2)] = o(x_n^2)" \quad o(x_n^2)$$

Defin:
$$h(x) := e^{-x^2/2}/\sqrt{2\pi}$$

Def'n: $Z_n \to Z$ in distribution means:

for any contin., bounded $\phi: \mathbb{R} \to \mathbb{R}$,

$$\mathsf{E}[\phi(Z_n)] \to \mathsf{E}[\phi(Z)]$$
. Z not yet def'd, so...

Replace $E[\phi(Z)]$

by
$$\int_{-\infty}^{\infty} [\phi(\mathbf{x})][h(x)] dx$$

"Change every Z to x and then integrate against h(x) dx, from $-\infty$ to ∞ .

Defin: $h(x) := e^{-x^2/2}/\sqrt{2\pi}$

Def'n: $Z_n \to Z$ in distribution means: for any contin., bounded $\phi : \mathbb{R} \to \mathbb{R}$, $\mathsf{E}[\phi(Z_n)] \to \int_{-\infty}^{\infty} [\phi(x)][h(x)] \, dx$.

"Change every
$$Z_n$$
 to x and then integrate against $h(x) dx$, from $-\infty$ to ∞ .
$$\int_{-\infty}^{\infty} [\phi(x)][h(x)] dx$$

Defin:
$$h(x) := e^{-x^2/2}/\sqrt{2\pi}$$

Def'n:
$$Z_n \rightarrow Z$$
 in distribution means: equivalently: continuous, compactly supported

for any contin., bounded $\phi: \mathbb{R} \to \mathbb{R}$,

$$\mathsf{E}[\phi(Z_n)] \to \int_{-\infty}^{\infty} [\phi(x)][h(x)] dx.$$

Fact:
$$Z_n \rightarrow Z$$
 in distribution

$$\alpha_n \to 0$$
 in \mathbb{R}

$$\Rightarrow Z_n + \alpha_n \rightarrow Z$$
 in distribution.

pf omitted

Fact: $Z_n \rightarrow Z$ in distribution

$$\alpha_n \to 1$$
 in $\mathbb R$

$$\Rightarrow \alpha_n Z_n \rightarrow Z$$
 in distribution.

in:
$$h(x) := e^{-x^2/2}/\sqrt{2\pi}$$

against contin, exp-bdd

Def'n: $Z_n \rightarrow Z$ in distribution means:

for any continuous, exponentially bounded $\phi:\mathbb{R}\to\mathbb{R}$,

$$\mathsf{E}[\phi(Z_n)] \to \int_{-\infty}^{\infty} [\phi(x)][h(x)] \, dx.$$

Fact: $Z_n o Z$ in distribution against contin, exp-bdd $lpha_n o 0$ in $\mathbb R$ against contin, exp-bdd

 $\Rightarrow Z_n + \alpha_n \rightarrow Z$ in distribution!

pf omitted

Fact: $Z_n o Z$ in distribution against contin, exp-bdd $lpha_n o 1$ in $\mathbb R$ against contin, exp-bdd

 $\Rightarrow \alpha_n Z_n \to Z$ in distribution!

7

pf omitted

$$D_1/7$$
:
0.5 - 1/7 $z^{1/7}$
0.5 - -1/7 $z^{-1/7}$

What about $D_1/7$? Replace t by t/7.

$$i = \sqrt{-1}$$

Replace z by e^{-it}

$$(0.5)z^{1/7} + (0.5)z^{-1/7}$$

$$(0.5)e^{-it/7} + (0.5)e^{it/7}$$

$$\cos(t/7)$$

$$e^{it/7} = \cos(t/7) + i \sin(t/7)$$

 $e^{-it/7} = \cos(t/7) - i \sin(t/7)$

$$D_1/7$$
:

0.5 - $1/7$ $z^{1/7}$

0.5 - $-1/7$ $z^{-1/7}$

What about $D_1/7$? Replace t by t/7.

