FM 5011 Fall 2011, Final Exam
Handout date: Thursday 15 December 2011

PRINT NAME

Remember to read to the bottom and to SIGN YOUR NAME BELOW!
Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.
Show work; a correct answer, by itself, may be insufficient for credit.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.
I. Definitions: Complete the following sentences.
a. (Topic $1500(28), 3$ pts.) Let M be a set. A subset \mathcal{S} of 2^{M} is called a σ-algebra on M if ...
b. (Topic $3000(37), 3$ pts.) Let U be a random variable on the probability space $(\Omega, \mathcal{B}, \mu)$ and let \mathcal{S} be a σ-subalgebra of \mathcal{B}. A random variable X represents $\mathrm{E}[U \mid \mathcal{S}]$ if \ldots
c. (Topic $2900(20), 3$ pts.) Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable on $(\Omega, \mathcal{B}, \mu)$. The σ-algebra of X is $\mathcal{S}_{X}=\cdots$
d. (Topic $2330(23), 3$ pts.) Let μ and ν be probability measures on a Borel space (Ω, \mathcal{B}). We say that μ is absolutely continuous with respect to μ, and write $\mu \ll \nu$, if ...
e. (Topic $2700(28), 3$ pts.) Let μ be a probability measure on \mathbb{R} and let λ denote Lebesgue measure on \mathbb{R}. A function $f: \mathbb{R} \rightarrow[0, \infty)$ is said to be a probability density function for μ if ...
f. (Topic $2900(8), 3$ pts.) Let $X_{\bullet}^{(1)}, X_{\bullet}^{(2)}, \ldots$ be a sequence of processes. Let X_{\bullet} be a process. We say $X_{\bullet}^{(n)}$ converges to X_{\bullet} in finite dimensional marginals, as $n \rightarrow \infty$, if . . .
g. (Topic $2900(23), 3$ pts.) Two random variables X and Y are said to be independent if . . .
h. (Topic $2900(35), 3$ pts.) Let μ and ν be two probability measures on \mathbb{R}. Define $A: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $A(x, y)=x+y$. Then the convolution of μ and ν is given by $\mu * \nu=\cdots$
II. True or False. (No partial credit.)
a. (Topic $2700(47), 2$ pts.) Let X and Y be random variables. If their distributions have the same Fourier transforms, then $X=Y$ a.s.
b. (Topic $2900(9), 2$ pts.) If X and Y are identically distributed random variables, then X^{2} and Y^{2} are also identically distributed.
c. (Topic $3600(21), 2$ pts.) If V_{\bullet} and W_{\bullet} are Brownian motions, then $V=W$ in finite dimensional marginals.
d. (Topic $3000(37), 2$ pts.) Let X and Y be random variables. Assume that X and Y are independent. Then $\mathrm{E}[X \mid Y]=X$.
e. (Topic $2900(22), 2$ pts.) If X is a random variable and $\mathcal{S}=\mathcal{S}_{X}$ is its σ-algebra, then X is \mathcal{S}-measurable.
f. (Topic $2900(24), 2$ pts.) If X and Y are random variables, then $\delta_{X, Y}=\delta_{X} \times \delta_{Y}$.
g. (Topic 2900(44), 2 pts.) Let G be the grade of a standard normal random variable and let $0 \leq a<b \leq 1$. Then $\operatorname{Pr}[a<G<b]=b-a$.
h. (Topic 2400(7-8), 2 pts.) For any random variable X, there exists $a \in \mathbb{R}$, such that $\operatorname{Pr}[X<a]=0$.

THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE ON THIS PAGE
I. a-d.
I. e-h.
II. a-d.
II. e-h.

III(1).

III(2).

III $(3,4)$.

III(5).

III(6).

III(7).

III(8).

III(9).

III(10).
III. Computations. Some of your answers may involve Φ, the cumulative distribution function of the standard normal distribution. (Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.)

1. (Topic $3200(14-23), 20$ pts.) Let X be a random variable whose distribution is χ^{2} with two degrees of freedom. Compute $\mathrm{E}\left[X^{2}\right]$.
2. (Topic 2900(47), 20 pts.) Let X_{1}, X_{2}, \ldots be iid standard random variables. For all integers $n \geq 1$, let $Z_{n}:=\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n}$. Compute $\lim _{n \rightarrow \infty} \mathrm{E}\left[\left(e^{Z_{n}}-e\right)_{+}\right]$
3. (Topic 2900(13), 20 pts .) Let Z be a standard normal random variable. Let $\mu:=\delta\left[Z^{2}\right]$ be the distribution of Z^{2}. Compute $\int_{-\infty}^{\infty} x^{5} d \mu(x)$.
4. (Topic 2800(13), 20 pts.) Let $g(x)=x^{5} . \quad$ Let $v(x)= \begin{cases}x^{2}+2, & \text { if } x<1 ; \\ x^{4}, & \text { if } x \geq 1 .\end{cases}$

Compute $\int_{0}^{2} g(x) d v(x)$.
5. (Topic $3200(2), 15 \mathrm{pts}$.) Assume that the distribution $\delta[X]$ of the random variable X has probability density function given by $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$. Let $Y:=e^{X}$. Compute a probability density function f for $\delta[Y]$. Express $f(x)$ explicitly.
6. (Topic $3000(52), 15$ pts.) Let $C_{1}, C_{2}, C_{3}, \ldots$ be iid binary random variables such that, for all integers $j \geq 0$, we have $\operatorname{Pr}\left[C_{j}=1\right]=0.5=\operatorname{Pr}\left[C_{j}=-1\right]$. Let

$$
X:=\mathrm{E}\left[\left(C_{1}+\cdots+C_{100}\right) \mid\left(C_{1}+\cdots+C_{50}\right)\right]
$$

Compute $\mathrm{E}\left[X^{2}\right]$.
7. (Topic $3400(20), 15$ pts.) Let X_{1}, \ldots, X_{100} be iid normal variables with unknown mean μ and known variance 0.49 . Let x_{1}, \ldots, x_{100} be a sample modeled on X_{1}, \ldots, X_{100}. Assume that the sample mean $\left(x_{1}+\cdots+x_{100}\right) /(100)=5$. Find a 99% confidence interval for μ. (Note: For a standard normal random variable Z, we have $\operatorname{Pr}[|Z|<2.58]=0.99$.)
8. (Topic $3600(21), 15$ pts.) Let W_{\bullet} be a Brownian motion. Compute $\mathrm{E}\left[\left(W_{4}\right)^{2}\left(W_{13}\right)^{2}\right]$.
9. (Topic $3800(47), 10$ pts.) Let W_{t} be a Brownian motion. Let X_{t} satisfy

$$
d X_{t} / X_{t}=2 d W_{t}-3 d t, \quad X_{0}=1
$$

Compute $E\left[\left(X_{4}\right)^{3}\right]$.
10. (Topic 0026,10 pts.) Let X_{\bullet} satisfy $d X_{t}=4 t d W_{t}+\frac{d t}{t^{4}+1}$.

Let Y_{\bullet} be defined by $Y_{t}=t^{3} e^{X_{t}} . \quad$ Compute $\mathrm{E}\left[\int_{0}^{4} \frac{d Y_{t}}{e^{X_{t}}}\right]$.