$$i = \sqrt{-1}$$

Replace z by e^{-it}

Generating function:
$$(0.5)z^{1/7} + (0.5)z^{-1/7}$$

Fourier transform:

$$(0.5)e^{-it/7} + (0.5)e^{it/7}$$
 \parallel
 $\cos(t/7)$

The Fourier transf. of the distr. of X/7 is equal to the Fourier transf. of the distr. of X

$$D_2 = H_2 - T_2$$
:
 $0.25 - 2$
 z^2
 $0.5 - 0$
 $z^0 = 1$
 $0.25 - 2$
 z^{-2}

forget its origin keep the distribution

Generating function:

$$(0.25)z^{2} + 0.5 + (0.25)z^{-2}$$
$$= ((0.5)z + (0.5)z^{-1})^{2}$$

the generating function of the distribution of D_1

$$i = \sqrt{-1}$$

Fourier transform: Replace
$$z$$
 by e^{-it}

$$(\cos t)^2 = \cos^2 t$$

$$D_2 = H_2 - T_2$$
:
 $0.25 - 2$
 z^2
 $0.5 - 0$
 $z^0 = 1$
 $0.25 - 2$

Fourier transform:
$$(\cos t)^2 = \cos^2 t$$

Note: D_2 is a sum of two independent PCRVs.

Fourier transform:
$$(\cos t)^2 = \cos^2 t$$

$$D_2 = H_2 - T_2$$
:
 $0.25 - 2$
 z^2
 $0.5 - 0$
 $z^0 = 1$
 $0.25 - 2$

Fourier transform: $(\cos t)^2 = \cos^2 t$

Note: D_2 is a sum of two independent PCRVs. The Fourier transf. of the distr. of either one is $\cos t$.

$$X$$
 and Y independent \Rightarrow the Fourier transf. of the distr. of $X+Y$ is the product of the Fourier transf. of the distr. of X and the Fourier transf. of the distr. of Y .

from the distributions of X and Yis generally impossible; you need the JOINT distribution of X and Y. If X and Y are independent, then the joint distribution of X and Yis the "product" of the distributions of X and Y, and the distribution of X + Ycan be obtained from the distributions of X and Y, by a complicated process called "convolution". X and Y independent \Rightarrow the Fourier transf. of the distr. of X + Yis the product of the Fourier transf. of the distr. of X and the Fourier transf. of the distr. of Y.

Computing the distribution of X + Y

More on all that in a later lecture... For now, just remember:

Fourier transf. simplifies convolution to multiplication.

If X and Y are independent, then the joint distribution of X and Y

then the joint distribution of X and Y is the "product" of the distributions of X and Y, and the distribution of X+Y can be obtained from the distributions of X and Y, by a complicated process called "convolution".

X and Y independent \Rightarrow the Fourier transf. of the distr. of X+Y is the product of the Fourier transf. of the distr. of X and the Fourier transf. of the distr. of Y.

$$Z$$
:

$$Z$$
:
$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \qquad z^x \qquad \text{Do this for all } x \in \mathbb{R}$$

Generating function:

$$\int_{-\infty}^{\infty} z^x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \text{Exercise}$$

Fourier transform:

$$\int_{-\infty}^{\infty} e^{-itx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = e^{-t^2/2}$$

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to X because:(F. transf. of distr. of X) $\approx e^{-t^2/2}$ 15

Z:

$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx - x \qquad z^x \qquad \text{Do this for all } x \in \mathbb{R}$$

If the Fourier transforms of the distributions of PCRVs X_1, X_2, \ldots approach $e^{-t^2/2}$, then the distributions of X_1, X_2, \ldots approach the distribution shown above,

i.e., $X_n \rightarrow \mathbb{Z}$ in distribution.

Key idea of Central Limit Theorem:

Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to $X^{\text{because:(F. transf. of } distr. of }X) \approx e^{-t^2/2}$

of the distribution of Y. If the Fourier transforms of the distributions of PCRVs X_1, X_2, \ldots approach $e^{-t^2/2}$,

then the distributions of X_1, X_2, \ldots approach the distribution shown above, *i.e.*, $X_n \rightarrow Z$ in distribution.

Key idea of Central Limit Theorem: Let Z have distr. with Fourier transf. $e^{-t^2/2}$. Then Z is "close" to $X^{\text{because:(F. transf. of } distr. of } X) \approx e^{-t^2/2}$

Def'n: For any PCRV Y, $\mathcal{F}\delta[Y] = \mathcal{F}\delta_Y := \mathbb{E}[e^{-itY}]^{z:\to e^{-it}}$ is the Fourier transform δ

Fact: $\mathcal{F}\delta_{X/7} = [\mathcal{F}\delta_X]_{t: \to t/7}$ Fact: $\mathcal{F}\delta_{cX} = [\mathcal{F}\delta_X]_{t: \to ct}$ $\mathcal{F}\delta_Z = e^{-t^2/2}$ Fact: X_1, \dots, X_n indep. \Rightarrow $\mathcal{F}\delta_{X_1+\dots+X_n} = [\mathcal{F}\delta_{X_1}] \cdots [\mathcal{F}\delta_{X_n}]$ $\mathcal{F}\delta_Z$ Apply \mathcal{F}^{-1} . Fact: $\mathcal{F}\delta_{Y_n} \to e^{-t^2/2}$

Def'n: Let \mathcal{A} be a set of PCRVs. We say \mathcal{A} is identically distributed or i.d.

 $\Rightarrow Y_n \to Z$ in distribution.

if $\forall A, B \in \mathcal{A}$,

A and B have the same distribution.

Defin: \forall set \mathcal{A} of PCRVs, $\forall c \in \mathbb{R}$, $cA := \{cA \mid A \in A\}, \quad c+A := \{c+A \mid A \in A\}$ c+A? Fact: If \mathcal{A} is i.d., then $c\mathcal{A}$ is i.d., and E[cA] = c(E[A]) $Var[cA] = c^2(Var[A])$ SD[cA] = |c|(SD[A]).Def'n: Let \mathcal{A} be a set of PCRVs. We say A is identically distributed or i.d. if $\forall A, B \in \mathcal{A}$, A and B have the same distribution.

E[A], Var[A], SD[A], $\mathcal{F}\delta[A]$

E[A], Var[A], SD[A], $\mathcal{F}\delta[A]$, resp.

alternate: $\mathcal{F}\delta_{A}$

alternate: $\mathcal{F}\delta_A$

for any $A \in \mathcal{A}$.

Def'n: If A is i.d., then

are defined as

Defin: \forall set \mathcal{A} of PCRVs, $\forall c \in \mathbb{R}$, $cA := \{cA \mid A \in A\}, \quad c+A := \{c+A \mid A \in A\}$ Fact: If \mathcal{A} is i.d., then $c + \mathcal{A}$ is i.d., and E[c + A] = c + (E[A])Var[c + A] = Var[A]SD[c + A] = SD[A].Def'n: Let \mathcal{A} be a set of PCRVs. We say A is identically distributed or i.d. if $\forall A, B \in \mathcal{A}$, 20 A and B have the same distribution.

E[A], Var[A], SD[A], $\mathcal{F}\delta[A]$

E[A], Var[A], SD[A], $\mathcal{F}\delta[A]$, resp.

alternate: $\mathcal{F}\delta_{A}$

alternate: $\mathcal{F}\delta_A$

for any $A \in \mathcal{A}$.

Def'n: If A is i.d., then

are defined as

Def'n: [S] := {standard PCRVs} $= \{ PCRVs \ X \mid E[X] = 0 \& Var[X] = 1 \}$

Exercise: Show that S is not i.d.

Def'n: \forall set \mathcal{A} of PCRVs, $\forall c \in \mathbb{R}$, $cA := \{cA \mid A \in A\}, \quad c+A := \{c+A \mid A \in A\}$ Fact: If \mathcal{A} is i.d., then $c + \mathcal{A}$ is i.d., and E[c + A] = c + (E[A])

Var[c + A] = Var[A]

21

SD[c + A] = SD[A].Def'n: Let \mathcal{A} be a set of PCRVs.

We say \mathcal{A} is identically distributed or i.d. if $\forall A, B \in \mathcal{A}$, ${\cal A}$ and ${\cal B}$ have the same distribution.

 $= \{ PCRVs \ X \mid E[X] = 0 \& Var[X] = 1 \}$ Exercise: Show that S is not i.d. Hint: Find two standard binary PCRVs

Def'n: [S] := {standard PCRVs}

Fact: If A is i.d., then $\mathcal{A} \subset \mathcal{S} \iff \mathsf{E}[\mathcal{A}] = 0 \text{ and } \mathsf{Var}[\mathcal{A}] = 1.$

Fact: If \mathcal{A} is i.d., and if $\mathcal{A} \cap \mathcal{S} \neq \emptyset$, then $\mathcal{A} \subseteq \mathcal{S}$.

with different distributions.

Def'n: Let \mathcal{A} be a set of PCRVs. We say \mathcal{A} is identically distributed or i.d. if $\forall A, B \in \mathcal{A}$, ${\cal A}$ and ${\cal B}$ have the same distribution.

Defin: For any set \mathcal{A} of PCRVs, let $\sum^n \mathcal{A}$ denote the set of all $A_1 + \cdots + A_n$ such that $A_1, \ldots, A_n \in \mathcal{A}$ and such that A_1, \ldots, A_n are i.i.d. Fact: If \mathcal{A} is i.d., and if $n \geq 1$ is an integer then $\sum^n \mathcal{A}$ is i.d.,

Fact: If A is i.d., then

Fact: If \mathcal{A} is i.d., and if $\mathcal{A} \cap \mathcal{S} \neq \emptyset$, then $\mathcal{A} \subseteq \mathcal{S}$.

 $\mathcal{A} \subseteq \mathcal{S} \iff \mathsf{E}[\mathcal{A}] = 0 \text{ and } \mathsf{Var}[\mathcal{A}] = 1.$

Def'n: Let \mathcal{A} be a set of PCRVs. We say \mathcal{A} is identically distributed or i.d. if $\forall A, B \in \mathcal{A}$,

A and B have the same distribution.

Def'n: For any set \mathcal{A} of PCRVs, Let $\sum^n \mathcal{A}$ denote the set of all $A_1 + \cdots + A_n$ such that $A_1,\ldots,A_n\in\mathcal{A}$ and such that A_1, \ldots, A_n are i.i.d. Fact: If \mathcal{A} is i.d., and if n > 1 is an integer then $\sum^{n} A$ is i.d.,

then
$$\sum^n \mathcal{A}$$
 is i.d., and $\mathsf{E}[\sum^n \mathcal{A}] = n(\mathsf{E}[\mathcal{A}])$ —DIVIDE BY \sqrt{n} $\mathsf{Var}[\sum^n \mathcal{A}] = n(\mathsf{Var}[\mathcal{A}])$ —DIVIDE BY n $\mathsf{SD}[\sum^n \mathcal{A}] = \sqrt{n}(\mathsf{SD}[\mathcal{A}])$ $\mathcal{F}\delta[\sum^n \mathcal{A}] = \sqrt{n}(\mathsf{SD}[\mathcal{A}])^n$.

 $\mathcal{F}\delta[\Sigma^n\mathcal{A}] = (\mathcal{F}\delta[\mathcal{A}])^n.$ Fact: $\sum_{n=0}^{n} \left(\frac{c}{n} + A\right) = c + \left(\sum_{n=0}^{n} A\right)$ Fact: $\sum_{n=0}^{\infty} c(cA) = c(\sum_{n=0}^{\infty} A)$ $\sum_{n=0}^{\infty} (\sum_{n=0}^{\infty} A) / \sqrt{n} = \sqrt{n} (E[A])$ $Var[(\sum^n A)/\sqrt{n}] = Var[A]$ Fact: $\mathcal{A} \subseteq \mathcal{S} \Rightarrow \frac{[\sum^n \mathcal{A}]}{\sqrt{n}} \subseteq \mathcal{S}$ 24

let $\sum^n \mathcal{A}$ denote the set of all $A_1 + \cdots + A_n$ such that $A_1, \ldots, A_n \in \mathcal{A}$ and such that A_1, \ldots, A_n are i.i.d.

Fact: If \mathcal{A} is i.d., and if $n \geq 1$ is an integer then $\sum^n \mathcal{A}$ is i.d., and $\mathsf{E}[\sum^n \mathcal{A}] = n(\mathsf{E}[\mathcal{A}])$ $\mathsf{Var}[\sum^n \mathcal{A}] = n(\mathsf{Var}[\mathcal{A}])$ $\mathsf{SD}[\sum^n \mathcal{A}] = \sqrt{n}(\mathsf{SD}[\mathcal{A}])$

$$Var[\sum^{n} A] = n(Var[A])$$

$$SD[\sum^{n} A] = \sqrt{n}(SD[A])$$

$$\mathcal{F}\delta[\sum^{n} A] = (\mathcal{F}\delta[A])^{n}.$$

Def'n: For any set \mathcal{A} of PCRVs,

Fact: $\sum^{n} (\frac{c}{n} + \mathcal{A}) = c + (\sum^{n} \mathcal{A})$ Fact: $\sum^{n} (c\mathcal{A}) = c(\sum^{n} \mathcal{A})$

Fact: $\mathcal{A} \subseteq \mathcal{S} \iff [\sum^n \mathcal{A}]/\sqrt{n} \subseteq \mathcal{S}$ renormalized i.i.d. sum preserves and reflects standardness

Fact:
$$\mathcal{B}^{p,u}_{q,d}$$
 is i.d. Fact: $c \neq 0 \Rightarrow c\mathcal{B}^{p,u}_{q,d} = \mathcal{B}^{p,\Box u}_{q,\Box d}$

Fact:
$$\mathbf{C} + \mathcal{B}_{q,d}^{p,u} = \mathcal{B}_{q,d+\mathbf{C}}^{p,u+\mathbf{C}}$$

Defin: $\forall p, q \in [0, 1], \ \forall u, d \in \mathbb{R}$,

$$C + B_{q,d} = B_{q,d+C}$$

Fact:
$$\sum_{n=0}^{n} \left(\frac{c}{n} + A\right) = c + \left(\sum_{n=0}^{n} A\right)$$

Fact:
$$\sum^{n} (\frac{c}{n} + A) = c + (\sum^{n} A)$$

Fact: $\sum^{n} (cA) = c(\sum^{n} A)$

Fact:
$$\mathcal{A} \subseteq \mathcal{S} \Leftrightarrow [\sum^n \mathcal{A}]/\sqrt{n} \subseteq \mathcal{S}$$
 renormalized i.i.d. sum preserves and reflects standardness

Defin: $\forall p,q \in [0,1], \ \forall u,d \in \mathbb{R}$, s.t. p+q=1 s.t. d < uspecific be the set of binary PCRVs Y $\operatorname{such} \operatorname{that} \Pr[Y = u] = p \text{ and } \Pr[Y = d] = q.$ Fact: $\mathcal{B}_{q,d}^{p,u}$ is i.d. Fact: $c \neq 0 \Rightarrow c\mathcal{B}_{a,d}^{p,u} = \mathcal{B}_{a,cd}^{p,cu}$

Fact:
$$c \neq 0$$
 \Rightarrow $cD_{q,d} - D_{q,cd}$
$$= cCC_{q,d} - CCC_{q,d} - CCCC_{q,d}$$

Defin: $\forall p, q \in [0, 1],$ $\mathcal{B}_q^p := \bigcup_{d < u} \mathcal{B}_{q,d}^{p,u}$ $X_1, \dots, X_n \in \bigcup_{d < u} \mathcal{B}_{q,d}^{p,u}$ i.d. $\Rightarrow \exists (d < u) \text{ s.t. } X_1, \dots, X_n \in \mathcal{B}_{q,d}^{p,u}$

$$\sum^{n} \mathcal{B}_{q}^{p} = \sum^{n} \bigcup_{d < u} \mathcal{B}_{q,d}^{p,u} = \bigcup_{d < u} \sum^{n} \mathcal{B}_{q,d}^{p,u}$$

Defin: $\forall p,q \in [0,1], \ \forall u,d \in \mathbb{R}$, s.t. p+q=1 s.t. d < uspecific

let
$$\mathcal{B}_{q,d}^{p,u}$$
 be the set of binary PCRVs Y such that $\Pr[Y=u]=p$ and $\Pr[Y=d]=q$.

Fact: $\mathcal{B}_{q,d}^{p,u}$ is i.d.

Fact:
$$c \neq 0 \Rightarrow c\mathcal{B}_{q,d}^{p,u} = \mathcal{B}_{q,cd}^{p,cu}$$

Fact: $c + \mathcal{B}_{q,d}^{p,u} = \mathcal{B}_{q,d+c}^{p,u+c}$

Fact: $c + \mathcal{B}_{a,d}^{p,u} = \mathcal{B}_{a,d+c}^{p,u+c}$

$$\begin{array}{ll} \text{Pact: } c + \mathcal{B}_{q,d}^r = \mathcal{B}_{q,d+c}^r \\ \text{Def'n: } \forall p,q \in [0,1], & \mathcal{B}_q^p := \bigcup_{d < u} \mathcal{B}_{q,d}^{p,u} \end{array}$$

The iid sum of general binaries is the union of specific binaries.

eneral binaries is the union of specific binaries.
$$\sum^n \mathcal{B}^p_q = \sum^n \bigcup_{d < u} \mathcal{B}^{p,u}_{q,d} = \bigcup_{d < u} \sum^n \mathcal{B}^{p,u}_{q,d}$$

Lemma: If $X \in \sum^n \mathcal{B}_q^p$, $\alpha, \beta \in \mathbb{R}$, $\beta \neq 0$,

then
$$\frac{X-\alpha}{\beta} \in \sum^n \mathcal{B}_q^p$$
.

Proof: Choose $u, d \in \mathbb{R}$

s.t.
$$X \in \sum^{n} \mathcal{B}_{q,d}^{p,u}$$
.

Then $X - \alpha \in \sum^n \left[\left(\mathcal{B}_{q,d}^{p,u} \right) - \overline{\alpha} \right]$

Defin:
$$\forall p,q \in [0,1], \quad \mathcal{B}_q^p := \bigcup_{d < u} \mathcal{B}_{q,d}^{p,u}$$

The iid sum of general binaries is the union of specific binaries.

$$\sum^{n} \mathcal{B}_{q}^{p} = \sum^{n} \bigcup_{d < u} \mathcal{B}_{q,d}^{p,u} = \bigcup_{d < u} \sum^{n} \mathcal{B}_{q,d}^{p,u}$$

Lemma: If $X \in \sum^n \mathcal{B}_q^p$, $\alpha, \beta \in \mathbb{R}, \quad \beta \neq 0,$

Special case:

 $\alpha = \mathsf{E}[X],$

 $\beta = SD[X].$

30

then
$$\frac{X-\alpha}{\beta} \in \sum^n \mathcal{B}_q^p$$
.

en
$$\frac{\lambda-\alpha}{\beta}\in\sum^n\beta_q^p$$
.

Proof: Choose
$$u, d \in \mathbb{R}$$

Then

opse
$$u, d \in \mathbb{R}$$

$$x \in \sum_{i=1}^{n} \mathcal{B}_{i}$$

.t.
$$X \in \sum^n \mathcal{B}_q^{\chi, \gamma}$$

s.t.
$$X \in \sum^n \mathcal{B}_{q,d}^{p,u}$$

$$1-lpha\in \sum^n\left[\left(\mathcal{B}_{q,d}^{p,u}\right)-\right]$$

$$z \in \mathbb{Z}$$
 $\begin{bmatrix} \mathcal{D}_{q,d} \end{bmatrix} - \overline{n} \end{bmatrix}$

$$= \sum^n \mathcal{B}_{q,d-\lfloor \alpha/n \rfloor}^{p,u-\lfloor \alpha/n \rfloor},$$

$$=\sum^n \mathcal{B}_{q,d-(\alpha/n)}^n,$$
 so
$$\frac{X-\alpha}{\beta}\in \sum^n \left[\frac{1}{\beta}\left(\mathcal{B}_{q,d-(\alpha/n)}^{p,u-(\alpha/n)}\right)\right]$$

$$\frac{A}{\beta} \stackrel{\alpha}{=} \in \sum^{n} \left[\frac{1}{\beta} \left(\frac{B_{q,d-(\alpha/n)}}{g,d-(\alpha/n)} \right) \right] \\
= \sum^{n} \mathcal{B}_{q,[d-(\alpha/n)]/\beta}^{p,[u-(\alpha/n)]/\beta} \subseteq \sum^{n} \mathcal{B}_{q}^{p}.$$

Lemma: If
$$X \in \sum^n \mathcal{B}_q^p$$
, $\alpha, \beta \in \mathbb{R}$, $\beta \neq 0$,

then
$$\frac{X-\alpha}{\beta} \in \sum^n \mathcal{B}_q^p$$
.

Special case: $\alpha = E[X],$ $\beta = SD[X].$

Def'n:
$$X_0 = \frac{X - (E[X])}{SD[X]}$$

= the standardization of X

Lemma: If
$$X \in \sum^n \mathcal{B}_q^p$$
,

then $X_{\circ} \in \sum^{n} \mathcal{B}_{q}^{p}$.

Def'n: For any set \mathcal{A} of PCRVs, Let $\sum^n \mathcal{A}$ denote the set of all $A_1 + \cdots + A_n$ such that $A_1, \ldots, A_n \in \mathcal{A}$ and such that A_1, \ldots, A_n are i.i.d. Def'n: For any set A of PCRVs, Let $\prod^n \mathcal{A}$ denote the set of all $A_1 \cdot \cdot \cdot A_n$ such that $A_1,\ldots,A_n\in\mathcal{A}$ and such that A_1,\ldots,A_n are i.i.d. Def'n: $\exp(A) := e^A := \{e^A \mid A \in A\}.$ Fact: $e^{\sum_{n=1}^{n} A} = \prod_{n=1}^{n} e^{A}$.

i.e.,
$$\exp(\sum^n A) = \prod^n [\exp(A)]$$

Fact: A is i.d. $\Rightarrow \prod^n A$ is i.d. and $E[\prod^n A] = (E[A])^n$.

STOP